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The Khintchine-Kolmogorov-type convergence theorem and three-series theorem for AANA random variables are established. By
using these convergence theorems, we obtain convergence results for AANA sequences, which extend the corresponding ones for
independent sequences and NA sequences. In addition, we study the strong stability for weighted sums of AANA random variables
and obtain some new results, which extend some earlier ones for NA random variables.

1. Introduction

Firstly, let us recall some definitions.

Definition 1 (cf. Wu [1]). A sequence {𝑋
𝑛
, 𝑛 ≥ 1} of random

variables is said to be stochastically dominated by a random
variable 𝑋 if there exists a constant 𝐶 such that

𝑃 (
󵄨󵄨󵄨󵄨𝑋𝑛

󵄨󵄨󵄨󵄨 > 𝑥) ≤ 𝐶𝑃 (|𝑋| > 𝑥) (1)

for all 𝑥 ≥ 0 and 𝑛 ≥ 1.

Definition 2 (cf. Chow and Teicher [2]). A sequence {𝑌
𝑛
, 𝑛 ≥

1} of random variables is said to be strongly stable if there
exist two constant sequences {𝑏

𝑛
, 𝑛 ≥ 1} and {𝑑

𝑛
, 𝑛 ≥

1} with 0 < 𝑏
𝑛
↑ ∞ such that

𝑏
−1

𝑛
𝑌
𝑛
− 𝑑
𝑛
󳨀→ 0 a.s. (2)

Definition 3 (cf. Wu [1]). A function 𝑙(𝑥) > 0 (𝑥 > 0) is
said to be quasimonotonically increasing function if there
exist 𝑥

0
> 0 and constant 𝐶 > 0 with ∀𝑡 ≥ 𝑥 ≥ 𝑥

0
such

that 𝑙(𝑡) ≥ 𝐶𝑙(𝑥). A function 𝑙(𝑥) > 0(𝑥 > 0) is said to be
quasimonotonically decreasing function if there exist 𝑥

0
>

0 and constant 𝐶 > 0 with ∀𝑡 ≥ 𝑥 ≥ 𝑥
0
such that 𝑙(𝑡) ≤

𝐶𝑙(𝑥).

Definition 4 (cf.Wu [1]). A real-valued function 𝑙(𝑥), positive
and measurable on (0,∞), is said to be slowly varying if

lim
𝑥→∞

𝑙 (𝜆𝑥)

𝑙 (𝑥)
= 1 (3)

for each 𝜆 > 0.

Definition 5 (cf. Joag-Dev and Proschan [3]). A finite col-
lection of random variables 𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑛
is said to be

negatively associated (NA, in short) if for every pair of disjoint
subsets 𝐴

1
, 𝐴
2
of {1, 2, . . . , 𝑛},

Cov {f (Xi : i ∈ A1) , g (Xj : j ∈ A2)} ≤ 0, (4)

whenever 𝑓 and 𝑔 are coordinatewise nondecreasing such
that this covariance exists. An infinite sequence {𝑋

𝑛
, 𝑛 ≥

1} is NA if every finite subcollection is NA.

Definition 6 (cf. Chandra and Ghosal [4]). A sequence
{𝑋
𝑛
, 𝑛 ≥ 1} of random variables is called asymptotically

almost negatively associated (AANA) if there exists a non-
negative sequence 𝑞(𝑛) → 0 as 𝑛 → ∞ such that

Cov {𝑓 (𝑋
𝑛
) , 𝑔 (𝑋

𝑛+1
, 𝑋
𝑛+2

, . . . , 𝑋
𝑛+𝑘

)}

≤ 𝑞 (𝑛) [Var (𝑓 (𝑋
𝑛
))Var (𝑔 (𝑋

𝑛+1
, 𝑋
𝑛+2

, . . . , 𝑋
𝑛+𝑘

))]
1/2

(5)
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for all 𝑛, 𝑘 ≥ 1 and for all coordinatewise nondecreasing
continuous functions 𝑓 and 𝑔 whenever the variances exist.

Obviously, the family of AANA sequences contains NA
(in particular, independent) sequences (taking 𝑞(𝑛) = 0, 𝑛 ≥

1) and some more sequences of random variables which do
not much deviates from being NA. An example of an AANA
sequence which is not NA was introduced by Chandra and
Ghosal [5].

Since the concept of AANA random variables was intro-
duced by Chandra and Ghosal [4], many applications have
been found. For example, Chandra and Ghosal [4] derived
the Kolmogorov-type inequality and the strong law of large
numbers of Marcinkiewicz-Zygmund, Chandra and Ghosal
[5] obtained the almost sure convergence of weighted aver-
ages, Ko et al. [6] studied theHájek-Rènyi type inequality, and
Wang et al. [7] established the law of the iterated logarithm for
product sums. Yuan and An [8] established Rosenthal-type
inequalities for maximum partial sums of AANA sequences.
Wang et al. [9] studied some convergence properties for
AANA sequence. Wang et al. [10] generalized and improved
the results of Ko et al. [6] and studied the large deviation
and Marcinkiewicz-type strong law of large numbers for
AANA sequences. Yang et al. [11] investigated the complete
convergence of moving average process for AANA sequence.
Hu et al. [12] and Shen and Wu [13, 14] studied strong
convergence property for weighted sums of AANA sequence.
Wang et al. [15, 16] and Shen et al. [17] obtained some results
on complete convergence for AANA sequence, and so forth.

In this paper, we mainly study convergence results
for AANA random variables, and the strong stability for
weighted sums of AANA random variables, which extend
the corresponding ones for independent sequences and NA
sequences without necessarily adding extra conditions. The
techniques used in the paper are the truncated method,
the Khintchine-Kolmogorov-type convergence theorem and
three-series theorem for AANA random variables.

Throughout this paper, let 𝐼(𝐴) be the indicator function
of the set 𝐴, and 𝑋

(𝑐)

𝑛
= −𝑐𝐼(𝑋

𝑛
< −𝑐) + 𝑋

𝑛
𝐼(|𝑋
𝑛
| ≤ 𝑐)+

𝑐𝐼(𝑋
𝑛

> 𝑐) for some 𝑐 > 0. 𝑎
𝑛

= 𝑂(𝑏
𝑛
) denotes that

there exists a positive constant 𝐶 such that |𝑎
𝑛
/𝑏
𝑛
| ≤ 𝐶.

The symbol 𝐶 represents a positive constant which may be
different in various places. The main results of this paper
depend on the following lemmas.

Lemma 7 (cf. Yuan and An [8]). Let {𝑋
𝑛
, 𝑛 ≥ 1} be a

sequence of AANA random variables with mixing coefficients
{𝑞(𝑛), 𝑛 ≥ 1}, and let 𝑓

1
, 𝑓
2
, . . . be all nondecreasing (or

nonincreasing) continuous functions; then {𝑓
𝑛
(𝑋
𝑛
), 𝑛 ≥ 1} is

still a sequence of AANA random variables with mixing
coefficients {𝑞(𝑛), 𝑛 ≥ 1}.

Lemma 8 (cf. Wang et al. [9]). Let 1 < 𝑝 ≤ 2 and {𝑋
𝑛
, 𝑛 ≥

1} be a sequence of AANA random variables with mixing
coefficients {𝑞(𝑛), 𝑛 ≥ 1}. Assume that 𝐸𝑋

𝑛
= 0 for all

𝑛 ≥ 1 and ∑
∞

𝑛=1
𝑞
2

(𝑛) < ∞; then there exists a positive
constant 𝐶

𝑝
depending only on 𝑝 such that

𝐸(max
1≤𝑗≤𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑗

∑
𝑖=1

𝑋
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

) ≤ 𝐶
𝑝

𝑛

∑
𝑖=1

𝐸
󵄨󵄨󵄨󵄨𝑋𝑖

󵄨󵄨󵄨󵄨
𝑝 (6)

for all 𝑛 ≥ 1, where 𝐶
𝑝
= 2
𝑝

[2
2−𝑝

𝑝 + (6𝑝)
𝑝

(∑
∞

𝑛=1
𝑞
2

(𝑛))
(𝑝−1)

].

By Lemmas 7 and 8, we can get the following Khintchine-
Kolmogorov-type convergence theorem and three series
theorem for AANA sequences, which can be applied to prove
the main results of the paper. The proofs are standard, so we
omit them.

Corollary 9 (Khintchine-Kolmogorov-type convergence the-
orem). Let {𝑋

𝑛
, 𝑛 ≥ 1} be a sequence of AANA random vari-

ables with mixing coefficients {𝑞(𝑛), 𝑛 ≥ 1} and ∑
∞

𝑛=1
𝑞
2

(𝑛) <

∞. If

∞

∑
𝑛=1

Var𝑋
𝑛
< ∞, (7)

then ∑
∞

𝑛=1
(𝑋
𝑛
− 𝐸𝑋
𝑛
) converges almost surely.

Corollary 10 (three-series theorem for AANA random vari-
ables). Let {𝑋

𝑛
, 𝑛 ≥ 1} be a sequence of AANA random vari-

ables with mixing coefficients {𝑞(𝑛), 𝑛 ≥ 1} and ∑
∞

𝑛=1
𝑞
2

(𝑛) <

∞. Assume that for some 𝑐 > 0,

∞

∑
𝑛=1

𝑃 (
󵄨󵄨󵄨󵄨𝑋𝑛

󵄨󵄨󵄨󵄨 > 𝑐) < ∞,

∞

∑
𝑛=1

𝐸𝑋
(𝑐)

𝑛
converges,

∞

∑
𝑛=1

Var𝑋(𝑐)
𝑛

< ∞.

(8)

Then, ∑∞
𝑛=1

𝑋
𝑛
converges almost surely.

Remark 11. Since NA implies AANA, Corollaries 9 and 10
extend corresponding results for NA random variables (see
Matula [18]) to AANA random variables without adding any
extra condition.

Lemma 12 (cf. Wu [19] or Shen [20]). Let {𝑋
𝑛
, 𝑛 ≥ 1} be a

sequence of randomvariables which is stochastically dominated
by a random variable 𝑋. For any 𝛼 > 0 and 𝑏 > 0, the
following two statements hold:

𝐸
󵄨󵄨󵄨󵄨𝑋𝑛

󵄨󵄨󵄨󵄨
𝛼

𝐼 (
󵄨󵄨󵄨󵄨𝑋𝑛

󵄨󵄨󵄨󵄨 ≤ 𝑏) ≤ 𝐶
1
[𝐸|𝑋|

𝛼

𝐼 (|𝑋| ≤ 𝑏) + 𝑏
𝛼

𝑃 (|𝑋| > 𝑏)] ,

𝐸
󵄨󵄨󵄨󵄨𝑋𝑛

󵄨󵄨󵄨󵄨
𝑎

𝐼 (
󵄨󵄨󵄨󵄨𝑋𝑛

󵄨󵄨󵄨󵄨 > 𝑏) ≤ 𝐶
2
𝐸|𝑋|
𝛼

𝐼 (|𝑋| > 𝑏) ,

(9)

where 𝐶
1
and 𝐶

2
are positive constants.

