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Some new sufficient conditions for oscillation of all solutions of the first-order linear neutral delay differential equations are
obtained. Our new results improve many well-known results in the literature. Some examples are inserted to illustrate our results.

1. Introduction

A neutral delay differential equation (NDDE) is a differen-
tial equation in which the highest-order derivative of the
unknown function is evaluated both at the present state at
time 𝑡 and at the past state at time 𝑡 − 𝑘 for some positive
constant 𝑘.

In the last two decades, there has been an increasing
interest in obtaining sufficient conditions for the oscillation
and/or nonoscillation of solutions of neutral delay differential
equations. Particularly, we mention the papers by Ladas and
Sficas [1], Chuanxi and Ladas [2], Ruan [3], Elabbasy and
Saker [4], Kulenović et al. [5], and Karpuz and Öcalan [6]
who investigated NDDEs with variable coefficients. To a
large extent, this is due to its theoretical interest as well
as to its importance in applications. It suffices to note that
NDDEs appear in the study of networks containing lossless
transmission lines (as in high-speed computers where the
lossless transmission lines are used to interconnect switching
circuits) in population dynamics and also in many applica-
tions in epidemics and infection diseases. We refer reader to
[1–18] for relevant studies on this subject.

In this paper, we consider the linear first-order NDDE of
the type

(𝑥 (𝑡) − 𝑝𝑥 (𝑡 − 𝜏))
󸀠

+ 𝑞
1
𝑥 (𝑡)

+ 𝑞
2
(𝑡) 𝑥 (𝑡 − 𝜎) = 0; 𝑡 ≥ 𝑡

0
,

(1)

where 𝑝, 𝑞
1
, 𝜏, 𝜎 ∈ (0,∞) and 𝑞

2
(𝑡) ∈ 𝐶[[𝑡

0
,∞),R].

When 𝑞
1

≡ 0 and 𝑞
2
(𝑡) = 𝑞, 𝑞 is a constant, Jaroš [9]

established some new oscillation conditions for all solutions
of (1), and his technique was based on the study of the
characteristic equation

𝜆 − 𝜆𝑝𝑒
−𝜆𝜏

+ 𝑞𝑒
−𝜆𝜎

= 0. (2)

Zhang [19], Ladas and Sficas [1], Grammatikopoulos et
al. [10], and Yu et al. [8] considered (1) when 𝑞

1
≡ 0, and

they obtained some sufficient conditions for oscillation of (1).
The purpose of this work is to present some new sufficient
conditions under which all solutions of (1) are oscillatory.
In order to achieve this object, we are first concerned with
NDDE (1) with constant coefficients (when 𝑞

2
(𝑡) ≡ 𝑞

2
, 𝑞
2
is a

constant). That is,

(𝑥 (𝑡) − 𝑝𝑥 (𝑡 − 𝜏))
󸀠

+ 𝑞
1
𝑥 (𝑡)

+ 𝑞
2
𝑥 (𝑡 − 𝜎) = 0, 𝑡 ≥ 0.

(3)

Some illustrating examples are given. In some sense,
the established results extend and improve some previous
investigations such as [1, 8–10, 19].

As usual, a solution of (1) is said to be oscillatory if it
has arbitrarily large zeros and nonoscillatory if it is even-
tually positive or eventually negative. A function 𝑥(𝑡) is
called eventually positive (or negative) if there exists 𝑡

0
such
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that 𝑥(𝑡) > 0 (or 𝑥(𝑡) < 0) for all 𝑡 ≥ 𝑡
0
. Equation (1) is

called oscillatory if all its solutions are oscillatory; otherwise,
it is called nonoscillatory.

2. Main Results

In this section, we give some new sufficient conditions for the
oscillation of all solutions of (1) and (3).This is done by using
the following well-known lemmas which are from [11, 12].

Lemma 1. Consider the NDDE

(𝑥 (𝑡) + 𝑝𝑥 (𝑡 − 𝜏))
󸀠

+

𝑛

∑

𝑖=1

𝑞
𝑖
𝑥 (𝑡 − 𝜎

𝑖
) = 0, 𝑡 ≥ 𝑡

0
, (4)

where 𝜏 ≥ 0, 𝑞
𝑖
> 0, and 𝜎

𝑖
≥ 0 for all 𝑖 = 1, 2, . . . , 𝑛.

