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Some multilinear maximal functions and the generalized Calderón-Zygmund operators and their commutators with nonsmooth
kernels are studied. The purpose of this paper is to establish that these operators are bounded on certain product Morrey spaces
𝐿
𝑝,𝑘
(R𝑛

). Based on the boundedness of these operators from 𝐿
𝑝1 (𝜔𝑖) × ⋅ ⋅ ⋅ × 𝐿

𝑝𝑚 (𝜔𝑚) to 𝐿
𝑝
(∏

𝑚

𝑗=1
𝜔
𝑝/𝑝𝑗

𝑗
), we obtained that they are

also bounded from 𝐿
𝑝1 ,𝑘(𝜔𝑖) × ⋅ ⋅ ⋅ × 𝐿

𝑝𝑚 ,𝑘(𝜔𝑚) to 𝐿
𝑝,𝑘
(∏

𝑚

𝑗=1
𝜔
𝑝/𝑝𝑗

𝑗
) with 0 < 𝑘 < 1, 1 < 𝑝𝑗 < ∞, 1/𝑝 = 1/𝑝1, . . . , 𝑝𝑚 and 𝜔𝑗 ∈ 𝐴𝑝𝑗

,
𝑗 = 1, . . . , 𝑚.

1. Introduction

Let S(R𝑛
) and S󸀠

(R𝑛
) be the Schwartz spaces of all rapidly

decreasing functions and tempered distributions, respec-
tively. Let 𝑇 be a multilinear operator initially defined on the
𝑚-fold product of Schwartz spaces and taking values into the
space of tempered distributions,

𝑇 : S (R
𝑛
) × ⋅ ⋅ ⋅S (R

𝑛
) 󳨀→ S

󸀠
(R

𝑛
) . (1)

Following [1], the 𝑚-multilinear Calderón-Zygmund opera-
tor 𝑇 satisfies the following conditions:

(S1) there exist 𝑞𝑖 < ∞ (𝑖 = 1, . . . , 𝑚), it extends to such
that a bounded multilinear operator from 𝐿

𝑞
1 × ⋅ ⋅ ⋅ ×

𝐿
𝑞
𝑚 to 𝐿𝑞, where

1

𝑞
=

1

𝑞1

+ ⋅ ⋅ ⋅ +
1

𝑞𝑚

; (2)

(S2) there exists a function𝐾, defined off the diagonal 𝑥 =
𝑦1 = ⋅ ⋅ ⋅ = 𝑦𝑚 in (R𝑛

)
𝑚+1, satisfying

𝑇 ( ⃗𝑓) (𝑥) = 𝑇 (𝑓1, . . . , 𝑓𝑚) (𝑥)

= ∫
(R𝑚)
𝑛

𝐾(𝑥, 𝑦1, . . . , 𝑦𝑚) 𝑓1 (𝑦1) ⋅ ⋅ ⋅

𝑓𝑚 (𝑦𝑚) 𝑑𝑦1 ⋅ ⋅ ⋅ 𝑑𝑦𝑚,

(3)

for all 𝑥 ∉ ∩
𝑚

𝑗=1
supp𝑓𝑗 and 𝑓1, . . . , 𝑓𝑚 ∈ S(R𝑛

),
where

󵄨󵄨󵄨󵄨𝐾 (𝑦0, 𝑦1, . . . , 𝑦𝑚)
󵄨󵄨󵄨󵄨 ≤

𝐴

(∑
𝑚

𝑙,𝑘=0

󵄨󵄨󵄨󵄨𝑦𝑙 − 𝑦𝑘
󵄨󵄨󵄨󵄨)
𝑚𝑛 ; (4)

󵄨󵄨󵄨󵄨󵄨
𝐾 (𝑦0, . . . , 𝑦𝑗, . . . , 𝑦𝑚) − 𝐾 (𝑦0, . . . , 𝑦𝑗, . . . , 𝑦𝑚)

󵄨󵄨󵄨󵄨󵄨

≤

𝐴
󵄨󵄨󵄨󵄨󵄨
𝑦𝑗 − 𝑦

󸀠

𝑗

󵄨󵄨󵄨󵄨󵄨

𝜖

(∑
𝑚

𝑙,𝑘=0

󵄨󵄨󵄨󵄨𝑦𝑙 − 𝑦𝑘
󵄨󵄨󵄨󵄨)
𝑚𝑛+𝜖

,

(5)

for some 𝜖 > 0 and all 0 ≤ 𝑗 ≤ 𝑚, whenever |𝑦𝑗−𝑦𝑗| ≤
(1/2)max0≤𝑘≤𝑚|𝑦𝑗 − 𝑦𝑘|.

We also take some notation following [2]. Given a locally
integrable vector function b = (𝑏1, . . . , 𝑏𝑚) ∈ (BMO)𝑚.
The commutator of b and the 𝑚-linear Calderón-Zygmund
operator𝑇, denoted here by𝑇Σb, was introduced by Pérez and
Torres in [3] and is defined via

𝑇
Σ𝑏⃗
( ⃗𝑓) =

𝑚

∑

𝑗=1

𝑇
𝑗

𝑏
𝑗

( ⃗𝑓) , (6)

where

𝑇
𝑗

𝑏
𝑗

( ⃗𝑓) = 𝑏𝑗𝑇 (
⃗𝑓) − 𝑇 (𝑓1, . . . , 𝑏𝑗𝑓𝑗, . . . , 𝑓𝑚) . (7)
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And the iterated commutators 𝑇Πb are defined by

𝑇
Π𝑏⃗
( ⃗𝑓) = [𝑏1, . . . , [𝑏𝑚−1, [𝑏𝑚, 𝑇]𝑚

]
𝑚−1

. . .]
1
( ⃗𝑓) . (8)

To clarify the notations, if 𝑇 is associated in the usual way
with a Calderón-Zygmund kernel 𝐾, then at a formal level

𝑇
Σ𝑏⃗
( ⃗𝑓) (𝑥) = ∫

(R𝑛)
𝑚

𝑚

∑

𝑗=1

(𝑏𝑗 (𝑥) − 𝑏𝑗 (𝑦𝑗))