Lemma 13 (cf. Wu [1]). Let ℎ(𝑥) > 0 be a slowly varying
function; then for any 𝛿 > 0, 𝑥𝛿ℎ(𝑥) is a quasimonotoni-
cally increasing function and 𝑥

−𝛿

ℎ(𝑥) is a quasimonotonically
decreasing function.
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2. Strong Convergence Properties of Weighted
Sums for AANA Sequence

Theorem 14. Let {𝑋
𝑛
, 𝑛 ≥ 1} be a sequence of AANA

random variables with ∑
∞

𝑛=1
𝑞
2

(𝑛) < ∞. Assume that
{𝑔
𝑛
(𝑥), 𝑛 ≥ 1} is a sequence of even functions defined on 𝑅.

For each 𝑛 ≥ 1, 𝑔
𝑛
(𝑥) is a positive and nondecreasing function

in (0,∞) and satisfies one of the following conditions:

(i) for some 0 < 𝑟 ≤ 1, 𝑥𝑟/𝑔
𝑛
(𝑥) is a nondecreasing

function in (0,∞);
(ii) for some 1 < 𝑟 ≤ 2, 𝑥/𝑔

𝑛
(𝑥) and 𝑔

𝑛
(𝑥)/𝑥
𝑟 are non-

increasing functions in (0,∞); furthermore, assume
that 𝐸𝑋

𝑛
= 0 for each 𝑛 ≥ 1.

For any positive number sequence {𝑎
𝑛
, 𝑛 ≥ 1} with 𝑎

𝑛
↑

∞ such that
∞

∑
𝑛=1

𝐸𝑔
𝑛
(𝑋
𝑛
)

𝑔
𝑛
(𝑎
𝑛
)

< ∞, (10)

then ∑
∞

𝑛=1
𝑋
𝑛
/𝑎
𝑛
converges a.s., and

𝑎
−1

𝑛

𝑛

∑
𝑖=1

𝑋
𝑖
󳨀→ 0 𝑎.𝑠., as 𝑛 󳨀→ ∞. (11)

Proof. For each 𝑛 ≥ 1, denote

𝑋
(𝑎
𝑛
)

𝑛
= −𝑎
𝑛
𝐼 (𝑋
𝑛
< −𝑎
𝑛
) + 𝑋
𝑛
𝐼 (

󵄨󵄨󵄨󵄨𝑋𝑛
󵄨󵄨󵄨󵄨 ≤ 𝑎
𝑛
)

+ 𝑎
𝑛
𝐼 (𝑋
𝑛
> 𝑎
𝑛
) .

(12)

By Lemma 7, we can see that, for fixed 𝑛 ≥ 1, {𝑋(𝑎𝑛)
𝑛

} is still
a sequence of AANA random variables. So by Corollary 10 in
order to prove (11), we need only to prove the convergence of
three series of (8), where 𝑐 = 1.

Firstly, we prove that ∑
∞

𝑛=1
𝑃(|𝑋
𝑛
/𝑎
𝑛
| > 1) < ∞ under

condition (i) or (ii).
For each 𝑛 ≥ 1, if 𝑔

𝑛
(𝑥) satisfies condition (i), noting

that {𝑔
𝑛
(𝑥), 𝑛 ≥ 1} is a sequence of positive and non-

decreasing even function in (0, +∞). Combining Markov’s
inequality with (10), it follows that

∞

∑
𝑛=1

𝑃(
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑋
𝑛

𝑎
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
> 1) ≤

∞

∑
𝑛=1

𝑃 (𝑔
𝑛
(𝑋
𝑛
) > 𝑔
𝑛
(𝑎
𝑛
))

≤

∞

∑
𝑛=1

𝐸𝑔
𝑛
(𝑋
𝑛
)

𝑔
𝑛
(𝑎
𝑛
)

< ∞.

(13)

If 𝑔
𝑛
(𝑥) satisfies condition (ii), it is easy to prove that (13) also

holds.
Secondly, we will show ∑

∞

𝑛=1
Var(𝑋(𝑎𝑛)

𝑛
/𝑎
𝑛
) < ∞.

If 𝑔
𝑛
(𝑥) satisfies (i), when |𝑥| ≤ 𝑎

𝑛
, we have (|𝑥|

𝑟

/𝑔
𝑛
(𝑥))

≤ (𝑎
𝑟

𝑛
/𝑔
𝑛
(𝑎
𝑛
)), which implies that

|𝑥|
𝑟

𝑎𝑟
𝑛

≤
𝑔
𝑛
(𝑥)

𝑔
𝑛
(𝑎
𝑛
)
,

𝑥
2

𝑎2
𝑛

≤
(𝑔
𝑛
(𝑥))
2/𝑟

(𝑔
𝑛
(𝑎
𝑛
))
2/𝑟

. (14)

Note that {𝑔
𝑛
(𝑥), 𝑛 ≥ 1} is a sequence of positive and non-

decreasing functions in (0, +∞), so 0 ≤ (𝑔
𝑛
(𝑥)/𝑔
𝑛
(𝑎
𝑛
)) ≤

1 when |𝑥| ≤ 𝑎
𝑛
. Consequently,

𝑥
2

𝑎2
𝑛

≤ (
𝑔
𝑛
(𝑥)

𝑔
𝑛
(𝑎
𝑛
)
)

2/𝑟

≤
𝑔
𝑛
(𝑥)

𝑔
𝑛
(𝑎
𝑛
)
, for 0 < r ≤ 1. (15)

On the other hand, if 𝑔
𝑛
(𝑥) satisfies condition (ii), then we

can also get that

𝑥
2

𝑎2
𝑛

≤ (
𝑔
𝑛
(𝑥)

𝑔
𝑛
(𝑎
𝑛
)
)

2/𝑟

≤
𝑔
𝑛
(𝑥)

𝑔
𝑛
(𝑎
𝑛
)
, for 1 < r ≤ 2. (16)

Therefore, whether even function 𝑔
𝑛
(𝑥) satisfies condition

(i) or (ii), we can obtain

Var(
𝑋
(𝑎
𝑛
)

𝑛

𝑎
𝑛

) ≤ 𝐸(
𝑋
(𝑎
𝑛
)

𝑛

𝑎
𝑛

)

2

= 𝐸(
𝑋
2

𝑛

𝑎2
𝑛

𝐼 (
󵄨󵄨󵄨󵄨𝑋𝑛

󵄨󵄨󵄨󵄨 ≤ 𝑎
𝑛
)) + 𝐸𝐼 (

󵄨󵄨󵄨󵄨𝑋𝑛
󵄨󵄨󵄨󵄨 > 𝑎
𝑛
)

≤ 𝐸(
𝑔
𝑛
(𝑋
𝑛
)

𝑔
𝑛
(𝑎
𝑛
)
𝐼 (

󵄨󵄨󵄨󵄨𝑋𝑛
󵄨󵄨󵄨󵄨 ≤ 𝑎
𝑛
))

+ 𝐸(
𝑔
𝑛
(𝑋
𝑛
)

𝑔
𝑛
(𝑎
𝑛
)
𝐼 (

󵄨󵄨󵄨󵄨𝑋𝑛
󵄨󵄨󵄨󵄨 > 𝑎
𝑛
)) =

𝐸𝑔
𝑛
(𝑋
𝑛
)

𝑔
𝑛
(𝑎
𝑛
)

.

(17)

Therefore, it follows from (10) that

∞

∑
𝑛=1

Var(
𝑋
(𝑎
𝑛
)

𝑛

𝑎
𝑛

) ≤

∞

∑
𝑛=1

𝐸𝑔
𝑛
(𝑋
𝑛
)

𝑔
𝑛
(𝑎
𝑛
)

< ∞. (18)

Finally, we prove that ∑
∞

𝑛=1
𝐸|𝑋
(𝑎
𝑛
)

𝑛
/𝑎
𝑛
| < ∞.

If 𝑔
𝑛
(𝑥) satisfies condition (i), when |𝑥| ≤ 𝑎

𝑛
, we

have (|𝑥|/𝑎
𝑛
) ≤ (|𝑥|

𝑟

/𝑎
𝑟

𝑛
), for 0 < 𝑟 ≤ 1. It follows that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐸(
𝑋
(𝑎
𝑛
)

𝑛

𝑎
𝑛

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐸(

󵄨󵄨󵄨󵄨𝑋𝑛
󵄨󵄨󵄨󵄨

𝑎
𝑛

𝐼 (
󵄨󵄨󵄨󵄨𝑋𝑛

󵄨󵄨󵄨󵄨 ≤ 𝑎
𝑛
)) + 𝐸𝐼 (

󵄨󵄨󵄨󵄨𝑋𝑛
󵄨󵄨󵄨󵄨 > 𝑎
𝑛
)

≤ 𝐸(

󵄨󵄨󵄨󵄨𝑋𝑛
󵄨󵄨󵄨󵄨
𝑟

𝑎𝑟
𝑛

𝐼 (
󵄨󵄨󵄨󵄨𝑋𝑛

󵄨󵄨󵄨󵄨 ≤ 𝑎
𝑛
))

+ 𝐸(
𝑔
𝑛
(𝑋
𝑛
)

𝑔
𝑛
(𝑎
𝑛
)
𝐼 (

󵄨󵄨󵄨󵄨𝑋𝑛
󵄨󵄨󵄨󵄨 > 𝑎
𝑛
))

≤ 𝐸(
𝑔
𝑛
(𝑋
𝑛
)

𝑔
𝑛
(𝑎
𝑛
)
𝐼 (

󵄨󵄨󵄨󵄨𝑋𝑛
󵄨󵄨󵄨󵄨 ≤ 𝑎
𝑛
))

+ 𝐸(
𝑔
𝑛
(𝑋
𝑛
)

𝑔
𝑛
(𝑎
𝑛
)
𝐼 (

󵄨󵄨󵄨󵄨𝑋𝑛
󵄨󵄨󵄨󵄨 > 𝑎
𝑛
))

=
𝐸𝑔
𝑛
(𝑋
𝑛
)

𝑔
𝑛
(𝑎
𝑛
)

.

