
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 341063, 8 pages
http://dx.doi.org/10.1155/2013/341063

Research Article
Buckling of Euler Columns with a Continuous Elastic Restraint
via Homotopy Analysis Method

Aytekin EryJlmaz,1 M. TarJk Atay,2 Safa B. CoGkun,3 and Musa BaGbük1
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Homotopy Analysis Method (HAM) is applied to find the critical buckling load of the Euler columns with continuous elastic
restraints. HAM has been successfully applied to many linear and nonlinear, ordinary and partial, differential equations, integral
equations, and difference equations. In this study, we presented the application of HAM to the critical buckling loads for Euler
columns with five different support cases continuous elastic restraints. The results are compared with the analytic solutions.

1. Introduction

The research area of buckling of nonuniform columns has
been one of the important topics of extensive studies based
on the reality that is closely related to the fields of structural,
mechanical, and aeronautical engineering. Determination
of practical load carrying capacity of a structural member
requires a detailed stability analysis in theoretical and com-
putational manner. Columns are one of the most used basic
structural elements, and there are extensive studies related
to the elastic stability of columns with different properties
in shape and of material and to their static and dynamic
behaviors. Many types of structures and structural members
can be defined as a uniform and/or non-uniform column in
a simplified state with different end conditions for buckling
analysis. On the other hand, it is difficult to determine the
exact analytical solutions for these buckling problems of
various column types with arbitrary distributions of flexural
stiffness and various end conditions. Conducting research on
buckling of columns has become the center point of study
for many researchers, and studying this subject becomes
more and more systematic during the last decades. As a
starting point of this line of research topic, Euler’s early study

of buckling of columns under their own weight [1] can be
counted. Afterwards, Greenhill [2] made remarkable contri-
butions to this field. In this field of study, generally, the closed
form solutions are extremely hard to establish. However,
solutions for simple cases are found by Dinnik [3], Karman
and Biot [4], Timoshenko and Gere [5], and others. Wang et
al. [6] established exact solutions for buckling of structural
members including various cases of columns, beams, arches,
rings, plates, and shells. In addition to this line of research, the
columns with variable cross-section, some exact solutions are
given in terms of logarithmic and trigonometric functions by
Bleich [7], in terms of Bessel functions by Dinnik [8] and in
terms of Lommel functions by Elishakoff and Pellegrini [9–
11]. Exact solution by series representation for buckling load
for variable cross section columns with variable axial forces
was established by Eisenberger [12]. Exact buckling solutions
for several special types of tapered columns with simple
boundary conditions were given by Gere and Carter [13] with
Bessel functions. Moreover, solutions for a problem of the
buckling of elastic columns with step varying thicknesses are
given by Arbabi and Li [14]. Siginer [15] conducted research
on the stability of a column whose flexural rigidity has a con-
tinuous linear variation along the column. Furthermore, the
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Figure 1: Column with continuous elastic restraints.

exact analytical solutions of a one-step bar and multistep bar
with varying cross section under the action of concentrated
and variably distributed axial loads were obtained by Li et
al. [16–18]. Sampaio and Hundhausen [19] gave the solution
for the problem of buckling behavior of inclined beam
column using energy method. They formulated the exact
solution using generalized hypergeometric functions. More-
over, the researchers who studied the mechanical behavior
of beams/columns can be given as Keller [20], Tadjbakhsh
and Keller [21], and Taylor [22]. A number of researches on
this topic have been made by Atay and Coşkun to investigate
the elastic stability of a homogenous and nonhomogenous
Euler beam by using variational iteration method and homo-
topy perturbation method [23–29]. The problem of stability
analysis of non-uniform rectangular beams, such as lateral
torsional buckling of rectangular beams, was solved by using
homotopy perturbation method by Pinarbasi [30]. By trans-
forming the governing equation with varying coefficients
to linear algebraic equations and also by using various end
boundary conditions, critical buckling loads of beams with
arbitrarily axial inhomogeneity are solved by Huang and Luo
[31]. Recently, Yuan and Wang [32] used a new differential
quadrature based iterative numerical integration method to
solve postbuckling differential equations of extensible beam
columns with six different cases.