× 𝐾 (𝑥, 𝑦1, . . . , 𝑦𝑚) 𝑓1 (𝑦1) ⋅ ⋅ ⋅

𝑓𝑚 (𝑦𝑚) 𝑑𝑦1 ⋅ ⋅ ⋅ 𝑑𝑦𝑚,

𝑇
Π𝑏⃗
( ⃗𝑓) (𝑥) = ∫

(R𝑛)
𝑚

𝑚

∏

𝑗=1

(𝑏𝑗 (𝑥) − 𝑏𝑗 (𝑦𝑗))

× 𝐾 (𝑥, 𝑦1, . . . , 𝑦𝑚) 𝑓1 (𝑦1) ⋅ ⋅ ⋅

𝑓𝑚 (𝑦𝑚) 𝑑𝑦1 ⋅ ⋅ ⋅ 𝑑𝑦𝑚.

(9)

In this paper, we will consider 𝑇 to be associated with the
kernel satisfying a weaker regularity conditions introduced
by [4, 5]. A special example is the𝑚th Calderón commutator.

Let {𝐴 𝑡}𝑡>0 be a class of integral operators, which play the
role of the approximation to the identity. We always assume
that the operators𝐴 𝑡 are given by kernels 𝑎𝑡(𝑥, 𝑦) in the sense
that

𝐴 𝑡𝑓 (𝑥) = ∫
R𝑛
𝑎𝑡 (𝑥, 𝑦) 𝑓 (𝑦) 𝑑𝑦, (10)

for all 𝑓 ∈ ∪𝑝∈[1,∞]𝐿
𝑝 and 𝑥 ∈ R𝑛, and the kernels 𝑎𝑡(𝑥, 𝑦)

satisfy the following conditions:

󵄨󵄨󵄨󵄨𝑎𝑡 (𝑥, 𝑦)
󵄨󵄨󵄨󵄨 ≤ ℎ𝑡 (𝑥, 𝑦) := 𝑡

−𝑛/𝑠
ℎ(

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑡1/𝑠
) , (11)

where 𝑠 is a positive fixed constant and ℎ is a positive,
bounded, decreasing function satisfying that for some 𝜂 > 0

lim
𝑟→∞

𝑟
𝑛+𝜂

ℎ (𝑟
𝑠
) = 0. (12)

Recall that the 𝑗th transpose𝑇∗,𝑗 of the𝑚-linear operator
𝑇 is defined via

⟨𝑇
∗,𝑗
(𝑓1, . . . , 𝑓𝑚) , 𝑔⟩

= ⟨𝑇
∗,𝑗
(𝑓1, . . . , 𝑓𝑗−1, 𝑔, 𝑓𝑗+1, . . . , 𝑓𝑚) , 𝑓𝑗⟩ ,

(13)

for all 𝑓1, . . . , 𝑓𝑚, 𝑔 inS(R𝑛
). It is seen that the kernel𝐾∗,𝑗 of

𝑇
∗,𝑗 is related to the kernel𝐾 of 𝑇 via the identity

𝐾
∗,𝑗
(𝑥, 𝑦1, . . . , 𝑦𝑗−1, 𝑦𝑗, 𝑦𝑗+1, . . . , 𝑓𝑚)

= 𝐾 (𝑦𝑗, 𝑦1, . . . , 𝑦𝑗−1, 𝑥, 𝑦𝑗+1, . . . , 𝑓𝑚) .

(14)

If an 𝑚-linear operator 𝑇 maps a product of Banach
spaces 𝑋1 × ⋅ ⋅ ⋅ × 𝑋𝑚 into another Banach space 𝑋, then the
transpose 𝑇∗,𝑗 maps𝑋1 × ⋅ ⋅ ⋅ × 𝑋𝑗−1 ×𝑋×𝑋𝑗+1 × ⋅ ⋅ ⋅ × 𝑋𝑚 to
𝑋𝑗. Moreover, the norms of𝑇 and𝑇∗,𝑗 are equal. Tomaintain
uniform notation, we may occasionally denote 𝑇 by 𝑇∗,0 and
𝐾 by 𝐾∗,0.

Assumption 1. Assume that for each 𝑖 = 1, . . . , 𝑚 there exist
operators {𝐴(𝑖)

𝑡
}
𝑡>0

with kernels 𝑎(𝑖)
𝑡
(𝑥, 𝑦) that satisfy condi-

tions (11) and (12) with constants 𝑠 and 𝜂 and that, for every
𝑗 = 0, 1, 2, . . . , 𝑚, there exist kernel𝐾∗,𝑗,(𝑖)

(𝑥, 𝑦1, . . . , 𝑦𝑚) such
that

⟨𝑇
∗,𝑗
(𝑓1, . . . , 𝐴

(𝑖)

𝑡
𝑓𝑖, . . . , 𝑓𝑚) , 𝑔⟩

= ∫
R𝑛
∫
(R𝑛)
𝑚

𝐾
∗,𝑗,(𝑖)

𝑡 (𝑥, 𝑦1, . . . , 𝑓𝑚) 𝑓1 (𝑦1) ⋅ ⋅ ⋅

𝑓𝑚 (𝑦𝑚) 𝑔 (𝑥) 𝑑𝑦1 ⋅ ⋅ ⋅ 𝑑𝑦𝑚𝑑𝑥,

(15)

for all 𝑓1, . . . , 𝑓𝑚, 𝑔 in S(R𝑛
) with ∩𝑚

𝑘=1
supp𝑓𝑘 ∩ supp𝑔 =

0. Also assume that there exist a function 𝜙 ∈ C(R) with
supp𝜙 ⊂ [−1, 1] and constants 𝜖 > 0 and 𝐴 so that for every
𝑗 = 0, 1, 2, . . . , 𝑚 and every 𝑖 = 1, 2, . . . , 𝑚, we have

󵄨󵄨󵄨󵄨󵄨󵄨
𝐾
∗,𝑗
(𝑥, 𝑦1, . . . , 𝑦𝑚) − 𝐾

∗,𝑗,(𝑖)