(19)
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If 𝑔
𝑛
(𝑥) satisfies condition (ii), then by the fact

that 𝐸𝑋
𝑛

= 0 and 𝑥/𝑔
𝑛
(𝑥) is a nonincreasing function

in (0,∞), we get
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐸(
𝑋
(𝑎
𝑛
)

𝑛

𝑎
𝑛

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐸 (

𝑋
𝑛

𝑎
𝑛

𝐼 (
󵄨󵄨󵄨󵄨𝑋𝑛

󵄨󵄨󵄨󵄨 ≤ 𝑎
𝑛
))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+ 𝐸𝐼 (

󵄨󵄨󵄨󵄨𝑋𝑛
󵄨󵄨󵄨󵄨 > 𝑎
𝑛
)

=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐸 (

𝑋
𝑛

𝑎
𝑛

𝐼 (
󵄨󵄨󵄨󵄨𝑋𝑛

󵄨󵄨󵄨󵄨 > 𝑎
𝑛
))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+ 𝐸𝐼 (

󵄨󵄨󵄨󵄨𝑋𝑛
󵄨󵄨󵄨󵄨 > 𝑎
𝑛
)

≤ 𝐸(

󵄨󵄨󵄨󵄨𝑋𝑛
󵄨󵄨󵄨󵄨

𝑎
𝑛

𝐼 (
󵄨󵄨󵄨󵄨𝑋𝑛

󵄨󵄨󵄨󵄨 > 𝑎
𝑛
)) + 𝐸𝐼 (

󵄨󵄨󵄨󵄨𝑋𝑛
󵄨󵄨󵄨󵄨 > 𝑎
𝑛
)

≤ 𝐸(
𝑔
𝑛
(𝑋
𝑛
)

𝑔
𝑛
(𝑎
𝑛
)
𝐼 (

󵄨󵄨󵄨󵄨𝑋𝑛
󵄨󵄨󵄨󵄨 > 𝑎
𝑛
))

+ 𝐸(
𝑔
𝑛
(𝑋
𝑛
)

𝑔
𝑛
(𝑎
𝑛
)
𝐼 (

󵄨󵄨󵄨󵄨𝑋𝑛
󵄨󵄨󵄨󵄨 > 𝑎
𝑛
))

≤ 2
𝐸𝑔
𝑛
(𝑋
𝑛
)

𝑔
𝑛
(𝑎
𝑛
)

.

(20)

Therefore, whether 𝑔
𝑛
(𝑥) satisfies condition (i) or (ii), it also

follows from (10) that
∞

∑
𝑛=1

𝐸

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑋
(𝑎
𝑛
)

𝑛

𝑎
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< ∞. (21)

The proof of Theorem 14 is completed by (13), (18), and (21).

Corollary 15. Let {𝑋
𝑛
, 𝑛 ≥ 1} be a sequence of AANA

random variables with ∑
∞

𝑛=1
𝑞
2

(𝑛) < ∞, and let {𝑎
𝑛
, 𝑛 ≥ 1} be

a sequence of positive numbers with 𝑎
𝑛

↑ ∞. There exists
some 0 < 𝑝 ≤ 2 such that

∞

∑
𝑛=1

𝐸
󵄨󵄨󵄨󵄨𝑋𝑛

󵄨󵄨󵄨󵄨
𝑝

𝑎
𝑝

𝑛

< ∞. (22)

If 1 < 𝑝 ≤ 2, we further assume that 𝐸𝑋
𝑛

= 0. Then, (11)
holds.

Proof. We take 𝑔
𝑛
(𝑥) = |𝑥|

𝑟, 𝑥 ∈ (−∞,∞). If 0 < 𝑟 ≤ 1,
one can find that 𝑥

𝑟

/𝑔
𝑛
(𝑥) ≡ 1 for 𝑥 ≥ 0. So condition (i) of

Theorem 14 is satisfied. If 1 < 𝑟 ≤ 2, we have that 𝑥/𝑔
𝑛
(𝑥) =

𝑥
1−𝑟 and 𝑔

𝑛
(𝑥)/𝑥
𝑟

≡ 1 for 𝑥 ≥ 0. Thus, condition (ii) of
Theorem 14 is satisfied. Consequently, the desired result (11)
follows fromTheorem 14 immediately.

Remark 16. If taking 𝑟 = 1 in (i) and 𝑟 = 2 in (ii),
Theorem 14 and Corollary 15 extend the corresponding ones
for NA random variables (see Gan [21]) to AANA random
variables.

Theorem 17. Let 1 < 𝛼 < 2 and {𝑋
𝑛
, 𝑛 ≥ 1} be a sequence of

AANA random variables with ∑
∞

𝑛=1
𝑞
2

(𝑛) < ∞ and identical
distribution

𝑃 (
󵄨󵄨󵄨󵄨𝑋1

󵄨󵄨󵄨󵄨 > 𝑥) = {
𝐿 (𝑥) 𝑥

−𝛼

, 𝑥 ≥ 1

1, 𝑥 < 1,
(23)

where 𝐿(𝑥) is a slowly varying function. Let {𝑎
𝑛
, 𝑛 ≥

1} and {𝑏
𝑛
, 𝑛 ≥ 1} be sequences of positive constants

satisfying 0 < 𝑏
𝑛

↑ ∞. Denote 𝑐
𝑛

= 𝑏
𝑛
/𝑎
𝑛
for each 𝑛 ≥ 1.

Assume that
∞

∑
𝑛=1

𝑃 (
󵄨󵄨󵄨󵄨𝑋𝑛

󵄨󵄨󵄨󵄨 > 𝑐
𝑛
) < ∞; (24)

then

𝑏
−1

𝑛

𝑛

∑
𝑘=1

𝑎
𝑘
𝑋
𝑘
󳨀→ 0 𝑎.𝑠., 𝑎𝑠 𝑛 󳨀→ ∞. (25)

Proof. Since (23) and (24) imply that 𝑐
𝑘
≥ 1 for all sufficiently

large 𝑘. Without loss of generality, we assume 𝑐
𝑘

≥ 1 for
all 𝑘 ≥ 1.

ByBorel-Cantelli Lemma, it is easily seen that (24) implies
that

𝑛

∑
𝑘=1

𝑎
𝑘
𝑋
𝑘
𝐼 (

󵄨󵄨󵄨󵄨𝑋𝑘
󵄨󵄨󵄨󵄨 > 𝑐
𝑘
) = 𝑜 (𝑏

𝑛
) a.s. (26)

Denote

𝑌
𝑘
= −𝑐
𝑘
𝐼 (𝑋
𝑘
< −𝑐
𝑘
) + 𝑋
𝑘
𝐼 (

󵄨󵄨󵄨󵄨𝑋𝑘
󵄨󵄨󵄨󵄨 ≤ 𝑐
𝑘
)

+ 𝑐
𝑘
𝐼 (𝑋
𝑘
> 𝑐
𝑘
) , 𝑘 ≥ 1;

(27)

thus, {𝑌
𝑘
, 𝑘 ≥ 1} is still AANA from Lemma 7. It is easy to

check that
𝑛

∑
𝑘=1

𝑎
𝑘
𝑋
𝑘
=

𝑛

∑
𝑘=1

𝑎
𝑘
(𝑌
𝑘
− 𝐸𝑌
𝑘
) +

𝑛

∑
𝑘=1

𝑎
𝑘
𝐸𝑌
𝑘

+

𝑛

∑
𝑘=1

𝑎
𝑘
𝑐
𝑘
(𝐼 (𝑋
𝑘
< −𝑐
𝑘
) − 𝐼 (𝑋

𝑘
> 𝑐
𝑘
))

+

𝑛

∑
𝑘=1

𝑎
𝑘
𝑋
𝑘
𝐼 (

󵄨󵄨󵄨󵄨𝑋𝑘
󵄨󵄨󵄨󵄨 > 𝑐
𝑘
) .

(28)

In order to show that 𝑏−1
𝑛

∑
𝑛

𝑘=1
𝑎
𝑘
𝑋
𝑘

→ 0 a.s., we only need
to show that the first three terms above are 𝑜(𝑏

𝑛
) or 𝑜(𝑏

𝑛
) a.s.

By 𝐶
𝑟
inequality, Theorem 1b in [22, page 281] (or see

Adler [23]) and (24), we can get

∞

∑
𝑘=1

Var(
𝑌
𝑘

𝑐
𝑘

)

≤

∞

∑
𝑘=1

𝑐
𝑘

−2

𝐸𝑌
𝑘

2

≤ 3

∞

∑
𝑘=1

𝑐
𝑘

−2

𝐸 [𝑐
𝑘

2

𝐼 (
󵄨󵄨󵄨󵄨𝑋𝑘

󵄨󵄨󵄨󵄨 > 𝑐
𝑘
) + 𝑋
2

𝑘
𝐼 (

󵄨󵄨󵄨󵄨𝑋𝑘
󵄨󵄨󵄨󵄨 ≤ 𝑐
𝑘
)]

= 3

∞

∑
𝑘=1

𝑃 (
󵄨󵄨󵄨󵄨𝑋𝑘

󵄨󵄨󵄨󵄨 > 𝑐
𝑘
) + 3

∞

∑
𝑘=1

𝑐
𝑘

−2

𝐸𝑋
2

𝑘
𝐼 (

󵄨󵄨󵄨󵄨𝑋𝑘
󵄨󵄨󵄨󵄨 ≤ 𝑐
𝑘
)

≤ 𝐶 + 6

∞

∑
𝑘=1

𝑐
𝑘

−2

∫
𝑐
𝑘

0

𝑡𝑃 (
󵄨󵄨󵄨󵄨𝑋𝑘

󵄨󵄨󵄨󵄨 > 𝑡) 𝑑𝑡
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≤ 𝐶 + 𝐶

∞

∑
𝑘=1

𝐿 (𝑐
𝑘
) 𝑐
𝑘

−𝛼

≤ 𝐶 + 𝐶

∞

∑
𝑘=1

𝑃 (
󵄨󵄨󵄨󵄨𝑋𝑘

󵄨󵄨󵄨󵄨 > 𝑐
𝑘
) < ∞.