Let 𝑥(t) be a positive solution of (4). Set

𝑧 (𝑡) = 𝑥 (𝑡) − 𝑝𝑥 (𝑡 − 𝜏) . (5)

If 𝑝 ≥ −1, then 𝑧(𝑡) is a positive and decreasing solution of (4);
that is,

𝑧
󸀠

(𝑡) + 𝑝𝑧
󸀠

(𝑡 − 𝜏) +

𝑛

∑

𝑖=1

𝑞
𝑖
𝑧 (𝑡 − 𝜎

𝑖
) = 0, 𝑡 ≥ 𝑡

0
. (6)

Lemma 2. Let 𝑝 and 𝜏 be positive constants. Let 𝑥(𝑡) be an
eventually positive solution of the delay differential inequality

𝑥
󸀠

(𝑡) + 𝑝𝑥 (𝑡 − 𝜏) ≤ 0. (7)

Then for 𝑡 sufficiently large,

𝑥 (𝑡 − 𝜏) ≤ 𝐵𝑥 (𝑡) , (8)

where

𝐵 =
4

(𝑝𝜏)
2
. (9)

Our main results can now be given as follows.

Theorem 3. Consider NDDE (3). Assume that

(i) 𝑞
2
∈ [0,∞), 𝜎 ≥ 𝜏, 0 < 𝑝𝑒

𝑞
1
𝜏
< 1 and

(ii) 𝜏(𝑞
1
𝑝𝑒
𝑞
1
𝜏
+ 𝑞
2
𝑒
𝑞
1
𝜎
) > (1 − 𝑝𝑒

𝑞
1
𝜏
𝑚)
2

/𝑚,

where𝑚 is the unique real root of the equation

1 − 𝑝𝑒
𝑞
1
𝜏
𝑚 = ln𝑚, 1 ≤ 𝑚 ≤

1

𝑝
𝑒
−𝑞1𝜏

. (10)

Then all solutions of (3) are oscillatory.

Proof. Assume, for the sake of a contradiction, that (3) has
a nonoscillatory solution 𝑥(𝑡). Without loss of generality,
assume that 𝑥(𝑡) > 0 ∀𝑡 ≥ 𝑡

0
> 0. Let

𝑥 (𝑡) = 𝑒
−𝑞
1
𝑡
𝑦 (𝑡) . (11)

So that 𝑦(𝑡) is also a positive solution of (3).

That is,

(𝑦 (𝑡) − 𝑝
1
𝑦 (𝑡 − 𝜏))

󸀠

+

2

∑

𝑖=1

𝑎
𝑖
𝑦 (𝑡 − 𝜏

𝑖
) = 0, (12)

where

𝑝
1
= 𝑝𝑒
𝑞
1
𝜏
, 𝑎

1
= 𝑞
1
𝑝𝑒
𝑞
1
𝜏
, 𝑎

2
= 𝑞
2
𝑒
𝑞
1
𝜎
,

𝜏
1
= 𝜏, 𝜏

2
= 𝜎.

(13)

Set for 𝑡 ≥ 𝑡
0
+ 2𝜏

𝑧 (𝑡) = 𝑦 (𝑡) − 𝑝
1
𝑦 (𝑡 − 𝜏) ,

𝑤 (𝑡) =
𝑧 (𝑡 − 𝜏)

𝑧 (𝑡)
.

(14)

Thus it follows from Lemma 1 that 𝑧(𝑡) is a positive and
decreasing solution of

𝑧
󸀠

(𝑡) − 𝑝
1
𝑧
󸀠

(𝑡 − 𝜏) +

2

∑

𝑖=1

𝑎
𝑖
𝑧 (𝑡 − 𝜏

𝑖
) = 0, (15)

and in particular (as 𝜎 > 𝜏 implies that 𝑡−𝜏
𝑖
≤ 𝑡−𝜏, 𝑖 = 1, 2),

it follows that

𝑧
󸀠

(𝑡) − 𝑝
1
𝑧
󸀠

(𝑡 − 𝜏) + (𝑎
1
+ 𝑎
2
) 𝑧 (𝑡 − 𝜏) ≤ 0. (16)

But we have

𝑧
󸀠

(𝑡 − 𝜏) < 0. (17)

This implies that

𝑧
󸀠

(𝑡) + (𝑎
1
+ 𝑎
2
) 𝑧 (𝑡 − 𝜏) ≤ 0. (18)

Applying Lemma 2 with (18) we get

𝑧 (𝑡 − 𝜏) ≤ 𝐵𝑧 (𝑡) ; 𝐵 =
4

𝜏
2
(𝑎
1
+ 𝑎
2
)
2
. (19)