𝑡 (𝑥, 𝑦1, . . . , 𝑦𝑚)
󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝐴

(∑
𝑚

𝑘=1

󵄨󵄨󵄨󵄨𝑥 − 𝑦𝑘
󵄨󵄨󵄨󵄨)
𝑚𝑛

𝑚

∑

𝑘=1,𝑘 ̸= 𝑖

𝜙(

󵄨󵄨󵄨󵄨𝑦𝑖 − 𝑦𝑘
󵄨󵄨󵄨󵄨

𝑡1/𝑠
)

+
𝐴𝑡

𝜖/𝑡

(∑
𝑚

𝑘=1

󵄨󵄨󵄨󵄨𝑥 − 𝑦𝑘
󵄨󵄨󵄨󵄨)
𝑚𝑛+𝜖

(16)

whenever 𝑡1/𝑠 ≤ |𝑥 − 𝑦𝑖|/2.

If 𝑇 satisfies Assumption 1 we will say that 𝑇 is an 𝑚-
linear operator with generalized Calderón-Zygmund kernel
𝐾. The collection of function 𝐾 satisfying (15) and (16) with
parameters 𝑚,𝐴, 𝑠, 𝜂, and 𝜖 will be denoted by 𝑚-linear
𝐺𝐶𝑍𝐾(𝐴, 𝑠, 𝜂, 𝜖). We say that𝑇 is of class𝑚-𝐺𝐶𝑍𝑂(𝐴, 𝑠, 𝜂, 𝜖)
if 𝑇 has an associated kernel 𝐾 in 𝑚-𝐺𝐶𝑍𝐾(𝐴, 𝑠, 𝜂, 𝜖).
Throughout this paper, we always assume that the 𝑚-linear
operator 𝑇 satisfies the following assumption.

Assumption 2. Assume that there exist some 1 ≤ 𝑞1, . . . , 𝑞𝑚 <

∞ and some 0 < 𝑞 < ∞ with 1/𝑞 = 1/𝑞1 + ⋅ ⋅ ⋅ + 1/𝑞𝑚, such
that 𝑇maps 𝐿𝑞1(R𝑛

) × ⋅ ⋅ ⋅ × 𝐿
𝑞
𝑚(R𝑛

) to 𝐿𝑞,∞(R𝑛
).

Theorem 3 (see [4]). Assume that 𝑇 is a multilinear operator
in 𝑚-𝐺𝐶𝑍𝑂(𝐴, 𝑠, 𝜂, 𝜖). Let 1/𝑚 ≤ 𝑝 < ∞, 1 ≤ 𝑝𝑗 ≤ ∞ with
1/𝑝 = 1/𝑝1 + ⋅ ⋅ ⋅ + 1/𝑝𝑚, all the following statement are valid:

(i) when all 𝑝𝑗 > 1, then 𝑇 can be extended to be a
bounded operator from the 𝑚-fold product 𝐿𝑝1(R𝑛

) ×

⋅ ⋅ ⋅ × 𝐿
𝑝
𝑚(R𝑛

) to 𝐿𝑝(R𝑛
);

(ii) when some 𝑝𝑗 = 1, then 𝑇 can be extended to be a
bounded operator from the 𝑚-fold product 𝐿𝑝1(R𝑛

) ×

⋅ ⋅ ⋅ × 𝐿
𝑝
𝑚(R𝑛

) to 𝐿𝑝,∞(R𝑛
).

Moreover, there exists a constant 𝐶(𝑛,𝑚, 𝑝𝑗, 𝑞𝑗) such that

‖𝑇‖𝐿1×⋅⋅⋅×𝐿1→𝐿1/𝑚,∞

≤ 𝐶 (𝑛,𝑚, 𝑝𝑗, 𝑞𝑗) (𝐴 + ‖𝑇‖𝐿𝑞1×⋅⋅⋅×𝐿𝑞𝑚 →𝐿𝑞,∞) .

(17)
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Assumption 4. Assume that there exist operators {𝐵𝑡}𝑡>0 with
kernels 𝑏𝑡(𝑥, 𝑦) that satisfy condition (11) and (12) with
constants 𝑠 and 𝜂. Let

𝐾
(0)

𝑡
(𝑥, 𝑦1, . . . , 𝑦𝑚) = ∫

R𝑛
𝐾(𝑧, 𝑦1, . . . , 𝑦𝑚) 𝑏𝑡 (𝑥, 𝑧) 𝑑𝑧.

(18)

We assume that the kernels 𝐾(0)

𝑡
(𝑥, 𝑦1, . . . , 𝑦𝑚) satisfy the

following estimates; there exist a function 𝜙 ∈ C(R) with
supp𝜙 ⊂ [−1, 1] and constants 𝜖 > 0 and 𝐴 such that

󵄨󵄨󵄨󵄨󵄨
𝐾
(0)

𝑡
(𝑥, 𝑦1, . . . , 𝑦𝑚)

󵄨󵄨󵄨󵄨󵄨
≤

𝐴

(∑
𝑚

𝑘=1

󵄨󵄨󵄨󵄨𝑥 − 𝑦𝑘
󵄨󵄨󵄨󵄨)
𝑚𝑛 , (19)

whenever 2𝑡1/𝑠 ≤ min1≤𝑗≤𝑚|𝑥 − 𝑦𝑗|, and

󵄨󵄨󵄨󵄨󵄨
𝐾 (𝑥, 𝑦1, . . . , 𝑦𝑚) − 𝐾

(0)

𝑡
(𝑥

󸀠
, 𝑦1, . . . , 𝑦𝑚)

󵄨󵄨󵄨󵄨󵄨

≤
𝐴

(∑
𝑚

𝑘=1

󵄨󵄨󵄨󵄨𝑥 − 𝑦𝑘
󵄨󵄨󵄨󵄨)
𝑚𝑛

𝑚

∑

𝑘=1

𝜙(

󵄨󵄨󵄨󵄨𝑦𝑖 − 𝑦𝑘
󵄨󵄨󵄨󵄨

𝑡1/𝑠
)

+
𝐴𝑡

𝜖/𝑠

(∑
𝑚

𝑘=1

󵄨󵄨󵄨󵄨𝑥 − 𝑦𝑘
󵄨󵄨󵄨󵄨)
𝑚𝑛+𝜖

,

(20)

whenever 2|𝑥 − 𝑥󸀠| ≤ 𝑡1/𝑠 ≤ max1≤𝑗≤𝑚|𝑥 − 𝑦𝑗|/2.