Liao [33] introducedHomotopyAnalysisMethod (HAM)
to obtain series solutions of various linear and nonlinear
problems. HAM is an efficient method that presents us
acceptable analytical results with convenient convergence
[33]. In opposition to the perturbation techniques, this
approach is independent of any small parameters, and HAM
provides us with a simple procedure to obtain the conver-
gence of series of solutions so that one can obtain accurate
enough approximations by auxiliary convergence controller
parameter ℎ. Liao solvedmany linear and nonlinear problems
by HAM. In his book, especially, he points out the basic ideas
of theHAM [33–36]. Recently, this technique has successfully

been applied to several nonlinear problems such as the vis-
cous flows of non-Newtonian fluids [37, 38], nonlinear heat
transfer [39], nonlinear Fredholm integral equations [40],
the KdV-type equations [41], differential difference equations
[42], time-dependent Emden-Fowler type equations [43],
Laplace equation with Dirichlet and Neumann conditions
[44], and multipantograph equations [45].

In this study we apply Homotopy Analysis Method
(HAM) to find the critical buckling load of elastic columns
with continuous restraints. This problem has been solved by
different approaches such as Variational Iteration Method
(VIM), but Ham has some advantages such as being based
on a generalized concept of the homotopy in topology; the
HAM has the following advantages.The HAM is always valid
no matter whether there exist small physical parameters or
not; the method provides a convenient way to guarantee the
convergence of approximation series; and also the method
provides great freedom to choose the equation type of linear
subproblems and the base functions of solutions. As a result,
the HAM overcomes the restrictions of all other analytic
approximation methods mentioned above and is valid for
highly nonlinear problems [33].

2. Buckling of Elastic Columns with
Continuous Restraints

A uniform homogeneous column which is continuously
restrained along its length with flexural rigidity𝐸𝐼 and length
𝐿 is investigated. The restraint consists of lateral springs of
stiffness 𝑘 per unit length.

Governing equation for the buckling of an Euler column
with continuous elastic restraints in Figure 1 is given by

𝑑
2

𝑑𝑥2
(𝐸𝐼
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𝑑𝑥2
) + 𝑃
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+ 𝑘𝑤 = 0. (1)

If the governing equation (1) is divided by 𝐸𝐼, then it is
normalized by defining nondimensional displacement and
length 𝑤 = 𝑤/𝐿, 𝑥 = 𝑥/𝐿, respectively. Then normalized
governing equation becomes

𝑑
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.

(2)

Investigation of buckling loads for continuously restrained
elastic columns with five different support cases will be
conducted via HAM throughout the study.

The general solution of governing equation and stability
criteria for the columns with different end conditions are
given in Wang et al. [6]. These end conditions can be seen
in Figure 2.

The stability criteria for the columns considered in this
study [6] are given in Table 1.



Journal of Applied Mathematics 3

Table 1: The stability criteria for continuously restrained elastic columns.

Column Stability criteria
C-F column [𝛼 (𝑆

2
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] cos𝑇 cos 𝑆 − 𝛼(𝑆
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2
)] sin𝑇 sin 𝑆 = 0

P-P column sin𝑇 = 0

C-P column 𝑇 cos𝑇 sin 𝑆 − 𝑆 sin𝑇 cos 𝑆 = 0

C-C column 2𝑆𝑇[cos𝑇 cos 𝑆 − 1] + (𝑆
2
+ 𝑇
2
) sin𝑇 sin 𝑆 = 0

C-S column 𝑇 sin𝑇 cos 𝑆 − 𝑆 cos𝑇 sin 𝑆 = 0

C-F
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P-P
column

C-P
column

C-C
column

C-S
column

Figure 2: Various end conditions for restrained columns.

Where

𝑆 = √ 𝛼

2
− √(

𝛼

2
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2

− 𝛽, (3)
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2

− 𝛽. (4)

The classical boundary conditions [6] are as follows:

Clamped (Fixed)End: 𝑤 = 0,
𝑑𝑤

𝑑𝑥
= 0,

Pinned End: 𝑤 = 0,
𝑑
2
𝑤

𝑑𝑥2
= 0,
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2
𝑤

𝑑𝑥2
= 0,

𝑑
3
𝑤

𝑑𝑥3
+ 𝛼

𝑑𝑤

𝑑𝑥
= 0,
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(5)

3. HAM Formulation of the Problem

To solve (3) by means of homotopy analysis method, let us
define𝑁[𝜙(𝑥; 𝑞)] as follows:

(1 − 𝑞) 𝐿 [𝜙 (𝑥; 𝑞) − 𝑤
0
(𝑥)] = 𝑞ℎ𝐻 (𝑥)𝑁 [𝜙 (𝑥; 𝑞)] , (6)

where 𝜙(𝑥; 𝑞) is an unknown function to be determined and
𝑁[𝜙(𝑥; 𝑞)] is given by

𝑁[𝜙 (𝑥; 𝑞)] = 𝜙
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(𝑥; 𝑞) + 𝛼𝜙
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The high-order deformation equation is as follows:
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where