(29)

It follows from Corollary 9 and Kronecker’s lemma that

𝑛

∑
𝑘=1

𝑎
𝑘
(𝑌
𝑘
− 𝐸𝑌
𝑘
) = 𝑜 (𝑏

𝑛
) a.s. (30)

By (24) again,

∞

∑
𝑘=1

𝐸

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎
𝑘
𝑐
𝑘
(𝐼 (𝑋
𝑘
< −𝑐
𝑘
) − 𝐼 (𝑋

𝑘
> 𝑐
𝑘
))

𝑏
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

∞

∑
𝑘=1

𝐸 (𝐼 (𝑋
𝑘
< −𝑐
𝑘
) + 𝐼 (𝑋

𝑘
> 𝑐
𝑘
))

=

∞

∑
𝑘=1

𝑃 (
󵄨󵄨󵄨󵄨𝑋𝑘

󵄨󵄨󵄨󵄨 > 𝑐
𝑘
) < ∞,

(31)

which implies that

∞

∑
𝑘=1

𝑎
𝑘
𝑐
𝑘
(𝐼 (𝑋
𝑘
< −𝑐
𝑘
) − 𝐼 (𝑋

𝑘
> 𝑐
𝑘
))

𝑏
𝑘

converges a.s. (32)

By Kronecker’s lemma, it follows that

𝑛

∑
𝑘=1

𝑎
𝑘
𝑐
𝑘
(𝐼 (𝑋
𝑘
< −𝑐
𝑘
) − 𝐼 (𝑋

𝑘
> 𝑐
𝑘
)) = 𝑜 (𝑏

𝑛
) a.s. (33)

By Theorem 1b in [22, page 281] (or see Adler [23]) and (24)
again, we have

∞

∑
𝑘=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎
𝑘
𝐸𝑌
𝑘

𝑏
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

∞

∑
𝑘=1

𝑐
𝑘

−1

[𝑐
𝑘
𝑃 (

󵄨󵄨󵄨󵄨𝑋𝑘
󵄨󵄨󵄨󵄨 > 𝑐
𝑘
) + 𝐸

󵄨󵄨󵄨󵄨𝑋𝑘
󵄨󵄨󵄨󵄨 𝐼 (

󵄨󵄨󵄨󵄨𝑋𝑘
󵄨󵄨󵄨󵄨 > 𝑐
𝑘
)]

=

∞

∑
𝑘=1

𝑃 (
󵄨󵄨󵄨󵄨𝑋𝑘

󵄨󵄨󵄨󵄨 > 𝑐
𝑘
) +

∞

∑
𝑘=1

𝑐
𝑘

−1

𝐸
󵄨󵄨󵄨󵄨𝑋𝑘

󵄨󵄨󵄨󵄨 𝐼 (
󵄨󵄨󵄨󵄨𝑋𝑘

󵄨󵄨󵄨󵄨 > 𝑐
𝑘
)

= 2

∞

∑
𝑘=1

𝑃 (
󵄨󵄨󵄨󵄨𝑋𝑘

󵄨󵄨󵄨󵄨 > 𝑐
𝑘
) +

∞

∑
𝑘=1

𝑐
𝑘

−1

∫
∞

𝑐
𝑘

𝑃 (
󵄨󵄨󵄨󵄨𝑋𝑘

󵄨󵄨󵄨󵄨 > 𝑡) 𝑑𝑡

≤ 𝐶 + 𝐶

∞

∑
𝑘=1

𝑐
𝑘

−1

∫
∞

𝑐
𝑘

𝐿 (𝑡) 𝑡
−𝛼

𝑑𝑡

≤ 𝐶 + 𝐶

∞

∑
𝑘=1

𝐿 (𝑐
𝑘
) 𝑐
𝑘

−𝛼

≤ 𝐶 + 𝐶

∞

∑
𝑘=1

𝑃 (
󵄨󵄨󵄨󵄨𝑋𝑘

󵄨󵄨󵄨󵄨 > 𝑐
𝑘
) < ∞,

(34)

which implies that
∞

∑
𝑘=1

𝑎
𝑘
𝐸𝑌
𝑘

𝑏
𝑘

converges. (35)

By Kronecker’s Lemma, it follows that
𝑛

∑
𝑘=1

𝑎
𝑘
𝐸𝑌
𝑘
= 𝑜 (𝑏

𝑛
) . (36)

Hence, the desired result (25) follows from (26)–(36) imme-
diately.

Remark 18. Theorem 17 generalizes and extends the corre-
sponding one for NA random variables (see Wang et al. [24])
to AANA random variables.

Theorem 19. Let 1 < 𝑟 < 2 and {𝑋
𝑛
, 𝑛 ≥ 1} a sequence of

mean zero AANA random variables with ∑
∞

𝑛=1
𝑞
2

(𝑛) < ∞,
which is stochastically dominated by a random variable 𝑋. Let
{𝑎
𝑛
, 𝑛 ≥ 1} be a sequence of positive constants satisfying 𝐴

𝑛
≐

∑
𝑛

𝑘=1
𝑎
𝑘
↑ ∞. Denote 𝑐

𝑛
= 𝐴
𝑛
/𝑎
𝑛
for each 𝑛 ≥ 1. Assume that

𝐸|𝑋|
𝑟

< ∞,

𝑁 (𝑛) ≐ Card {i : ci ≤ n} = O (nr) , n ≥ 1;
(37)

then

𝐴
−1

𝑛

𝑛

∑
𝑘=1

𝑎
𝑘
𝑋
𝑘
󳨀→ 0 𝑎.𝑠., 𝑎𝑠 𝑛 󳨀→ ∞. (38)

Proof. Let 𝑁(0) = 0 and denote

𝑋
(𝑐
𝑛
)

𝑛
= −𝑐
𝑛
𝐼 (𝑋
𝑛
< −𝑐
𝑛
) + 𝑋
𝑛
𝐼 (

󵄨󵄨󵄨󵄨𝑋𝑛
󵄨󵄨󵄨󵄨 ≤ 𝑐
𝑛
)

+ 𝑐
𝑛
𝐼 (𝑋
𝑛
> 𝑐
𝑛
) , 𝑛 ≥ 1.

(39)

It follows by (37) that
∞

∑
𝑖=1

𝑃 (𝑋
𝑖

̸= 𝑋
(𝑐
𝑖
)

𝑖
)

=

∞

∑
𝑖=1

𝑃 (
󵄨󵄨󵄨󵄨𝑋𝑖

󵄨󵄨󵄨󵄨 > 𝑐
𝑖
) =

∞

∑
𝑗=1

∑
𝑐
𝑖
≤𝑗<𝑐
𝑖
+1

𝑃 (
󵄨󵄨󵄨󵄨𝑋𝑖

󵄨󵄨󵄨󵄨 > 𝑐
𝑖
)

≤ 𝐶

∞

∑
𝑗=1

∑
𝑗−1<𝑐

𝑖
≤𝑗

𝑃 (|𝑋| > 𝑗 − 1)

= 𝐶

∞

∑
𝑗=1

(𝑁 (𝑗) − 𝑁 (𝑗 − 1)) 𝑃 (|𝑋| > 𝑗 − 1)

= 𝐶

∞

∑
𝑗=1

(𝑁 (𝑗) − 𝑁 (𝑗 − 1))

∞

∑
𝑛=𝑗

𝑃 (𝑛 − 1 < |𝑋| ≤ 𝑛)

= 𝐶

∞

∑
𝑛=1

𝑛

∑
𝑗=1

(𝑁 (𝑗) − 𝑁 (𝑗 − 1)) 𝑃 (𝑛 − 1 < |𝑋| ≤ 𝑛)

≤ 𝐶

∞

∑
𝑛=1

𝑛
𝑟

𝑃 (𝑛 − 1 < |𝑋| ≤ 𝑛) ≤ 𝐶𝐸|𝑋|
𝑟

< ∞.

(40)
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By the equality above and Borel-Cantelli lemma, we can
get 𝑃(𝑋

𝑖
̸= 𝑋
(𝑐
𝑖
)

𝑖
, i.o.) = 0. Therefore, in order to prove (38),

we only need to prove that

𝐴
−1

𝑛

𝑛

∑
𝑖=1

𝑎
𝑖
𝑋
(𝑐
𝑖
)

𝑖
󳨀→ 0 a.s., n 󳨀→ ∞. (41)

By 𝐶
𝑟
inequality, Lemma 12, and (37) again,

∞

∑
𝑘=1

Var(
𝑎
𝑘
𝑋
(𝑐
𝑘
)

𝑘

𝐴
𝑘

)

≤

∞

∑
𝑘=1

𝑐
𝑘

−2

𝐸(𝑋
(𝑐
𝑘
)

𝑘
)
2

≤ 3

∞

∑
𝑘=1

𝑐
𝑘

−2

𝐸 [𝑐
𝑘

2

𝐼 (
󵄨󵄨󵄨󵄨𝑋𝑘

󵄨󵄨󵄨󵄨 > 𝑐
𝑘
) + 𝑋
𝑘

2

𝐼 (
󵄨󵄨󵄨󵄨𝑋𝑘

󵄨󵄨󵄨󵄨 ≤ 𝑐
𝑘
)]

≤ 𝐶

∞

∑
𝑘=1

𝑃 (|𝑋| > 𝑐
𝑘
) + 𝐶

∞

∑
𝑘=1

𝑐
𝑘

−2

𝐸𝑋
2

𝐼 (|𝑋| ≤ 𝑐
𝑘
)

≤ 𝐶 + 𝐶

∞

∑
𝑗=1

∑
𝑗−1<𝑐

𝑘
≤𝑗

𝑐
𝑘

−2

𝐸𝑋
2

𝐼 (|𝑋| ≤ 𝑐
𝑘
)

≤ 𝐶 + 𝐶

∞

∑
𝑗=1

∑
𝑗−1<𝑐

𝑘
≤𝑗

𝑐
𝑘

−2

𝐸𝑋
2

𝐼 (|𝑋| ≤ 𝑗)

≤ 𝐶 + 𝐶

∞

∑
𝑗=2

(𝑁 (𝑗) − 𝑁 (𝑗 − 1)) (𝑗 − 1)
−2

×

𝑗

∑
𝑘=1

𝐸𝑋
2

𝐼 (𝑘 − 1 < |𝑋| ≤ 𝑘)

≤ 𝐶 + 𝐶

∞

∑
𝑘=2

∞

∑
𝑗=𝑘

(𝑁 (𝑗) − 𝑁 (𝑗 − 1))

× (𝑗 − 1)
−2

𝐸𝑋
2

𝐼 (𝑘 − 1 < |𝑋| ≤ 𝑘)

≤ 𝐶 + 𝐶

∞

∑
𝑘=2

∞

∑
𝑗=𝑘

𝑁(𝑗) ((𝑗 − 1)
−2

− 𝑗
−2

)

× 𝐸𝑋
2

𝐼 (𝑘 − 1 < |𝑋| ≤ 𝑘)

≤ 𝐶 + 𝐶

∞

∑
𝑘=2

∞

∑
𝑗=𝑘

𝑗
𝑟−3

𝐸𝑋
2

𝐼 (𝑘 − 1 < |𝑋| ≤ 𝑘)

≤ 𝐶 + 𝐶

∞

∑
𝑘=2

𝑘
𝑟−2

𝐸|𝑋|
𝑟

𝑘
2−𝑟

𝐼 (𝑘 − 1 < |𝑋| ≤ 𝑘)

= 𝐶 + 𝐶

∞

∑
𝑘=2

𝐸|𝑋|
𝑟

𝐼 (𝑘 − 1 < |𝑋| ≤ 𝑘)

≤ 𝐶 + 𝐶𝐸|𝑋|
𝑟

< ∞.