Then 𝑤(𝑡) is bounded.
Dividing (16) by 𝑧(𝑡) > 0 and integrating from 𝑡 − 𝜏 to 𝑡,

we get

ln𝑤 (𝑡) ≥ (𝑎
1
+ 𝑎
2
) ∫

𝑡

𝑡−𝜏

𝑤 (𝑠) 𝑑𝑠

− 𝑝
1
∫

𝑡

𝑡−𝜏

𝑤 (𝑠)
𝑑

𝑑𝑠
(ln 𝑧 (𝑠 − 𝜏)) 𝑑𝑠.

(20)

Let𝑚 = lim
𝑡→∞

inf 𝑤(𝑡).
Then, it follows from (20) that for 𝜀 > 0 and sufficiently

small,

ln (𝑚 + 𝜀) ≥ (𝑎
1
+ 𝑎
2
) (𝑚 − 𝜀) 𝜏 + 𝑝

1
(𝑚 − 𝜀) ln (𝑚 − 𝜀) .

(21)

As 𝜀 is arbitrary, so we have

(𝑎
1
+ 𝑎
2
) 𝜏 ≤

(1 − 𝑝
1
𝑚) ln𝑚

𝑚
. (22)
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Let

𝐹 (𝑚) =
(1 − 𝑝

1
𝑚) ln𝑚

𝑚
, 1 ≤ 𝑚 ≤ 𝐵. (23)

Then

𝐹
󸀠

(𝑚) =
1 − 𝑝
1
𝑚 − ln𝑚

𝑚
2

, 1 ≤ 𝑚 ≤ 𝐵. (24)

Let𝑚 be the unique real root of the equation

1 − 𝑝
1
𝑚 = ln𝑚, 𝑚 ∈ [1,

1

𝑝
1

] . (25)

Then

max
𝑚≥1

𝐹 (𝑚) = 𝐹 (𝑚) =
(1 − 𝑝

1
𝑚)
2

𝑚
. (26)

Hence

(𝑞
1
𝑝𝑒
𝑞
1
𝜏
+ 𝑞
2
𝑒
𝑞
1
𝜎
) 𝜏 ≤

(1 − 𝑝𝑒
𝑞
1
𝜏
𝑚)
2

𝑚
. (27)

This contradicts condition (ii) and then completes the proof.

Example 4. Consider the NDDE

(𝑥 (𝑡) −
1

9
𝑥 (𝑡 −

𝜋

2
))

󸀠

+
1

9
𝑥 (𝑡)

+ 𝑥 (𝑡 −
5𝜋

2
) = 0, 𝑡 ≥ 0.

(28)

We note that

𝑝 =
1

9
, 𝑞

1
=

1

9
, 𝑞

2
= 1, 𝜏 =

𝜋

2
, 𝜎 =

5𝜋

2
.

(29)

Then we have

(i) 0 < 𝑝𝑒
𝑞
1
𝜏
= (1/9)𝑒

𝜋/18
< 1 and 𝜎 ≥ 𝜏,

(ii)

𝜏 (𝑞
1
𝑝𝑒
𝑞
1
𝜏
+ 𝑞
2
𝑒
𝑞
1
𝜎
) =

𝜋

2
(

1

81
𝑒
𝜋/18

+
1

9
𝑒
5𝜋/18

)

>
(1 − 𝑝𝑒

𝑞
1
𝜏
𝑚)
2

𝑚
=

(1 − (1/9)𝑒
𝜋/18

)
2

2
,

(30)

where 𝑚 = 2 is the unique real root of the equation

1 −
1

9
𝑒
𝜋/18

𝑚 = ln𝑚, 𝑚 ∈ [1, 9𝑒
−𝜋/18

] . (31)

Then all the hypotheses of Theorem 3 are satisfied, and
therefore every solution of (28) oscillates. (Indeed 𝑥(𝑡) =

sin 𝑡 is such a solution.)

Theorem 5. Consider the NDDE (1). Assume that

(iii) 0 < 𝑝𝑒
𝑞
1
𝜏

< 1, 𝜎 = 𝜏, and 𝑞
2
(𝑡) ∈ 𝐶[[𝑡

0
,∞),

(0,∞)] is periodic with period 𝜏,

(iv) lim
𝑡→∞

inf ∫𝑡
𝑡−𝜏

𝑒
𝑞
1
𝜏
(𝑞
2
(𝑠) + 𝑞

1
𝑝)𝑑𝑠 > (1 − 𝑝𝑒

𝑞
1
𝜏
𝑚)
2

/𝑚,

where 𝑚 is defined as in Theorem 3. Then all solutions of (1)
are oscillatory.