𝜒
𝑚
= {

0, 𝑚 ≤ 1,

1, 𝑚 > 1.
(9)

Starting with 𝑤
0
(𝑥), successively 𝑤

𝑖
(𝑥), 𝑖 = 1, 2, 3, . . . are

determined by the so-called high-order deformation equa-
tion (8); then the solution is

𝑤 (𝑥) = 𝑤
0
(𝑥) +

∞

∑

𝑚=1

𝑤
𝑚
(𝑥) . (10)

4. Critical Buckling Loads for Continuously
Restrained Elastic Columns

A cubic polynomial 𝑤
0
(𝑥) = 𝑎𝑥

3
+ 𝑏𝑥
2
+ 𝑐𝑥 + 𝑑 is chosen

as an initial approximation due to four boundary conditions
for each case. This polynomial has been successfully used in
previous studies employing different analytical approximate
techniques. This polynomial has also been used as the inter-
polation function in the finite element analysis of Euler beams
or columns. Hence, the initial approximation is expected
to produce good results. The approximation includes four
unknown coefficients which will be found by substituting
four boundary conditions into the solution. We successively
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obtain 𝑤
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Ten iterations are conducted. In this way, we get the final
approximation as follows:
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By substituting (12) into the boundary conditions, we
obtained four homogeneous equations. By representing these
equations in the matrix form by coefficient matrix [𝐶 (𝛼, 𝛽)],
we obtained the following equation in matrix form:

[𝐶 (𝛼, 𝛽)]
[
[
[

[
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]
]
]

]

=
[
[
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0

0

]
]
]

]

, (13)

where a, b, c, and 𝑑 are the unknown constants, which has
been introduced in the initial approximation. For a nontrivial
solution the determinant of the coefficient matrix [𝐶(𝛼, 𝛽)]

must vanish. Then, the problem takes the following form:

Det [𝐶 (𝛼, 𝛽)] = 0. (14)

The smallest positive real root of (14) is the normalized criti-
cal buckling load.Thenext positive real root is the normalized
buckling load for second mode, and so on. Equation (14)
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column.

depends on the stability parameter 𝛼, the restraint stiffness
parameter 𝛽, and the convergence control parameter ℎ. Then
we define the function 𝑈(𝛼, 𝛽, ℎ) as follows:

𝑈 (𝛼, 𝛽, ℎ) = Det [𝐶 (𝛼, 𝛽)] . (15)

And, then we plot the ℎ curves of the 𝑈
󸀠

10
(𝛼, 𝛽, ℎ) and

𝑈
󸀠󸀠

10
(𝛼, 𝛽, ℎ) in order to find convergence region of the ℎ,

where prime denotes derivatives of 𝑈(𝛼, 𝛽, ℎ) with respect to
𝛼.

4.1. Clamped-Free (C-F) Column. Substituting the 10th-order
approximation 𝑊

10
(𝛼, 𝛽, ℎ) into the boundary conditions of

C-F column, we get coefficientmatrix [𝐶
𝐶-𝐹(𝛼, 𝛽)].We define

the function 𝑈(𝛼, 𝛽, ℎ) as follows:

𝑈(𝛼, 𝛽, ℎ) = Det [𝐶
𝐶-𝐹 (𝛼, 𝛽)] . (16)

Then, the ℎ curves of𝑈󸀠
10
(1, 1, ℎ) and𝑈

󸀠󸀠

10
(1, 1, ℎ) are obtained

in Figure 3, and the valid region of ℎ is approximated
as −1, 5 < ℎ < −0, 3.

Finally the critical buckling load obtained from (14) for
ℎ = −0, 99 is 2,4674.

4.2. Pinned-Pinned (P-P) Column. Substituting the 10th-
order approximation 𝑊

10
(𝛼, 𝛽, ℎ) into the boundary condi-

tions of P-P column, we get coefficient matrix [𝐶
𝑃-𝑃(𝛼, 𝛽)].