(42)

Hence, by the inequality above, Corollary 9 and Kronecker’s
lemma, we have

𝐴
−1

𝑛

𝑛

∑
𝑖=1

𝑎
𝑖
(𝑋
(𝑐
𝑖
)

𝑖
− 𝐸𝑋
(𝑐
𝑖
)

𝑖
) 󳨀→ 0 a.s., n 󳨀→ ∞. (43)

In order to prove (41), it suffices to prove that

𝐴
−1

𝑛

𝑛

∑
𝑖=1

𝑎
𝑖
𝐸𝑋
(𝑐
𝑖
)

𝑖
󳨀→ 0 𝑛 󳨀→ ∞. (44)

Notice that 𝐸𝑋
𝑛
= 0 for each 𝑛 ≥ 1, we have

󵄨󵄨󵄨󵄨𝐸𝑋𝑛𝐼 (
󵄨󵄨󵄨󵄨𝑋𝑛

󵄨󵄨󵄨󵄨 ≤ 𝑐
𝑛
)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨𝐸𝑋𝑛𝐼 (
󵄨󵄨󵄨󵄨𝑋𝑛

󵄨󵄨󵄨󵄨 > 𝑐
𝑛
)
󵄨󵄨󵄨󵄨 . (45)

It follows from Lemma 12 and (37) that,

∞

∑
𝑘=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎
𝑘
𝐸𝑋
(𝑐
𝑘
)

𝑘

𝐴
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

∞

∑
𝑘=1

[𝑃 (
󵄨󵄨󵄨󵄨𝑋𝑘

󵄨󵄨󵄨󵄨 > 𝑐
𝑘
) + 𝑐
𝑘

−1 󵄨󵄨󵄨󵄨𝐸𝑋𝑘𝐼 (
󵄨󵄨󵄨󵄨𝑋𝑘

󵄨󵄨󵄨󵄨 ≤ 𝑐
𝑘
)
󵄨󵄨󵄨󵄨]

=

∞

∑
𝑘=1

[𝑃 (
󵄨󵄨󵄨󵄨𝑋𝑘

󵄨󵄨󵄨󵄨 > 𝑐
𝑘
) + 𝑐
𝑘

−1 󵄨󵄨󵄨󵄨𝐸𝑋𝑘𝐼 (
󵄨󵄨󵄨󵄨𝑋𝑘

󵄨󵄨󵄨󵄨 > 𝑐
𝑘
)
󵄨󵄨󵄨󵄨]

≤

∞

∑
𝑘=1

𝑃 (
󵄨󵄨󵄨󵄨𝑋𝑘

󵄨󵄨󵄨󵄨 > 𝑐
𝑘
) +

∞

∑
𝑘=1

𝑐
𝑘

−1

𝐸
󵄨󵄨󵄨󵄨𝑋𝑘

󵄨󵄨󵄨󵄨 𝐼 (
󵄨󵄨󵄨󵄨𝑋𝑘

󵄨󵄨󵄨󵄨 > 𝑐
𝑘
)

≤ 𝐶

∞

∑
𝑗=1

𝑃 (|𝑋| > 𝑐
𝑘
) + 𝐶

∞

∑
𝑘=1

𝑐
𝑘

−1

𝐸 |𝑋| 𝐼 (|𝑋| > 𝑐
𝑘
)

≤ 𝐶 + 𝐶

∞

∑
𝑗=1

∑
𝑐
𝑘
≤𝑗<𝑐
𝑘
+1

𝑐
𝑘

−1

𝐸 |𝑋| 𝐼 (|𝑋| > 𝑐
𝑘
)

≤ 𝐶 + 𝐶

∞

∑
𝑗=1

∑
𝑗−1<𝑐

𝑘
≤𝑗

𝑐
𝑘

−1

𝐸 |𝑋| 𝐼 (|𝑋| > 𝑗 − 1)

≤ 𝐶 + 𝐶

∞

∑
𝑗=2

(𝑁 (𝑗) − 𝑁 (𝑗 − 1)) (𝑗 − 1)
−1

×

∞

∑
𝑘=𝑗−1

𝐸 |𝑋| 𝐼 (𝑘 < |𝑋| ≤ 𝑘 + 1)

≤ 𝐶 + 𝐶

∞

∑
𝑘=1

𝑘+1

∑
𝑗=2

𝑁(𝑗) ((𝑗 − 1)
−1

− 𝑗
−1

)

× 𝐸 |𝑋| 𝐼 (𝑘 < |𝑋| ≤ 𝑘 + 1)

≤ 𝐶 + 𝐶

∞

∑
𝑘=1

𝑘+1

∑
𝑗=2

𝑗
𝑟−2

𝐸 |𝑋| 𝐼 (𝑘 < |𝑋| ≤ 𝑘 + 1)

≤ 𝐶 + 𝐶

∞

∑
𝑘=1

𝑘
𝑟−1

𝐸 |𝑋| 𝐼 (𝑘 < |𝑋| ≤ 𝑘 + 1)
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≤ 𝐶 + 𝐶

∞

∑
𝑘=1

𝐸|𝑋|
𝑟

𝐼 (𝑘 < |𝑋| ≤ 𝑘 + 1)

≤ 𝐶 + 𝐶𝐸|𝑋|
𝑟

< ∞.

(46)

By Kronecker’s lemma, we can get (44) immediately. The
proof is complete.

3. Strong Stability for Weighted Sums of
AANA Sequence

Theorem 20. Let {𝑋
𝑛
, 𝑛 ≥ 1} be a sequence of AANA

random variables with ∑
∞

𝑛=1
𝑞
2

(𝑛) < ∞, which is stochas-
tically dominated by a random variable 𝑋. Let {𝑎

𝑛
, 𝑛 ≥

1} and {𝑏
𝑛
, 𝑛 ≥ 1} be two sequences of positive numbers

with 𝑐
𝑛

= 𝑏
𝑛
/𝑎
𝑛
and 𝑏
𝑛

↑ ∞. Denote 𝑁(𝑥) = Card{𝑛 : 𝑐
𝑛

≤

𝑥}, 𝑥 > 0. If the following conditions are satisfied:

(i) 𝐸𝑁(|𝑋|) < ∞;

(ii) ∫
∞

0

𝑡
𝑝−1

𝑃(|𝑋| > 𝑡)(∫
∞

𝑡

𝑦
−(𝑝+1)

𝑁(𝑦) 𝑑𝑦) 𝑑𝑡 < ∞, for
some 𝑝 ∈ [1, 2],

then there exist 𝑑
𝑛
∈ R, 𝑛 = 1, 2, . . ., such that

𝑏
−1

𝑛

𝑛

∑
𝑖=1

𝑎
𝑖
𝑋
𝑖
− 𝑑
𝑛
󳨀→ 0 𝑎.𝑠. (47)

Proof. For each 𝑖 ≥ 1, denote

𝑋
(𝑐
𝑖
)

𝑖
= −𝑐
𝑖
𝐼 (𝑋
𝑖
< −𝑐
𝑖
) + 𝑋
𝑖
𝐼 (

󵄨󵄨󵄨󵄨𝑋𝑖
󵄨󵄨󵄨󵄨 ≤ 𝑐
𝑖
) + 𝑐
𝑖
𝐼 (𝑋
𝑖
> 𝑐
𝑖
) .

(48)

By Definition 1 and conditions (i), we can obtain

∞

∑
𝑖=1

𝑃 (𝑋
𝑖

̸= 𝑋
(𝑐
𝑖
)

𝑖
)

=

∞

∑
𝑖=1

𝑃 (
󵄨󵄨󵄨󵄨𝑋𝑖

󵄨󵄨󵄨󵄨 > 𝑐
𝑖
) ≤ 𝐶

∞

∑
𝑖=1

𝑃 (|𝑋| > 𝑐
𝑖
)

≤ 𝐶

∞

∑
𝑖=1

∫
∞

0

𝐼 (𝑐
𝑖
≤ 𝑡) 𝑑𝑃 (|𝑋| ≤ 𝑡)

= 𝐶∫
∞

0

𝑁(𝑡) 𝑑𝑃 (|𝑋| ≤ 𝑡)

= 𝐶𝐸𝑁 (|𝑋|) < ∞.

(49)

By Borel-Cantelli lemma for any sequence {𝑑
𝑛
, 𝑛 ≥ 1} ⊂

R, with probability 1, the sequences {𝑏
−1

𝑛
∑
𝑛

𝑖=1
𝑎
𝑖
𝑋
𝑖
− 𝑑
𝑛
}

and {𝑏
−1

𝑛
∑
𝑛

𝑖=1
𝑎
𝑖
𝑋
(𝑐
𝑖
)

𝑖
−𝑑
𝑛
} converge on the same set and to the

same limit. We will prove that 𝑏
−1

𝑛
∑
𝑛

𝑖=1
𝑎
𝑖
(𝑋
(𝑐
𝑖
)

𝑖
−𝐸𝑋
(𝑐
𝑖
)

𝑖
) → 0

a.s., which implies (6) with 𝑑
𝑛
= 𝑏
−1

𝑛
∑
𝑛

𝑖=1
𝑎
𝑖
𝐸𝑋
(𝑐
𝑖
)

𝑖
. According

to Lemma 7, {𝑎
𝑖
(𝑋
(𝑐
𝑖
)

𝑖
− 𝐸𝑋

(𝑐
𝑖
)

𝑖
), 𝑖 ≥ 1} is a sequence of

AANA random variables with mean zero. By 𝐶
𝑟
inequality

and Lemma 12, we have

∞

∑
𝑛=1

𝐸
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑛
(𝑋
(𝑐
𝑛
)

𝑛
− 𝐸𝑋
(𝑐
𝑛
)

𝑛
)
󵄨󵄨󵄨󵄨󵄨

𝑝

𝑏
𝑝

𝑛

≤ 𝐶

∞

∑
𝑛=1

𝑐
−𝑝

𝑛
𝐸 (

󵄨󵄨󵄨󵄨𝑋𝑛
󵄨󵄨󵄨󵄨
𝑝

𝐼 (
󵄨󵄨󵄨󵄨𝑋𝑛

󵄨󵄨󵄨󵄨 ≤ 𝑐
𝑛
))

+ 𝐶

∞

∑
𝑛=1

𝑐
−𝑝

𝑛
𝑐
𝑝

𝑛
𝑃 (

󵄨󵄨󵄨󵄨𝑋𝑛
󵄨󵄨󵄨󵄨 > 𝑐
𝑛
)

≤ 𝐶

∞

∑
𝑛=1

𝑐
−𝑝

𝑛
[𝑐
𝑝

𝑛
𝑃 (|𝑋| > 𝑐

𝑛
) + 𝐸 (|𝑋|

𝑝

𝐼 (|𝑋| ≤ 𝑐
𝑛
))]

+ 𝐶

∞

∑
𝑛=1

𝑃 (|𝑋| > 𝑐
𝑛
)

≤ 𝐶𝐸𝑁 (|𝑋|) + 𝐶

∞

∑
𝑛=1

𝑐
−𝑝

𝑛
∫
𝑐
𝑛

0

𝑡
𝑝−1

𝑃 (|𝑋| > 𝑡) 𝑑𝑡.