It is known that condition (16) is weaker than, and indeed
a consequence of, the Calderón-Zygmund kernel condition
(5) from the proof of Proposition 2.1 in [4]. And also it is
pointed out that Assumption 4 is weaker than the condition
(5) for𝐾(𝑥, 𝑦1, . . . , 𝑦𝑚) in [6].

For 𝑇 be an 𝑚-linear Calderón-Zygmund operator, 𝜔⃗ ∈

𝐴
𝑃⃗
and ]𝜔⃗ = ∏

𝑚

𝑗=1
𝜔
𝑝/𝑝
𝑗

𝑗
with 1/𝑝 = 1/𝑝1 + ⋅ ⋅ ⋅ + 𝑝𝑚 and 𝑏⃗ ∈

𝐵𝑀𝑂
𝑚, Lerner et al. [7] proved that𝑇 and𝑇

Σ𝑏⃗
bounded from

𝐿
𝑝
1(𝜔1)×⋅ ⋅ ⋅×𝐿

𝑝
𝑚(𝜔𝑚) to 𝐿

𝑝
(]𝜔⃗) and Pérez et al. [2] extended

the result to 𝑇
Π𝑏⃗

when all 1 < 𝑝𝑗 < ∞, in the case of the
endpoint, that is, some 𝑝𝑗 = 1, weak type estimates have been
established; for some details refer [2, 7]. To obtain the same
results for the multilinear singular integral operators 𝑇 in𝑚-
𝐺𝐶𝑍𝑂(𝐴, 𝑠, 𝜂, 𝜖) with kernel satisfying Assumption 4, some
authors have done so much work. Duong et al. [5] obtained
that 𝑇maps 𝐿𝑝1(𝜔) × ⋅ ⋅ ⋅ × 𝐿

𝑝
𝑚(𝜔) to 𝐿𝑝(𝜔), where 𝜔 ∈ 𝐴𝑝

0

with𝑝0 = min(𝑝1, . . . , 𝑝𝑚) > 1. Grafakos et al. [8] proved that
𝑇maps 𝐿𝑝1(𝜔1)×⋅ ⋅ ⋅×𝐿

𝑝
𝑚(𝜔𝑚) to 𝐿

𝑝
(]𝜔⃗)where all 𝑝𝑗 > 1 and

𝜔⃗ ∈ 𝐴
𝑃⃗
, and maps 𝐿𝑝1(𝜔1) × ⋅ ⋅ ⋅ × 𝐿

𝑝
𝑚(𝜔𝑚) to 𝐿

𝑝,∞
(]𝜔⃗) with

some 𝑝𝑗 = 1. For 𝜔⃗ ∈ ∏
𝑚

𝑗=1
𝐴𝑝
𝑗

with 𝑝𝑗 > 1, 𝑗 = 1, . . . , 𝑚,
Anh and Duong [6] established that 𝑇

Σ𝑏⃗
are of boundedness

from 𝐿
𝑝
1(𝜔1) × ⋅ ⋅ ⋅ × 𝐿

𝑝
𝑚(𝜔𝑚) to 𝐿

𝑝
(]𝜔⃗); after that, Chen and

Wu [9] extended the results of Lerner et al. [7] and Pérez et
al. [2] to the multilinear singular integral operators 𝑇 in 𝑚-
𝐺𝐶𝑍𝑂(𝐴, 𝑠, 𝜂, 𝜖) without the endpoint case.

Definition 5. Some multilinear maximal function used in
Theorem 6 will be listed in the following, which are intro-
duced by Lerner et al. [7] and Grafakos et al. [8]:

M ( ⃗𝑓) (𝑥) = sup
𝑄∋𝑥

𝑚

∏

𝑗=1

1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨󵄨
𝑓𝑗 (𝑦𝑗)

󵄨󵄨󵄨󵄨󵄨
𝑑𝑦𝑗,

M𝑟 (
⃗𝑓) (𝑥) = sup

𝑄∋𝑥

𝑚

∏

𝑗=1

1

|𝑄|
(∫

𝑄

󵄨󵄨󵄨󵄨󵄨
𝑓𝑗 (𝑦𝑗)

󵄨󵄨󵄨󵄨󵄨

𝑟

𝑑𝑦𝑗)

1/𝑟

,

M𝐿 log𝐿 (
⃗𝑓) (𝑥) = sup

𝑄∋𝑥

𝑚

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑓𝑗

󵄩󵄩󵄩󵄩󵄩𝐿 log𝐿,𝑄.

(21)

The following relationship with the above three maximal
functions is easy to check:

M ( ⃗𝑓) (𝑥) ≤ M𝐿 log𝐿 (
⃗𝑓) (𝑥) ≤ 𝐶M𝑟 (

⃗𝑓) (𝑥) . (22)

Let 𝑟 > 1, 1 ≤ 𝑙 < 𝑚, 𝜎 = {𝑗1, . . . , 𝑗𝑙} ⊂ {1, . . . , 𝑚},
and 𝜎󸀠 = {1, . . . , 𝑚} \ 𝜎. We define the following multilinear
maximal functions:

M𝜎 (
⃗𝑓) (𝑥)

= sup
𝑄∋𝑥

∞

∑

𝑘=0

2
−𝑘𝑛𝑙

∏

𝑗∈𝜎

1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨󵄨
𝑓𝑗 (𝑦𝑗)

󵄨󵄨󵄨󵄨󵄨
𝑑𝑦𝑗

× ∏

𝑗∈𝜎󸀠

1

󵄨󵄨󵄨󵄨2
𝑘𝑄
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑓𝑗 (𝑦𝑗)