We define the function 𝑈(𝛼, 𝛽, ℎ) as follows:

𝑈 (𝛼, 𝛽, ℎ) = Det [𝐶
𝑃-𝑃 (𝛼, 𝛽)] . (17)

Then the ℎ curves of𝑈󸀠
10
(1, 1, ℎ) and𝑈

󸀠󸀠

10
(1, 1, ℎ) are obtained

in Figure 4, and the valid region of ℎ is about −1, 6 < ℎ <

−0, 4.
Finally, the critical buckling load obtained from (14) for

ℎ = −0, 995 is 9,8696.



Journal of Applied Mathematics 5

0 0.5

ħ

−2

−2

−4

−1.5 −1 −0.5

U′
10 (1, 1, ħ)

U′′
10 (1, 1, ħ)

0

2

4

6

8

10

U
′′ 10

(1
, 1

,ħ
)

an
d

U
′ 10

(1
, 1

,ħ
)

Figure 4: The ℎ curves of 𝑈
󸀠

10
(1, 1, ℎ) and 𝑈

󸀠󸀠

10
(1, 1, ℎ) for P-P

column.

0

ħ

−2
−5

−1.5 −1 −0.5

U′
10 (1, 1, ħ)

U′′
10 (1, 1, ħ)

0

5

10

15

U
′′ 10

(1
, 1

,ħ
)

an
d

U
′ 10

(1
, 1

,ħ
)

Figure 5: The ℎ curves of 𝑈
󸀠

10
(1, 1, ℎ) and 𝑈

󸀠󸀠

10
(1, 1, ℎ) for C-P

column.

4.3. Clamped-Pinned (C-P) Column. Substituting the 10th
order approximation 𝑊

10
(𝛼, 𝛽, ℎ) into the boundary condi-

tions of C-P column, we get coefficient matrix [𝐶
𝐶-𝑃(𝛼, 𝛽)].

We define the function 𝑈(𝛼, 𝛽, ℎ) as follows:

𝑈(𝛼, 𝛽, ℎ) = Det [𝐶
𝐶-𝑃 (𝛼, 𝛽)] . (18)

Then the ℎ curves of𝑈󸀠
10
(1, 1, ℎ) and𝑈

󸀠󸀠

10
(1, 1, ℎ) are obtained

in Figure 5, and the valid region of ℎ is as follows: −1, 75 <

ℎ < −0, 3.
Finally the critical buckling load obtained from (14) for

ℎ = −0, 97 is 20,1907.

4.4. Clamped-Clamped (C-C) Column. Substituting the 10th-
order approximation 𝑊

10
(𝛼, 𝛽, ℎ) into the boundary condi-

tions of C-C column, we get coefficient matrix [𝐶
𝐶-𝐶(𝛼, 𝛽)].

We define the function 𝑈(𝛼, 𝛽, ℎ) as follows:

𝑈 (𝛼, 𝛽, ℎ) = Det [𝐶
𝐶-𝐶 (𝛼, 𝛽)] . (19)
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Then the ℎ curves of𝑈󸀠
10
(1, 1, ℎ) and𝑈

󸀠󸀠

10
(1, 1, ℎ) are obtained

in Figure 6, and the valid region of ℎ can be −1, 8 < ℎ < −0, 1.
Finally the critical buckling load obtained from (14) for

ℎ = −0, 96868 is 39,4784.

4.5. Clamped-Sliding Restraint (C-S) Column. Substituting
the 10th-order approximation 𝑊

10
(𝛼, 𝛽, ℎ) into the bound-

ary conditions of C-S column, we get coefficient matrix
[𝐶
𝐶-𝑆(𝛼, 𝛽)]. We define the function 𝑈(𝛼, 𝛽, ℎ) as follows:

𝑈(𝛼, 𝛽, ℎ) = Det [𝐶
𝐶-𝑆 (𝛼, 𝛽)] . (20)

Then, the ℎ curves of𝑈󸀠
10
(1, 1, ℎ) and𝑈

󸀠󸀠

10
(1, 1, ℎ) are obtained

in Figure 7, and the valid region of ℎ can be −1, 55 < ℎ <

−0, 37.
Finally the critical buckling load obtained from (14) for

ℎ = −0, 9909 is 9,8696.
The exact solutions for the presented cases are ob-

tained via stability criteria provided by Wang et al. [6]. In
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Table 2: Comparison of exact and HAM solutions of the buckling loads for 𝛽 = 0 with ten iterations.

Mode C-F column P-P column C-P column C-C column C-S column
Exact HAM Exact HAM Exact HAM Exact HAM Exact HAM

1 2.4674 2.4674 9.8696 9.8696 20.1907 20.1907 39.4784 39.4784 9.8696 9.8696
2 22.2066 22.2066 39.4784 39.4779 59.6795 59.6813 80.7629 80.9336 39.4784 39.4784

Table 3: Comparison of exact and HAM solutions of the buckling loads for 𝛽 = 50 with ten iterations.