Proof. Assume, for the sake of contradiction, that (1) has
a nonoscillatory solution 𝑥(𝑡). Without loss of generality,
assume that 𝑥(𝑡) > 0 ∀𝑡 ≥ 𝑡

0
> 0. Let

𝑥 (𝑡) = 𝑒
−𝑞
1
𝑡
𝑦 (𝑡) , (32)

which is oscillation invariant transformation. Then 𝑦(𝑡) is a
positive solution of the equation

(𝑦 (𝑡) − 𝑝
1
𝑦 (𝑡 − 𝜏))

󸀠

+ 𝑞 (𝑡) 𝑦 (𝑡 − 𝜏) = 0, (33)

where 𝑝
1
= 𝑝𝑒
𝑞
1
𝜏 and 𝑞(𝑡) = 𝑒

𝑞
1
𝜏
(𝑞
2
(𝑡) + 𝑞

1
𝑝) is periodic

with period 𝜏.
Let

𝑧 (𝑡) = 𝑦 (𝑡) − 𝑝
1
𝑦 (𝑡 − 𝜏) . (34)

Then 𝑧(𝑡) is decreasing positive solution of the equation

(𝑧 (𝑡) − 𝑝
1
𝑧 (𝑡 − 𝜏))

󸀠

+ 𝑞 (𝑡) 𝑧 (𝑡 − 𝜏) = 0. (35)

Set

𝑤 (𝑡) =
𝑧 (𝑡 − 𝜏)

𝑧 (𝑡)
. (36)

This implies that 𝑤(𝑡) ≥ 1, since 𝑧(𝑡 − 𝜏) ≥ 𝑧(𝑡).
Dividing both sides of (33) by 𝑧(𝑡) and then integrating

from 𝑡 − 𝜏 to 𝑡, we obtain that

ln𝑤 (𝑡)

= ∫

𝑡

𝑡−𝜏

𝑞 (𝑠) (𝑦 (𝑠 − 𝜏) − 𝑝
1
𝑦 (𝑠 − 2𝜏) + 𝑝

1
𝑦 (𝑠 − 2𝜏))

𝑦 (𝑠) − 𝑝
1
𝑦 (𝑠 − 𝜏)

𝑑𝑠.

(37)

Hence

ln𝑤 (𝑡)

= ∫

𝑡

𝑡−𝜏

𝑞 (𝑠) 𝑤 (𝑠) 𝑑𝑠 + 𝑝
1
∫

𝑡

𝑡−𝜏

(
𝑞 (𝑠) 𝑦 (𝑠 − 2𝜏)

𝑦 (𝑠) − 𝑝
1
𝑦 (𝑠 − 𝜏)

) 𝑑𝑠.

(38)

Since 𝑞(𝑡) is periodic with period 𝜏, then we obtain

𝑞 (𝑡) = 𝑞 (𝑡 − 𝜏) = −
(𝑦 (𝑡 − 𝜏) − 𝑝

1
𝑦 (𝑡 − 2𝜏))

󸀠

𝑦 (𝑡 − 2𝜏)
. (39)
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Substituting in (38) we find, for all 𝑡 ≥ 𝑡
0
,

ln𝑤 (𝑡) = ∫

𝑡

𝑡−𝜏

𝑞 (𝑠) 𝑤 (𝑠) 𝑑𝑠

− 𝑝
1
∫

𝑡

𝑡−𝜏

𝑤 (𝑠) 𝑑 ln (𝑦 (𝑠 − 𝜏) − 𝑝
1
𝑦 (𝑠 − 2𝜏)) 𝑑𝑠.