󵄨󵄨󵄨󵄨󵄨
𝑑𝑦𝑗,

M𝜎 (
⃗𝑓) (𝑥)

= sup
𝑄∋𝑥

∞

∑

𝑘=0

2
−𝑘𝑛𝑙

∏

𝑗∈𝜎

(
1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨󵄨
𝑓𝑗 (𝑦𝑗)

󵄨󵄨󵄨󵄨󵄨
𝑑𝑦𝑗)

1/𝑟

× ∏

𝑗∈𝜎󸀠

(
1

󵄨󵄨󵄨󵄨2
𝑘𝑄
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑓𝑗 (𝑦𝑗)

󵄨󵄨󵄨󵄨󵄨

𝑟

𝑑𝑦𝑗)

1/𝑟

,

M𝜎,𝐿 log𝐿 (
⃗𝑓) (𝑥)

= sup
𝑄∋𝑥

∞

∑

𝑘=0

2
−𝑘𝑛𝑙

∏

𝑗∈𝜎

󵄩󵄩󵄩󵄩󵄩
𝑓𝑗

󵄩󵄩󵄩󵄩󵄩𝐿 log𝐿,𝑄∏
𝑗∈𝜎󸀠

󵄩󵄩󵄩󵄩󵄩
𝑓𝑗

󵄩󵄩󵄩󵄩󵄩𝐿 log𝐿,2𝑘𝑄.

(23)

We have that

M𝜎 (
⃗𝑓) (𝑥) ≤ M𝜎,𝐿 log𝐿 (

⃗𝑓) (𝑥) ≤ 𝐶M𝜎,𝑟 (
⃗𝑓) (𝑥) . (24)

The following statements are our main results.

Theorem6. Let 0 < 𝑘 < 1, 1 ≤ 𝑝1, . . . , 𝑝𝑚 < ∞, 1/𝑝 = 1/𝑝1+

⋅ ⋅ ⋅ + 1/𝑝𝑚, and 𝜔⃗ ∈ ∏
𝑚

𝑖=1
𝐴𝑝
𝑖

. Let 1 ≤ 𝑗 < 𝑚, 𝜎 = {𝑖1, . . . , 𝑖𝑗} ⊂
{1, . . . , 𝑚}, and for some 𝑟 > 1 (𝑟 depending only on 𝜔⃗), if all
𝑝𝑖 > 1, thenM𝑟 andM𝜎,𝑟 are bounded from 𝐿

𝑝
1
,𝑘
(𝜔1) × ⋅ ⋅ ⋅ ×

𝐿
𝑝
𝑚
,𝑘
(𝜔𝑚) to 𝐿𝑝,𝑘(]𝜔⃗), and or else, bounded from 𝐿

𝑝
1
,𝑘
(𝜔1) ×

⋅ ⋅ ⋅ × 𝐿
𝑝
𝑚
,𝑘
(𝜔𝑚) to𝑊𝐿

𝑝,𝑘
(]𝜔⃗).
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Corollary 7. Under the same assumptions as in Theorem 6.
M,M𝐿 log𝐿,M𝜎,M𝜎,𝐿 log𝐿 are bounded from 𝐿

𝑝
1
,𝑘
(𝜔1) × ⋅ ⋅ ⋅ ×

𝐿
𝑝
𝑚
,𝑘
(𝜔𝑚) to 𝐿𝑝,𝑘(]𝜔⃗) or𝑊𝐿

𝑝,𝑘
(]𝜔⃗).

Theorem 8. Assume that 𝑇 is a multilinear operator in 𝑚-
𝐺𝐶𝑍𝑂(𝐴, 𝑠, 𝜂, 𝜖) with kernel 𝐾 satisfying Assumption 4. Let
0 < 𝑘 < 1, 1/𝑚 ≤ 𝑝 < ∞, 1 ≤ 𝑝𝑗 ≤ ∞ with 1/𝑝 =

1/𝑝1 + ⋅ ⋅ ⋅ + 1/𝑝𝑚, and 𝜔𝑗 ∈ 𝐴𝑝
𝑗

, 𝑗 = 1, . . . , 𝑚. Then we have
the following:

(i) when all 𝑝𝑗 > 1, there exists a constant 𝐶 such that

󵄩󵄩󵄩󵄩󵄩
𝑇( ⃗𝑓)

󵄩󵄩󵄩󵄩󵄩𝐿𝑝,𝑘(]
𝜔⃗
)
≤ 𝐶

󵄩󵄩󵄩󵄩󵄩
𝑓𝑗

󵄩󵄩󵄩󵄩󵄩𝐿
𝑝𝑗,𝑘(𝜔

𝑗
)
, (25)

(ii) when some 𝑝𝑗 = 1, there exists a constant 𝐶 such that

󵄩󵄩󵄩󵄩󵄩
𝑇( ⃗𝑓)

󵄩󵄩󵄩󵄩󵄩𝑊𝐿𝑝,𝑘(]
𝜔⃗
)
≤ 𝐶

󵄩󵄩󵄩󵄩󵄩
𝑓𝑗

󵄩󵄩󵄩󵄩󵄩𝐿
𝑝𝑗,𝑘(𝜔

𝑗
)
, (26)

where ]𝜔⃗ = ∏
𝑚

𝑗=1
𝜔
𝑝/𝑝
𝑗

𝑗
.