(50)

Notice that

∞

∑
𝑛=1

𝑐
−𝑝

𝑛
∫
𝑐
𝑛

0

𝑡
𝑝−1

𝑃 (|𝑋| > 𝑡) 𝑑𝑡

= ∫
∞

0

𝑡
𝑝−1

𝑃 (|𝑋| > 𝑡) ∑
𝑛:𝑐
𝑛
≥𝑡

𝑐
−𝑝

𝑛
𝑑𝑡

≤ 𝐶∫
∞

0

𝑡
𝑝−1

𝑃 (|𝑋| > 𝑡) (∫
∞

𝑡

𝑦
−(𝑝+1)

𝑁(𝑦) 𝑑𝑦)𝑑𝑡,

(51)

where the last inequality follows from the fact that for 𝑡 > 0

∑
𝑛:𝑐
𝑛
≥𝑡

𝑐
−𝑝

𝑛

= lim
𝑢→∞

∑
𝑛:𝑡≤𝑐
𝑛
≤𝑢

𝑐
−𝑝

𝑛
= lim
𝑢→∞

∫
𝑢

𝑡

𝑦
−𝑝

𝑑𝑁 (𝑦)

= lim
𝑢→∞

(𝑢
−𝑝

𝑁(𝑢) − 𝑡
−𝑝

𝑁(𝑡) + 𝑝∫
𝑢

𝑡

𝑦
−(𝑝+1)

𝑁(𝑦) 𝑑𝑦) ,

lim
𝑢→∞

(𝑢
−𝑝

𝑁(𝑢))

≤ lim
𝑢→∞

(𝑝∫
∞

𝑢

𝑦
−(𝑝+1)

𝑁(𝑦) 𝑑𝑦)

≤ 𝑝∫
∞

𝑡

𝑦
−(𝑝+1)

𝑁(𝑦) 𝑑𝑦.

(52)

By (50), (51) and condition (i), (ii), we can get that

∞

∑
𝑛=1

𝐸
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑛
(𝑋
(𝑐
𝑛
)

𝑛
− 𝐸𝑋
(𝑐
𝑛
)

𝑛
)
󵄨󵄨󵄨󵄨󵄨

𝑝

𝑏
𝑝

𝑛

< ∞. (53)
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Therefore, it follows from (53) and Corollary 15 that

𝑏
−1

𝑛

𝑛

∑
𝑖=1

𝑎
𝑖
(𝑋
(𝑐
𝑖
)

𝑖
− 𝐸𝑋
(𝑐
𝑖
)

𝑖
) 󳨀→ 0, 𝑎.𝑠. (54)

The proof is complete.

Corollary 21. Suppose that the conditions of Theorem 20 are
satisfied and 𝐸𝑋

𝑛
= 0 for each 𝑛 ≥ 1. If ∫

∞

1

𝐸𝑁(|𝑋|/𝑠) 𝑑𝑠 <

∞, then 𝑏
−1

𝑛
∑
𝑛

𝑖=1
𝑎
𝑖
𝑋
𝑖
→ 0 a.s.

Proof. According to the proof of Theorem 20, we need only
to prove that

𝑏
−1

𝑛

𝑛

∑
𝑖=1

𝑎
𝑖
𝐸𝑋
(𝑐
𝑖
)

𝑖
󳨀→ 0, as n 󳨀→ ∞. (55)

Notice that 𝐸𝑋
𝑛
= 0 for each 𝑛 ≥ 1; then

󵄨󵄨󵄨󵄨󵄨
𝐸𝑋
(𝑐
𝑖
)

𝑖

󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨−𝐸 (𝑋

𝑖
𝐼 (

󵄨󵄨󵄨󵄨𝑋𝑖
󵄨󵄨󵄨󵄨 > 𝑐
𝑖
)) − 𝐸 (𝑐

𝑖
𝐼 (𝑋
𝑖
< −𝑐
𝑖
))

+𝐸 (𝑐
𝑖
𝐼 (𝑋
𝑖
> 𝑐
𝑖
))

󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨𝐸 ((𝑋

𝑖
− 𝑐
𝑖
) 𝐼 (𝑋

𝑖
> 𝑐
𝑖
)) + 𝐸 ((𝑋

𝑖
+ 𝑐
𝑖
) 𝐼 (𝑋

𝑖
< −𝑐
𝑖
))

󵄨󵄨󵄨󵄨

≤ 𝐸 ((
󵄨󵄨󵄨󵄨𝑋𝑖

󵄨󵄨󵄨󵄨 + 𝑐
𝑖
) 𝐼 (

󵄨󵄨󵄨󵄨𝑋𝑖
󵄨󵄨󵄨󵄨 > 𝑐
𝑖
)) ,

(56)
∞

∑
𝑖=1

𝑎
𝑖

󵄨󵄨󵄨󵄨󵄨
𝐸𝑋
(𝑐
𝑖
)

𝑖

󵄨󵄨󵄨󵄨󵄨

𝑏
𝑖

≤

∞

∑
𝑖=1

𝑐
−1

𝑖
𝐸 ((

󵄨󵄨󵄨󵄨𝑋𝑖
󵄨󵄨󵄨󵄨 + 𝑐
𝑖
) 𝐼 (

󵄨󵄨󵄨󵄨𝑋𝑖
󵄨󵄨󵄨󵄨 > 𝑐
𝑖
))

=

∞

∑
𝑖=1

𝑃 (
󵄨󵄨󵄨󵄨𝑋𝑖

󵄨󵄨󵄨󵄨 > 𝑐
𝑖
) +

∞

∑
𝑖=1

𝑐
−1

𝑖
𝐸 (

󵄨󵄨󵄨󵄨𝑋𝑖
󵄨󵄨󵄨󵄨 𝐼 (

󵄨󵄨󵄨󵄨𝑋𝑖
󵄨󵄨󵄨󵄨 > 𝑐
𝑖
))

≤ 𝐶𝐸𝑁 (|𝑋|) +

∞

∑
𝑖=1

𝑐
−1

𝑖
∫
∞

𝑐
𝑖

𝑃 (
󵄨󵄨󵄨󵄨𝑋𝑖

󵄨󵄨󵄨󵄨 > 𝑡) 𝑑𝑡

= 𝐶𝐸𝑁 (|𝑋|) + ∫
∞

1

∞

∑
𝑖=1

𝑃 (
󵄨󵄨󵄨󵄨𝑋𝑖

󵄨󵄨󵄨󵄨 > 𝑠𝑐
𝑖
) 𝑑𝑠

≤ 𝐶𝐸𝑁 (|𝑋|) + 𝐶∫
∞

1

𝐸𝑁(
|𝑋|

𝑠
) 𝑑𝑠 < ∞.

(57)

By Kronecker’s lemma, we can get (55) immediately.

Theorem22. Let {𝑋
𝑛
, 𝑛 ≥ 1} be a sequence of AANA random

variables with mean zero and ∑
∞

𝑛=1
𝑞
2

(𝑛) < ∞, which is
stochastically dominated by a random variable 𝑋. Let {𝑎

𝑛
, 𝑛 ≥

1} and {𝑏
𝑛
, 𝑛 ≥ 1} be two sequences of positive numbers

with 𝑐
𝑛

= 𝑏
𝑛
/𝑎
𝑛
and 𝑏
𝑛

↑ ∞. Denote 𝑁(𝑥) = Card{𝑛 : 𝑐
𝑛

≤

𝑥}, 𝑥 > 0. If the following conditions are satisfied:
(i) 𝐸𝑁(|𝑋|) < ∞;
(ii) ∫
∞

1

𝐸𝑁(|𝑋|/𝑠) 𝑑𝑠 < ∞;

(iii) max
1≤𝑗≤𝑛

𝑐
𝑝

𝑗
∑
∞

𝑖=𝑛
𝑐
−𝑝

𝑖
= 𝑂(𝑛), for some 𝑝 ∈ [1, 2],

then

𝑏
−1

𝑛

𝑛

∑
𝑖=1

𝑎
𝑖
𝑋
𝑖
󳨀→ 0 𝑎.𝑠. (58)

Proof. By (49), condition (i), and Borel-Cantelli lemma, it
suffices to prove 𝑏

−1

𝑛
∑
∞

𝑖=1
𝑎
𝑖
𝑋
(𝑐
𝑖
)

𝑖
→ 0, a.s. So we need only

to prove

𝑏
−1

𝑛

𝑛

∑
𝑖=1

𝑎
𝑖
(𝑋
(𝑐
𝑖
)

𝑖
− 𝐸𝑋
(𝑐
𝑖
)

𝑖
) 󳨀→ 0 a.s., (59)

𝑏
−1

𝑛

𝑛

∑
𝑖=1

𝑎
𝑖
𝐸𝑋
(𝑐
𝑖
)

𝑖
󳨀→ 0, as n 󳨀→ ∞. (60)

We can get (60) from the proof of Corollary 21. In the follow-
ing, we prove (59). Put 𝜀

0
= 0 and 𝜀

𝑛
= max

1≤𝑗≤𝑛
𝑐
𝑗
for 𝑛 ≥

1. According to Lemma 7, {𝑎
𝑖
(𝑋
(𝑐
𝑖
)

𝑖
− 𝐸𝑋

(𝑐
𝑖
)

𝑖
), 𝑖 ≥ 1} is

a sequence of AANA random variables with mean zero.
By 𝐶
𝑟
inequality and Lemma 12,

∞

∑
𝑛=1

𝐸
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑛
(𝑋
(𝑐
𝑛
)

𝑛
− 𝐸𝑋
(𝑐
𝑛
)

𝑛
)
󵄨󵄨󵄨󵄨󵄨

𝑝

𝑏
𝑝

𝑛

≤ 𝐶

∞

∑
𝑛=1

𝑐
−𝑝

𝑛
𝐸 (

󵄨󵄨󵄨󵄨𝑋𝑛
󵄨󵄨󵄨󵄨
𝑝

𝐼 (
󵄨󵄨󵄨󵄨𝑋𝑛

󵄨󵄨󵄨󵄨 ≤ 𝑐
𝑛
))

+ 𝐶

∞

∑
𝑛=1

𝑃 (
󵄨󵄨󵄨󵄨𝑋𝑛

󵄨󵄨󵄨󵄨 > 𝑐
𝑛
)

≤ 𝐶

∞

∑
𝑛=1

𝑐
−𝑝

𝑛
[𝑐
𝑝

𝑛
𝑃 (|𝑋| > 𝑐

𝑛
) + 𝐸 (|𝑋|

𝑝

𝐼 (|𝑋| ≤ 𝑐
𝑛
))]

+ 𝐶

∞

∑
𝑛=1

𝑃 (|𝑋| > 𝑐
𝑛
)

≤ 𝐶𝐸𝑁 (|𝑋|) + 𝐶

∞

∑
𝑛=1

𝑐
−𝑝

𝑛
𝐸 (|𝑋|

𝑝

𝐼 (|𝑋| ≤ 𝑐
𝑛
)) .