(40)

Now, we want to prove that 𝑤(𝑡) is bounded.
Applying the assumption (iv), we can find 𝑡

∗
∈ (𝑡 − 𝜏, 𝑡)

such that

∫

𝑡
∗

𝑡−𝜏

𝑞 (𝑠) 𝑑𝑠 >
𝐹 (𝑚)

2
, ∫

𝑡

𝑡
∗

𝑞 (𝑠) 𝑑𝑠 >
𝐹 (𝑚)

2
, (41)

where 𝐹(𝑚) is similar as in the proof of Theorem 3.
Integrating (33) from 𝑡

∗ to 𝑡 we obtain

𝑦 (𝑡
∗
) − 𝑝
1
𝑦 (𝑡
∗
− 𝜏) ≥ ∫

𝑡

𝑡
∗

𝑞 (𝑠) 𝑦 (𝑠 − 𝜏) 𝑑𝑠

≥ ∫

𝑡

𝑡
∗

𝑞 (𝑠) (𝑦 (𝑠 − 𝜏) − 𝑝
1
𝑦 (𝑠 − 2𝜏)) 𝑑𝑠,

(42)

Using Bonnet’s Theorem and in particular (as 𝑧󸀠(𝑡 − 𝜏) < 𝑜),
we get

𝑦 (𝑡
∗
) − 𝑝
1
𝑦 (𝑡
∗
− 𝜏)

≥ [𝑦 (𝑡 − 𝜏) − 𝑝
1
𝑦 (𝑡 − 2𝜏)] ⋅ ∫

𝑡

𝑡
∗

𝑞 (𝑠) 𝑑𝑠.

(43)

Integrating (33) from 𝑡 − 𝜏 to 𝑡
∗, we get

𝑦 (𝑡 − 𝜏) − 𝑝
1
𝑦 (𝑡 − 2𝜏)

≥ ∫

𝑡
∗

𝑡−𝜏

𝑞 (𝑠) 𝑦 (𝑠 − 𝜏) 𝑑𝑠

≥ ∫

𝑡
∗

𝑡−𝜏

𝑞 (𝑠) (𝑦 (𝑠 − 𝜏) − 𝑝
1
𝑦 (𝑠 − 2𝜏)) 𝑑𝑠.

(44)

Using Bonnet’s Theorem and in particular (as 𝑧󸀠(𝑡 − 𝜏) < 𝑜),
we get

𝑦 (𝑡 − 𝜏) − 𝑝
1
𝑦 (𝑡 − 2𝜏)

≥ [𝑦 (𝑡
∗
− 𝜏) − 𝑝

1
𝑦 (𝑡
∗
− 2𝜏)] ⋅ ∫

𝑡
∗

𝑡−𝜏

𝑞 (𝑠) 𝑑𝑠.

(45)

Combining (43) and (45), we conclude

𝑦 (𝑡
∗
) − 𝑝
1
𝑦 (𝑡
∗
− 𝜏)

≥ (𝑦 (𝑡
∗
− 𝜏) − 𝑝

1
𝑦 (𝑡
∗
− 2𝜏)) (

𝐹(𝑚)

2
)

2

,

(46)

or

𝑤 (𝑡
∗
) =

𝑦 (𝑡
∗
− 𝜏) − 𝑝

1
𝑦 (𝑡
∗
− 2𝜏)

𝑦 (𝑡
∗
) − 𝑝
1
𝑦 (𝑡
∗
− 𝜏)

≤
4

(𝐹 (𝑚))
2
. (47)

Then 𝑤(𝑡) is bounded.

Now, let

𝑚 = lim
𝑡→∞

inf 𝑤 (𝑡) . (48)

But we have proved that 𝑤(𝑡) is bounded; that is,𝑚 is finite.
From (40), we obtain

ln𝑚 ≥ 𝑝
1
𝑚 ln𝑚 + lim

𝑡→∞

inf 𝑚∫

𝑡

𝑡−𝜏

𝑞 (𝑠) 𝑑𝑠. (49)

Therefore, we get

lim
𝑡→∞

inf 𝑚∫

𝑡

𝑡−𝜏

𝑞 (𝑠) 𝑑𝑠 ≤
1 − 𝑝
1
𝑚

𝑚
ln𝑚. (50)

Hence

lim
𝑡→∞

inf ∫
𝑡

𝑡−𝜏

𝑞 (𝑠) 𝑑𝑠 ≤
(1 − 𝑝

1
𝑚)
2

𝑚
. (51)

This contradicts our assumption (iv) and then completes the
proof.

Example 6. Consider the NDDE

(𝑥 (𝑡) −
1

9
𝑥 (𝑡 − 𝜋))

󸀠

+
1

18
𝑥 (𝑡)

+ (1 + cos 2𝑡) 𝑥 (𝑡 − 𝜋) = 0, 𝑡 ≥ 0,

(52)

where

𝑝 =
1

9
, 𝑞

1
=

1

18
, 𝜏 = 𝜎 = 𝜋,

𝑞
2
(𝑡) = 1 + cos 2𝑡.