Theorem 9. Assume that 𝑇 is a multilinear operator in 𝑚-
𝐺𝐶𝑍𝑂(𝐴, 𝑠, 𝜂, 𝜖) with kernel 𝐾 satisfying Assumption 4. Let
0 < 𝑘 < 1, 𝜔⃗ = (𝜔1, . . . , 𝜔𝑚) ∈ ∏

𝑚

𝑗=1
𝐴𝑝
𝑗

, and ]𝜔⃗ = ∏
𝑚

𝑗=1
𝜔
𝑝/𝑝
𝑗

𝑗

with 1/𝑝 = 1/𝑝1 + ⋅ ⋅ ⋅ + 𝑝𝑚 and 1 < 𝑝𝑗 < ∞, 𝑗 = 1, . . . , 𝑚 and
𝑏⃗ = (𝑏1, . . . , 𝑏𝑚) ∈ 𝐵𝑀𝑂

𝑚. Then, there exists a constant𝐶 such
that

󵄩󵄩󵄩󵄩󵄩
𝑇
Σ𝑏⃗
( ⃗𝑓)

󵄩󵄩󵄩󵄩󵄩𝐿𝑝,𝑘(]
𝜔⃗
)
≤ 𝐶

󵄩󵄩󵄩󵄩󵄩
𝑓𝑗

󵄩󵄩󵄩󵄩󵄩𝐿
𝑝𝑗,𝑘(𝜔

𝑗
)
,

󵄩󵄩󵄩󵄩󵄩
𝑇
Π𝑏⃗
( ⃗𝑓)

󵄩󵄩󵄩󵄩󵄩𝐿𝑝,𝑘(]
𝜔⃗
)
≤ 𝐶

󵄩󵄩󵄩󵄩󵄩
𝑓𝑗

󵄩󵄩󵄩󵄩󵄩𝐿
𝑝𝑗,𝑘(𝜔

𝑗
)
.

(27)

Following [2], for positive integers 𝑚 and 𝑗 with 1 ≤

𝑗 ≤ 𝑚, we denote by 𝐶𝑚

𝑗
the family of all finite subsets 𝜎 =

{𝜎(1), . . . , 𝜎(𝑗)} of {1, . . . , 𝑚} of 𝑗 different elements, where
we always take 𝜎(𝑙) < 𝜎(𝑘) if 𝑙 < 𝑘. For any 𝜎 ∈ 𝐶

𝑚

𝑗
, the

associated complementary sequence 𝜎󸀠 ∈ 𝐶
𝑚

𝑚−𝑗
is given by

𝜎
󸀠
= {1, . . . , 𝑚} \ 𝜎 with the convention 𝐶𝑚

0
= 0. Given an

𝑚-tuple of functions 𝑏⃗ and 𝜎 ∈ 𝐶
𝑚

𝑗
, we also use the notation

𝑏⃗𝜎 for the 𝑗-tuple obtained from 𝑏⃗ given by (𝑏𝜎(1), . . . , 𝜎(𝑗)).
Similar to𝑇

Π𝑏⃗
, we define for𝑇 in𝑚-𝐺𝐶𝑍𝑂(𝐴, 𝑠, 𝜂, 𝜖), 𝜎 ∈ 𝐶𝑚

𝑗

and 𝑏⃗𝜎 = (𝑏𝜎(1), . . . , 𝑏𝜎(𝑗)) in 𝐵𝑀𝑂
𝑗, the 𝑗th order iterated

commutator

𝑇
Π𝑏⃗
𝜎

( ⃗𝑓) = [𝑏𝜎(1), [𝑏𝜎(2), . . . , [𝑏𝜎(𝑗), 𝑇]𝜎(𝑗)
. . .]

𝜎(2)

]

𝜎(1)

( ⃗𝑓) ;

(28)

that is, formally

𝑇
Π𝑏⃗
𝜎

( ⃗𝑓) (𝑥) ∫
(R𝑛)
𝑚

(

𝑗

∏

𝑖=1

(𝑏𝜎(𝑖) (𝑥) − 𝑏𝜎(𝑖) (𝑦𝜎(𝑖))))

× 𝐾 (𝑥, 𝑦1, . . . , 𝑦𝑚)

𝑚

∏

𝑖=1

𝑓𝑖 (𝑦𝑖) 𝑑 ⃗𝑦.

(29)

Clearly,𝑇
Π𝑏⃗
𝜎

= 𝑇
Π𝑏⃗

when𝜎 = {1, . . . , 𝑚}, and𝑇
Π𝑏⃗
𝜎

= 𝑇
𝑗

𝑏
𝑗

when
𝜎 = {𝑗}. We have the following general forms of Theorem 9
without the proof.

Theorem 10. Assume that 𝑇 is a multilinear operator in 𝑚-
𝐺𝐶𝑍𝑂(𝐴, 𝑠, 𝜂, 𝜖) with kernel 𝐾 satisfying Assumption 4. Let
1 ≤ 𝑗 ≤ 𝑚, 𝜎 ∈ 𝐶

𝑚

𝑗
, 𝜔⃗ = (𝜔1, . . . , 𝜔𝑚) ∈ ∏

𝑚

𝑖=1
𝐴𝑝
𝑖

, and
]𝜔⃗ = ∏

𝑚

𝑖=1
𝜔
𝑝/𝑝
𝑖

𝑖
with 1/𝑝 = 1/𝑝1 + ⋅ ⋅ ⋅ + 𝑝𝑚 and 1 < 𝑝𝑖 <

∞, 𝑖 = 1, . . . , 𝑚 and 𝑏⃗𝜎 = (𝑏𝜎(1), . . . , 𝑏𝜎(𝑗)) ∈ 𝐵𝑀𝑂
𝑗. Then,

there exists a constant 𝐶 such that

󵄩󵄩󵄩󵄩󵄩
𝑇
Π𝑏⃗
𝜎

( ⃗𝑓)
󵄩󵄩󵄩󵄩󵄩𝐿𝑝,𝑘(]

𝜔⃗
)
≤ 𝐶

𝑗

∏

𝑖=1

󵄩󵄩󵄩󵄩𝑏𝜎(𝑖)
󵄩󵄩󵄩󵄩

𝑚

∏

𝑖=1

󵄩󵄩󵄩󵄩𝑓𝑖
󵄩󵄩󵄩󵄩𝐿𝑝𝑖,𝑘(𝜔

𝑖
)
. (30)

2. Some Definitions and Results

In this section, we introduce some definitions and results
used be later on.