(61)

It is easy to see that

∞

∑
𝑛=1

𝑐
−𝑝

𝑛
𝐸 (|𝑋|

𝑝

𝐼 (|𝑋| ≤ 𝑐
𝑛
))

≤

∞

∑
𝑛=1

𝑐
−𝑝

𝑛
𝐸 (|𝑋|

𝑝

𝐼 (|𝑋| ≤ 𝜀
𝑛
))

=

∞

∑
𝑛=1

𝑐
−𝑝

𝑛

𝑛

∑
𝑗=1

𝐸 (|𝑋|
𝑝

𝐼 (𝜀
𝑗−1

< |𝑋| ≤ 𝜀
𝑗
))

≤

∞

∑
𝑗=1

𝑃 (𝜀
𝑗−1

< |𝑋| ≤ 𝜀
𝑗
) 𝜀
𝑝

𝑗

∞

∑
𝑛=𝑗

𝑐
−𝑝

𝑛

≤

∞

∑
𝑗=1

𝑗𝑃 (𝜀
𝑗−1

< |𝑋| ≤ 𝜀
𝑗
)

≤ 𝐶

∞

∑
𝑛=1

𝑃 (|𝑋| > 𝜀
𝑛−1

) ≤ 𝐶(1 +

∞

∑
𝑛=1

𝑃 (|𝑋| > 𝑐
𝑛
))

≤ 𝐶 (1 + 𝐸𝑁 (|𝑋|)) < ∞.

(62)
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Therefore,

∞

∑
𝑛=1

𝐸
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑛
(𝑋
(𝑐
𝑛
)

𝑛
− 𝐸𝑋
(𝑐
𝑛
)

𝑛
)
󵄨󵄨󵄨󵄨󵄨

𝑝

𝑏
𝑝

𝑛

< ∞ (63)

follows from condition (i), (61) and (62). By Corollary 15 and
(63), we can obtain (59) immediately. The proof is complete.

Theorem 23. Let {𝑋
𝑛
, 𝑛 ≥ 1} be a sequence of AANA

random variables with ∑
∞

𝑛=1
𝑞
2

(𝑛) < ∞, which is stochas-
tically dominated by a random variable 𝑋. Let {𝑎

𝑛
, 𝑛 ≥

1} and {𝑏
𝑛
, 𝑛 ≥ 1} be two sequences of positive numbers

with 𝑐
𝑛

= 𝑏
𝑛
/𝑎
𝑛
and 𝑏
𝑛

↑ ∞. Define 𝑁(𝑥) = Card{𝑛 : 𝑐
𝑛

≤

𝑥}, 𝑅(𝑥) = ∫
∞

𝑥

𝑁(𝑦)𝑦
−3

𝑑𝑦, 𝑥 > 0. If

(i) 𝑁(𝑥) < ∞ for any 𝑥 > 0;

(ii) 𝑅(1) = ∫
∞

1

𝑁(𝑦)𝑦
−3

𝑑𝑦 < ∞;

(iii) 𝐸(𝑋
2

𝑅(|𝑋|)) < ∞,

then there exist 𝑑
𝑛
∈ R, 𝑛 = 1, 2, . . ., such that

𝑏
−1

𝑛

𝑛

∑
𝑖=1

𝑎
𝑖
𝑋
𝑖
− 𝑑
𝑛
󳨀→ 0 𝑎.𝑠. (64)

Proof. According to Lemma 7, {𝑋(𝑐𝑖)
𝑖

, 𝑖 ≥ 1} and {𝑋
(𝑐
𝑖
)

𝑖
/𝑐
𝑖
, 𝑖 ≥

1} are sequences of AANA random variables.
Since 𝑁(𝑥) is nondecreasing, then for any 𝑥 > 0

𝑅 (𝑥) ≥ 𝑁 (𝑥) ∫
∞

𝑥

𝑦
−3

𝑑𝑦 =
1

2
𝑥
−2

𝑁(𝑥) , (65)

which implies that 𝐸𝑁(|𝑋|) ≤ 2𝐸(𝑋
2

𝑅(|𝑋|)) < ∞.
Therefore,

∞

∑
𝑖=1

𝑃 (𝑋
𝑖

̸= 𝑋
(𝑐
𝑖
)

𝑖
) =

∞

∑
𝑖=1

𝑃 (
󵄨󵄨󵄨󵄨𝑋𝑖

󵄨󵄨󵄨󵄨 > 𝑐
𝑖
)

≤ 𝐶

∞

∑
𝑖=1

𝑃 (|𝑋| > 𝑐
𝑖
) ≤ 𝐶𝐸𝑁 (|𝑋|) < ∞.

(66)

By Borel-Cantelli lemma for any sequence {𝑑
𝑛
, 𝑛 ≥ 1} ⊂

R, with probability 1, the sequences {𝑏
−1

𝑛
∑
𝑛

𝑖=1
𝑎
𝑖
𝑋
𝑖
− 𝑑
𝑛
}

and {𝑏
−1

𝑛
∑
𝑛

𝑖=1
𝑎
𝑖
𝑋
(𝑐
𝑖
)

𝑖
− 𝑑
𝑛
} converge on the same set and to

the same limit.Wewill prove that 𝑏
−1

𝑛
∑
𝑛

𝑖=1
𝑎
𝑖
(𝑋
(𝑐
𝑖
)

𝑖
−𝐸𝑋
(𝑐
𝑖
)

𝑖
) →

0 a.s., which implies the theoremwith 𝑑
𝑛
= 𝑏
−1

𝑛
∑
𝑛

𝑖=1
𝑎
𝑖
𝐸𝑋
(𝑐
𝑖
)

𝑖
.

By 𝐶
𝑟
inequality and Lemma 12,

∞

∑
𝑛=1

Var(
𝑎
𝑛
𝑋
(𝑐
𝑛
)

𝑛

𝑏
𝑛

)

≤

∞

∑
𝑛=1

𝑐
−2

𝑛
𝐸(𝑋
(𝑐
𝑛
)

𝑛
)
2

≤ 3

∞

∑
𝑛=1

𝑃 (
󵄨󵄨󵄨󵄨𝑋𝑛

󵄨󵄨󵄨󵄨 > 𝑐
𝑛
) + 3

∞

∑
𝑛=1

𝑐
−2

𝑛
𝐸 (𝑋
2

𝑛
𝐼 (

󵄨󵄨󵄨󵄨𝑋𝑛
󵄨󵄨󵄨󵄨 ≤ 𝑐
𝑛
))

≤ 𝐶

∞

∑
𝑛=1

𝑃 (|𝑋| > 𝑐
𝑛
)

+ 𝐶

∞

∑
𝑛=1

𝑐
−2

𝑛
[𝑐
2

𝑛
𝑃 (|𝑋| > 𝑐

𝑛
) + 𝐸 (𝑋

2

𝐼 (|𝑋| ≤ 𝑐
𝑛
))]

≤ 𝐶𝐸𝑁 (|𝑋|)

+ 𝐶

∞

∑
𝑛=1

𝑐
−2

𝑛
𝐸 (𝑋
2

𝐼 (|𝑋| ≤ 𝑐
𝑛
))

≐ 𝐶𝐸𝑁 (|𝑋|) + CI,
(67)

𝐼 = ∑
𝑛:𝑐
𝑛
≤1

𝑐
−2

𝑛
𝐸 (𝑋
2

𝐼 (|𝑋| ≤ 𝑐
𝑛
))

+ ∑
𝑛:𝑐
𝑛
>1

𝑐
−2

𝑛
𝐸 (𝑋
2

𝐼 (|𝑋| ≤ 𝑐
𝑛
))

≐ 𝐼
1
+ 𝐼
2
.

(68)

Since 𝑁(1) = Card{𝑛 : 𝑐
𝑛
≤ 1} ≤ 2𝑅(1) < ∞, following from

(65) and condition (ii), then we have 𝐼
1
< ∞.

𝐼
2
= ∑
𝑛:𝑐
𝑛
>1

𝑐
−2

𝑛
𝐸 (𝑋
2

𝐼 (|𝑋| ≤ 𝑐
𝑛
))

=

∞

∑
𝑘=2

∑
(𝑘−1)<𝑐

𝑛
≤𝑘

𝑐
−2

𝑛
𝐸 (𝑋
2

𝐼 (|𝑋| ≤ 𝑐
𝑛
))

≤

∞

∑
𝑘=2

(𝑁 (𝑘) − 𝑁 (𝑘 − 1)) (𝑘 − 1)
−2

𝐸 (𝑋
2

𝐼 (|𝑋| ≤ 𝑘))

≤

∞

∑
𝑘=2

(𝑁 (𝑘) − 𝑁 (𝑘 − 1)) (𝑘 − 1)
−2

𝐸 (𝑋
2

𝐼 (|𝑋| ≤ 1))

+

∞

∑
𝑘=2

(𝑁 (𝑘) − 𝑁 (𝑘 − 1))

× (𝑘 − 1)
−2

𝐸 (𝑋
2

𝐼 (1 < |𝑋| ≤ 𝑘))

≐ 𝐼
21

+ 𝐼
22
.

(69)
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To prove 𝐼
2
< ∞, we need to prove that 𝐼

21
< ∞ and 𝐼

22
<

∞:

𝐼
21

≤ 𝐶

∞

∑
𝑘=2

(𝑁 (𝑘) − 𝑁 (𝑘 − 1))

∞

∑
𝑗=𝑘−1

𝑗
−3

= 𝐶

∞

∑
𝑗=1

𝑗
−3

𝑗+1

∑
𝑘=2

(𝑁 (𝑘) − 𝑁 (𝑘 − 1))

≤ 𝐶

∞

∑
𝑗=1

(𝑗 + 1)
−3

𝑁(𝑗 + 1)

≤ 𝐶∫
∞

1

𝑦
−3

𝑁(𝑦) 𝑑𝑦 < ∞.