(53)

Then we have

(1) 0 < 𝑝𝑒
𝑞
1
𝜏
= 𝑒
𝜋/18

/9 < 1;
(2) 𝑞
2
(𝑡) = 1+ cos 2𝑡 ∈ 𝐶[[0,∞), (0,∞)] is periodic with

period 𝜋 and satisfies

lim
𝑡→∞

inf ∫

𝑡

𝑡−𝜏

𝑒
𝑞
1
𝜏
(𝑞
2
(𝑠) + 𝑞

1
𝑝) 𝑑𝑠

= lim
𝑡→∞

inf ∫
𝑡

𝑡−𝜋

𝑒
𝜋/18

((1 + cos 2𝑠) + 1

162
) 𝑑𝑠

= 𝑒
𝜋/18 lim
𝑡→∞

inf (𝑠 +
𝑠

162
+

1

2
sin 2𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑡

𝑡−𝜋

)

= ∞ >
(1 − 𝑝𝑒

𝑞
1
𝜏
𝑚)
2

𝑚
=

(1 − (2/9) 𝑒
𝜋/18

)
2

2
,

(54)

where𝑚 = 2 is the unique real root of the equation

1 −
1

9
𝑒
𝜋/18

𝑚 = ln𝑚; 1 ≤ 𝑚 ≤ 9𝑒
−𝜋/18

. (55)

Therefore (52) satisfies all the hypotheses of Theorem 5.
Hence every solution of this equation is oscillatory.
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Theorem 7. Suppose that condition (iii) holds. If

(v) lim
𝑡→∞

inf ∫𝑡
𝑡−𝜏

𝑒
𝑞
1
𝜏
[𝑞
2
(𝑠) + 𝑞

1
𝑝]𝑑𝑠 > (1 − 𝑝𝑒

𝑞
1
𝜏
)/𝑒,

then every solution of (1) is oscillatory.

Proof. Proceeding as in the proof of Theorem 5, we get (49)
which implies that

ln𝑚 ≥ 𝑝
1
ln𝑚 + 𝑚 lim

𝑡→∞

inf ∫
𝑡

𝑡−𝜏

𝑞 (𝑠) 𝑑𝑠. (56)

Hence

lim
𝑡→∞

inf ∫
𝑡

𝑡−𝜏

𝑞 (𝑠) 𝑑𝑠 ≤
1 − 𝑝
1

𝑚
ln𝑚 ≤

1 − 𝑝
1

𝑒
. (57)

But this is a contradiction of assumption (v), and then the
proof is complete.

Example 8. Consider the NDDE

(𝑥 (𝑡) −
1

5𝑒
𝑥 (𝑡 −

𝜋

2
))

󸀠

+
2

𝜋
𝑥 (𝑡)

+ (𝑒 + sin 4𝑡) 𝑥 (𝑡 −
𝜋

2
) = 0, 𝑡 ≥ 0.

(58)

Here we have

𝑝 =
1

5𝑒
, 𝑞

1
=

2

𝜋
, 𝜏 = 𝜎 =

𝜋

2
,

𝑞
2
(𝑡) = 𝑒 + sin 4𝑡.

(59)

Note that 𝑞
2
(𝑡) = 𝑒 + sin 4𝑡 is positive and periodic with

period 𝜋/2, and also

(1) 0 < 𝑝𝑒
𝑞
1
𝜏
= 1/5 < 1,

(2)

lim
𝑡→∞

inf ∫
𝑡

𝑡−𝜏

𝑒
𝑞
1
𝜏
[𝑞
2
(𝑠) + 𝑞

1
𝑝] 𝑑𝑠

= lim
𝑡→∞

inf ∫
𝑡

𝑡−𝜏

𝑒 [(𝑒 + sin 4𝑡) +
2

5𝑒𝜋
] 𝑑𝑠 = ∞

>
(1 − 𝑝𝑒

𝑞
1
𝜏
)

𝑒
=

4

5𝑒
.

(60)

Then (58) satisfies hypotheses of Theorem 7, and so all its
solutions are oscillatory.
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[5] M. R. S. Kulenović, G. Ladas, and A. Meimaridou, “Necessary
and sufficient condition for oscillations of neutral differential
equations,” Australian Mathematical Society Journal B, vol. 28,
no. 3, pp. 362–375, 1987.
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