Definition 11 (𝐴𝑝 weights). A weight 𝜔 is a nonnegative,
locally integrable function on R𝑛. Let 1 < 𝑝 < ∞; we call
that a weight function 𝜔 that belongs to the class 𝐴𝑝, if there
is a constant 𝐶 such that, for any cube 𝑄,

(
1

|𝑄|
∫
𝑄

𝜔 (𝑥) 𝑑𝑥)(
1

|𝑄|
∫
𝑄

𝜔(𝑥)
1−𝑝
󸀠

𝑑𝑥)

𝑝−1

≤ 𝐶, (31)

and 𝜔 belongs to the class 𝐴1, if there is a constant 𝐶 such
that, for any cube 𝑄,

1

|𝑄|
∫
𝑄

𝜔 (𝑥) 𝑑𝑥 ≤ 𝐶 inf
𝑥∈𝑄

𝜔 (𝑥) . (32)

We denote 𝐴∞ = ∪𝑝>1𝐴𝑝.

Definition 12 (see [7]). For𝑚 exponents 𝑝1, . . . , 𝑝𝑚 ∈ [1,∞),
we often write 𝑝 for the number given by 𝑝 = ∑

𝑚

𝑗=1
𝑝𝑗 and

denote 𝑃⃗ by the vector 𝑃⃗ = (𝑝1, . . . , 𝑝𝑚). A multiple weight
𝜔⃗ = (𝜔1, . . . , 𝜔𝑚) is said to satisfy the 𝐴

𝑃⃗
condition if for

]𝜔⃗ =
𝑚

∏

𝑗=1

𝜔
𝑝/𝑝
𝑗 , (33)

it holds that

sup
𝑄

(
1

|𝑄|
∫
𝑄

]𝜔⃗ (𝑥) 𝑑𝑥)
1/𝑝 𝑚

∏

𝑗=1

(
1

|𝑄|
∫
𝑄

𝜔𝑗(𝑥)
1−𝑝
󸀠

𝑗𝑑𝑥)

1/𝑝
󸀠

𝑗

< ∞,

(34)

when 𝑝𝑗 = 1, ((1/|𝑄|) ∫
𝑄
𝜔𝑗(𝑥)

1−𝑝
󸀠

𝑗𝑑𝑥)

1/𝑝
󸀠

𝑗 is understood as
(inf𝑥𝜔(𝑥))

−1.
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As remarked in [7],∏𝑚

𝑗=1
𝐴𝑝
𝑗

is strictly contained in 𝐴
𝑃⃗
;

moreover, in general 𝜔⃗ ∈ 𝐴
𝑃⃗
does not imply𝜔𝑗 ∈ 𝐿

1

loc for any
𝑗, but instead

𝜔⃗ ∈ 𝐴
𝑃⃗
⇐⇒

{

{

{

]𝜔⃗ ∈ 𝐴𝑚𝑝,

𝜔
1−𝑝
󸀠

𝑗

𝑗
∈ 𝐴𝑚𝑝󸀠

𝑗

, 𝑗 = 1, . . . , 𝑚,
(35)

where the condition 𝜔
1−𝑝
󸀠

𝑗

𝑗
∈ 𝐴𝑚𝑝󸀠

𝑗

in the case 𝑝𝑗 = 1 is
understood as 𝜔1/𝑚

𝑗
∈ 𝐴1.

Definition 13 (see [10]). Let 1 ≤ 𝑝 < ∞, 0 < 𝑘 < 1, and 𝜔 be a
weight function on R𝑛. The weighted Morrey space is define
by

𝐿
𝑝,𝑘
(𝜔) = {𝑓 ∈ 𝐿

𝑝

loc :
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝,𝑘(𝜔)

< ∞} , (36)

where

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝,𝑘(𝜔)

= sup
𝑄

(
1

𝜔(𝑄)
𝑘
∫
𝑄

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨

𝑝
𝜔 (𝑥))

1/𝑝

. (37)

The weighted weak Morrey space is defined by

𝑊𝐿
𝑝,𝑘
(𝜔) = {𝑓 measurable : 󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝑊𝐿𝑝,𝑘(𝜔)
< ∞} , (38)

where

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑊𝐿𝑝,𝑘(𝜔)

= sup
𝑄

sup
𝜆>0

𝜆

𝜔(𝑄)
𝑘/𝑝

𝜔({𝑥 ∈ 𝑄 :
󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨 (𝑥) > 𝜆})

1/𝑝
.

(39)

We say that a weight 𝜔 satisfies the doubling condition,
denot ing 𝜔 ∈ Δ 2, if there is a constant 𝐶 > 0 such that
𝜔(2𝑄) ≤ 𝐶𝜔(𝑄) holds for any cube 𝑄. If 𝜔 ∈ 𝐴𝑝 with
1 ≤ 𝑝 < ∞, we know that 𝜔(𝜆𝑄) ≤ 𝜆

𝑛𝑝
[𝜔]𝐴

𝑝

𝜔(𝑄) for all
𝜆 > 1, then 𝜔 ∈ Δ 2.

Lemma 14 (see [10]). Suppose 𝜔 ∈ Δ 2, then there exists a
constant 𝐷 > 1 such that

𝜔 (2𝑄) ≥ 𝐷𝜔 (𝑄) , (40)

for any cube.

Lemma 15 (see [11]). If𝜔𝑗 ∈ 𝐴∞, then for any cube𝑄, we have

∫
𝑄

𝑚

∏

𝑗=1

𝜔
𝜃
𝑗

𝑗
(𝑥) 𝑑𝑥 ≥

𝑚

∏

𝑗=1

(

∫
𝑄
𝜔𝑗 (𝑥) 𝑑𝑥

[𝜔𝑗]∞

)

𝜃
𝑗

, (41)

where ∑𝑚

𝑗=1
𝜃𝑗 = 1, 0 ≤ 𝜃𝑗 ≤ 1.

Lemma 16 (see [12]). Suppose 𝜔 ∈ 𝐴∞, then ‖𝑏‖𝐵𝑀𝑂(𝜔) ≈

‖𝑏‖𝐵𝑀𝑂. Here

𝐵𝑀𝑂 (𝜔) = {𝑏 : ‖𝑏‖𝐵𝑀𝑂(𝜔)

= sup
𝑄

1

𝜔 (𝑄)
∫
𝑄

󵄨󵄨󵄨󵄨𝑏 (𝑥) − 𝑏𝑄,𝜔
󵄨󵄨󵄨󵄨 𝜔 (𝑥) 𝑑𝑥 < ∞} ,

𝑏𝑄,𝜔 =
1

𝜔 (𝑄)
∫
𝑄

𝑏 (𝑥) 𝜔 (𝑥) 𝑑𝑥.