(70)

Since 𝑁(𝑥) is nondecreasing and 𝑅(𝑥) is nonincreasing,
then

𝐼
22

=

∞

∑
𝑘=2

(𝑁 (𝑘) − 𝑁 (𝑘 − 1)) (𝑘 − 1)
−2

×

𝑘

∑
𝑚=2

𝐸 (𝑋
2

𝐼 (𝑚 − 1 < |𝑋| ≤ 𝑚))

=

∞

∑
𝑚=2

𝐸 (𝑋
2

𝐼 (𝑚 − 1 < |𝑋| ≤ 𝑚))

×

∞

∑
𝑘=𝑚

(𝑁 (𝑘) − 𝑁 (𝑘 − 1)) (𝑘 − 1)
−2

≤

∞

∑
𝑚=2

𝐸 (𝑋
2

𝐼 (𝑚 − 1 < |𝑋| ≤ 𝑚))

×

∞

∑
𝑘=𝑚

𝑁(𝑘) ((𝑘 − 1)
−2

− 𝑘
−2

)

≤ 𝐶

∞

∑
𝑚=2

𝐸 (𝑋
2

𝐼 (𝑚 − 1 < |𝑋| ≤ 𝑚))

×

∞

∑
𝑘=𝑚

∫
𝑘+1

𝑘

𝑁(𝑥) 𝑥
−3

𝑑𝑥

= 𝐶

∞

∑
𝑚=2

𝑅 (𝑚) 𝐸 (𝑋
2

𝐼 (𝑚 − 1 < |𝑋| ≤ 𝑚))

≤ 𝐶

∞

∑
𝑚=2

𝐸 (𝑋
2

𝑅 (|𝑋|) 𝐼 (𝑚 − 1 < |𝑋| ≤ 𝑚))

≤ 𝐶𝐸 (𝑋
2

𝑅 (|𝑋|)) < ∞.

(71)

By (67)–(71), we can get that

∞

∑
𝑛=1

Var(
𝑎
𝑛
𝑋
(𝑐
𝑛
)

𝑛

𝑏
𝑛

) < ∞. (72)

Therefore, it follows fromCorollary 9 andKronecker’s lemma
that

𝑏
−1

𝑛

𝑛

∑
𝑖=1

𝑎
𝑖
(𝑋
(𝑐
𝑖
)

𝑖
− 𝐸𝑋
(𝑐
𝑖
)

𝑖
) 󳨀→ 0 a.s. (73)

Taking 𝑑
𝑛

= 𝑏
−1

𝑛
∑
𝑛

𝑖=1
𝑎
𝑖
𝐸𝑋
(𝑐
𝑖
)

𝑖
, 𝑛 ≥ 1, we can get (64). The

proof is complete.

Remark 24. Since NA implies AANA, Theorem 20 extends
corresponding result for NA random variable (see Wang et
al. [24]) to AANA random variables without adding any extra
condition.

Similar to the proof of Corollary 21, we can get the
following corollary.

Corollary 25. Let the conditions of Theorem 23 be satisfied
and 𝐸𝑋

𝑛
= 0 for each 𝑛 ≥ 1. If ∫

∞

1

𝐸𝑁(|𝑋|/𝑠)𝑑𝑠 < ∞,
then 𝑏

−1

𝑛
∑
𝑛

𝑖=1
𝑎
𝑖
𝑋
𝑖
→ 0 𝑎.𝑠.

Corollary 26. Let {𝑋
𝑛
, 𝑛 ≥ 1} be a sequence of AANA

random variables with ∑
∞

𝑛=1
𝑞
2

(𝑛) < ∞, which is stochas-
tically dominated by a random variable 𝑋. Let {𝑎

𝑛
, 𝑛 ≥

1} and {𝑏
𝑛
, 𝑛 ≥ 1} be two sequences of positive numbers

with 𝑐
𝑛

= 𝑏
𝑛
/𝑎
𝑛
and 𝑏
𝑛

↑ ∞. Let 𝑓(𝑥) = 𝑥
𝑟

ℎ(𝑥),
where ℎ(𝑥) > 0 is a slowly varying function as 𝑥 → ∞, 1 <

𝑟 < 2. Define 𝑁(𝑥) = Card{𝑛 : 𝑐
𝑛
≤ 𝑥}, 𝑥 > 0. If

(i) 𝑁(𝑛) = 𝑂(𝑓(𝑛)) for each 𝑛 ≥ 1;

(ii) 𝐸𝑓(|𝑋|) < ∞.

Then there exist 𝑑
𝑛
∈ R, 𝑛 = 1, 2, . . ., such that

𝑏
−1

𝑛

𝑛

∑
𝑖=1

𝑎
𝑖
𝑋
𝑖
− 𝑑
𝑛
󳨀→ 0 𝑎.𝑠. (74)

Proof. It is easy to verify that conditions (i)–(iii) of
Theorem 23 hold under the conditions of Corollary 25.
So Corollary 25 is true byTheorem 23.

Corollary 27. Suppose that the conditions of Corollary 26 are
satisfied. If 𝐸𝑋

𝑛
= 0 for each 𝑛 ≥ 1, then 𝑏

−1

𝑛
∑
𝑛

𝑖=1
𝑎
𝑖
𝑋
𝑖

→

0 𝑎.𝑠.

Proof. According to Corollary 26, we need only to prove (60).
By 𝐸𝑋

𝑛
= 0 for each 𝑛 ≥ 1 and Lemma 12, we have

∞

∑
𝑖=1

𝑎
𝑖

󵄨󵄨󵄨󵄨󵄨
𝐸𝑋
(𝑐
𝑖
)

𝑖

󵄨󵄨󵄨󵄨󵄨

𝑏
𝑖

≤

∞

∑
𝑖=1

𝑐
−1

𝑖
[𝑐
𝑖
𝐸𝐼 (

󵄨󵄨󵄨󵄨𝑋𝑖
󵄨󵄨󵄨󵄨 > 𝑐
𝑖
) +

󵄨󵄨󵄨󵄨𝐸𝑋𝑖𝐼 (
󵄨󵄨󵄨󵄨𝑋𝑖

󵄨󵄨󵄨󵄨 ≤ 𝑐
𝑖
)
󵄨󵄨󵄨󵄨]

≤

∞

∑
𝑖=1

𝑐
−1

𝑖
[𝐸

󵄨󵄨󵄨󵄨𝑋𝑖
󵄨󵄨󵄨󵄨 𝐼 (

󵄨󵄨󵄨󵄨𝑋𝑖
󵄨󵄨󵄨󵄨 > 𝑐
𝑖
) +

󵄨󵄨󵄨󵄨𝐸𝑋𝑖𝐼 (
󵄨󵄨󵄨󵄨𝑋𝑖

󵄨󵄨󵄨󵄨 > 𝑐
𝑖
)
󵄨󵄨󵄨󵄨]
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≤ 2

∞

∑
𝑖=1

𝑐
−1

𝑖
𝐸

󵄨󵄨󵄨󵄨𝑋𝑖
󵄨󵄨󵄨󵄨 𝐼 (

󵄨󵄨󵄨󵄨𝑋𝑖
󵄨󵄨󵄨󵄨 > 𝑐
𝑖
)

≤ 𝐶

∞

∑
𝑖=1

𝑐
−1

𝑖
𝐸 |𝑋| 𝐼 (|𝑋| > 𝑐

𝑖
)

= 𝐶

∞

∑
𝑘=1

∑
(𝑘−1)<𝑐

𝑖
≤𝑘

𝑐
−1

𝑖
𝐸 |𝑋| 𝐼 (|𝑋| > 𝑐

𝑖
> 𝑘 − 1)

≤ 𝐶

∞

∑
𝑘=2

(𝑘 − 1)
−1

(𝑁 (𝑘) − 𝑁 (𝑘 − 1))

×

∞

∑
𝑗=𝑘

𝐸 |𝑋| 𝐼 (𝑗 ≤ |𝑋| < 𝑗 + 1)

≤ 𝐶

∞

∑
𝑗=2

𝑗

∑
𝑘=2

𝑁(𝑘) ((𝑘 − 1)
−1

− 𝑘
−1

)

× 𝐸 |𝑋| 𝐼 (𝑗 ≤ |𝑋| < 𝑗 + 1) .

(75)

Since 𝑟 > 1, we can take 𝛿 > 0 such that 𝑟 − 𝛿 > 1.
By Lemma 13 and differential mean value theorem, we can
obtain

𝑗

∑
𝑘=2

𝑁(𝑘) ((𝑘 − 1)
−1

− 𝑘
−1

)

≤ 𝐶

𝑗

∑
𝑘=2

𝑘
𝑟

ℎ (𝑘) ((𝑘 − 1)
−1

− 𝑘
−1

)

= 𝐶

𝑗

∑
𝑘=2

𝑘
𝑟−𝛿

(𝑘
𝛿

ℎ (𝑘)) ((𝑘 − 1)
−1

− 𝑘
−1

)

≤ 𝐶𝑗
𝛿

ℎ (𝑗)

𝑗

∑
𝑘=2

𝑘
𝑟−𝛿−2

≤ 𝐶𝑗
𝛿

ℎ (𝑗) ∫
𝑗

2

𝑥
𝑟−𝛿−2

𝑑𝑥 ≤ 𝐶𝑗
𝑟−1

ℎ (𝑗) .

(76)

It is easily seen that 𝑥
𝑟−1

ℎ(𝑥) is a quasimonotonically
increasing function by Lemma 13. Hence, we have by (75) and
(76) that

∞

∑
𝑖=1

𝑎
𝑖

󵄨󵄨󵄨󵄨󵄨
𝐸𝑋
(𝑐
𝑖
)

𝑖

󵄨󵄨󵄨󵄨󵄨

𝑏
𝑖

≤ 𝐶

∞

∑
𝑗=2

𝑗
𝑟−1

ℎ (𝑗) 𝐸 |𝑋| 𝐼 (𝑗 ≤ |𝑋| < 𝑗 + 1)

≤ 𝐶

∞

∑
𝑗=2

𝐸 (|𝑋|
𝑟−1

ℎ (|𝑋|) |𝑋| 𝐼 (𝑗 ≤ |𝑋| < 𝑗 + 1))

= 𝐶

∞

∑
𝑗=2

𝐸 (|𝑋|
𝑟

ℎ (|𝑋|) 𝐼 (𝑗 ≤ |𝑋| < 𝑗 + 1))

≤ 𝐶𝐸𝑓 (|𝑋|) < ∞.

(77)

By Kronecker’s lemma, we can get (60) immediately. The
proof is complete.
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