Mode C-F Column P-P Column C-P Column C-C Column C-S Column
Exact HAM Exact HAM Exact HAM Exact HAM Exact HAM

1 8.8614 8.8614 14.9357 14.9357 24.2852 24.2852 43.2606 43.2606 23.5717 23.5717
2 33.0879 33.0873 40.7449 40.7442 61.0966 61.1003 81.7943 82.0059 44.4104 44.4053

Table 4: Comparison of exact and HAM solutions of the buckling loads for 𝛽 = 100 with ten iterations.

Mode C-F column P-P column C-P column C-C column C-S column
Exact HAM Exact HAM Exact HAM Exact HAM Exact HAM

1 11.9964 11.9964 20.0017 20.0017 28.3066 28.3066 47.0066 47.0066 32.6690 32.6690
2 45.2659 45.2574 42.0114 42.0105 62.5613 62.5678 82.8246 83.0859 52.8965 52.8105

Table 5: Absolute errors of HAM approximations for the first buckling mode.

C-F column P-P column C-P column C-C column C-S column
𝛽 = 0 1.30562𝐸 − 13 1.03727𝐸 − 12 0.00000 0.00000 5.39109𝐸 − 11

𝛽 = 50 9.81515𝐸 − 10 1.26009𝐸 − 10 1.09165𝐸 − 7 4.64191𝐸 − 5 1.50249𝐸 − 7

𝛽 = 100 3.04503𝐸 − 8 1.65444𝐸 − 8 7.37428𝐸 − 7 5.9300𝐸 − 7 1.81936𝐸 − 5

Table 6: Percent relative errors of HAM approximations for the second buckling mode.

C-F column P-P column C-P column C-C column C-S column
𝛽 = 0 0.00000621 0.00124745 0.00303663 0.21128177 0.00008617
𝛽 = 50 0.00163762 0.00173402 0.00599296 0.25870613 0.01135007
𝛽 = 100 0.01874692 0.00227055 0.01038389 0.31551889 0.16247717
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Figure 8: Convergence of solutions through the iterations for the
first mode of P-P column.

the following tables, the buckling loads for the first twomodes
are given and compared with exact results.

From Tables 2–4 it is observed that normalized buckling
loads for the first mode which is the critical buckling load are
in excellent agreement with analytical results. Absolute errors
for these cases are given in Table 5.

The differences in the results of the second mode exist
due to lack of iterations provided by the method. Additional
iterations would improve the results for the second mode.
However, the results for the second mode are still in good
agreement with the exact results. Relative errors for this case
are provided in the following Table 6.

These percent relative errors show that the presented solu-
tion is in good agreement with analytical ones. Convergence
of solutions for the PP column is simulated in Figures 8 and 9.
Solid lines show the exact solutions for different normalized
spring stiffnesses.

Same convergence behaviors are observed for all cases
considered in this study. Furthermore, Figure 8 shows that at
least 6 iterations are required for the first mode, and Figure 9
shows that at least 10 iterations are required for the second
mode to obtain satisfactory results from the analysis.

5. Conclusions

In this work, a reliable algorithm based on the HAM to
obtain the normalized buckling loads of the Euler columns
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Figure 9: Convergence of solutions through the iterations for the
second mode of P-P column.

with constant flexural stiffness is presented. Several cases are
given to illustrate the validity and accuracy of this procedure.
The series solutions of (3) by HAM contain the auxiliary
parameter ℎ. In general, by means of the so-called ℎ-curve,
it is straightforward to choose a proper value of ℎ which
ensures that the series solution is convergent. Figures 2, 3,
4, 5, and 6 show the ℎ-curves obtained from the 𝑚th-order
HAM approximation solutions. From these figures, the valid
regions of ℎ correspond to the line segments nearly parallel
to the horizontal axis. By the use of the proper value with
this parameter, two buckling loads for the first and second
modes are obtained. The method will provide the results for
the following modes if additional iterations are introduced
in the analysis. The buckling loads are positive real roots of
the characteristic equationswhich are obtained consecutively.
This is a huge advantage, because it is still very difficult to
obtain those roots consecutively even with a mathematics
software. As a result, HAM is an efficient, powerful, and
accurate tool for determining the buckling loads of Euler
columns.
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