(42)

From the fact |𝑏2𝑗𝑄 − 𝑏𝑄| ≤ 𝐶𝑗‖𝑏‖BMO and Lemma 16, we
can deduce that |𝑏2𝑗𝑄,𝜔 − 𝑏𝑄,𝜔| ≤ 𝐶𝑗‖𝑏‖BMO.

Lemma 17 (see [8]). Assume that 𝑇 is a multilinear operator
in 𝑚-𝐺𝐶𝑍𝑂(𝐴, 𝑠, 𝜂, 𝜖) with kernel 𝐾 satisfying Assumption 4.
Let 1/𝑚 ≤ 𝑝 < ∞, 1 ≤ 𝑝𝑗 ≤ ∞ with 1/𝑝 = 1/𝑝1 + ⋅ ⋅ ⋅ + 1/𝑝𝑚
and 𝜔𝑗 ∈ 𝐴𝑝

𝑗

, 𝑗 = 1, . . . , 𝑚. Then we have the following:

(i) 𝑇 extends to a bounded operators from 𝐿
𝑝
1(𝜔1) × ⋅ ⋅ ⋅ ×

𝐿
𝑝
𝑚(𝜔𝑚) to 𝐿𝑝(]𝜔⃗) if all the exponents 𝑝𝑗 are strictly

greater than 1;
(ii) 𝑇 extends to a bounded operators from 𝐿

𝑝
1(𝜔1) × ⋅ ⋅ ⋅ ×

𝐿
𝑝
𝑚(𝜔𝑚) to 𝐿𝑝,∞(]𝜔⃗) if some exponents 𝑝𝑗 are equal to

1.

In either case, the norm of 𝑇 is bounded by 𝐶(𝐴 +

‖𝑇‖𝐿𝑞1×⋅⋅⋅×𝑞
𝑚

→ 𝐿
𝑞
), where 𝐶 is a positive constant depending

on 𝐴, 𝑠, 𝜂, 𝜖, and [𝑤]𝐴
𝑃⃗

.

Lemma 18 (see [6]). Assume that 𝑇 is a multilinear operator
in 𝑚-𝐺𝐶𝑍𝑂(𝐴, 𝑠, 𝜂, 𝜖) with kernel 𝐾 satisfying Assumption 4.
Let 𝑏⃗ ∈ 𝐵𝑀𝑂

𝑚 with ‖𝑏⃗‖ = 1 and 1/𝑝 = 1/𝑝1 + ⋅ ⋅ ⋅ 1/𝑝𝑚 with
1 < 𝑝𝑗 < ∞, 𝑗 = 1, . . . , 𝑚. Then we have the following:

(i) there exists a constant 𝐶 such that

󵄩󵄩󵄩󵄩󵄩
𝑇
Σ𝑏⃗
( ⃗𝑓)

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(]
𝜔⃗
)
≤ 𝐶

𝑚

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑓𝑗

󵄩󵄩󵄩󵄩󵄩𝐿
𝑝𝑗 (𝑀𝜔

𝑗
)
; (43)

(ii) if 𝜔𝑗 ∈ 𝐴𝑝
𝑗

, then there exists a constant 𝐶 such that

󵄩󵄩󵄩󵄩󵄩
𝑇
Σ𝑏⃗
( ⃗𝑓)

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(]
𝜔⃗
)
≤ 𝐶

𝑚

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑓𝑗

󵄩󵄩󵄩󵄩󵄩𝐿
𝑝𝑗 (𝜔
𝑗
)
, (44)

where ]𝜔⃗ = ∏
𝑚

𝑗=1
𝜔
𝑝/𝑝
𝑗

𝑗
.

Lemma 19 (see [9]). Assume that 𝑇 is a multilinear operator
in 𝑚-𝐺𝐶𝑍𝑂(𝐴, 𝑠, 𝜂, 𝜖) with kernel 𝐾 satisfying Assumption 4.
Let 𝑏⃗ ∈ 𝐵𝑀𝑂

𝑚 with ‖𝑏⃗‖ = 1 and 1/𝑝 = 1/𝑝1 + ⋅ ⋅ ⋅ 1/𝑝𝑚 with
1 < 𝑝𝑗 < ∞, 𝑗 = 1, . . . , 𝑚. If 𝜔𝑗 ∈ 𝐴 𝑃⃗

with 𝑃⃗ = (𝑝1, . . . , 𝑝𝑚),
then there exists a constant 𝐶 such that

󵄩󵄩󵄩󵄩󵄩
𝑇
Π𝑏⃗
( ⃗𝑓)

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(]
𝜔⃗
)
≤ 𝐶

𝑚

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑓𝑗

󵄩󵄩󵄩󵄩󵄩𝐿
𝑝𝑗 (𝜔
𝑗
)
, (45)

where ]𝜔⃗ = ∏
𝑚

𝑗=1
𝜔
𝑝/𝑝
𝑗

𝑗
.
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3. Proof of Theorems

Proof of Theorem 6. Here, we only prove the boundedness of
M𝜎,𝑟. From [9], there exists some 𝑡 ∈ (0, 1) only depend on 𝜔⃗
such that

M ( ⃗𝑓) (𝑥) ≤ 𝐶

𝑚

∏

𝑗=1

{𝑀
𝑐

]
𝜔⃗

((
󵄨󵄨󵄨󵄨󵄨
𝑓𝑗

󵄨󵄨󵄨󵄨󵄨

𝑝
𝑗

𝜔𝑗/]𝜔⃗)
𝑡

) (𝑥)}

1/𝑡𝑝
𝑗

, (46)

where𝑀𝑐

]
𝜔⃗

is the weighted centered maximal operator. Then
by the Hölder inequality,

󵄩󵄩󵄩󵄩󵄩
M𝜎,𝑟(

⃗𝑓)(𝑥)
󵄩󵄩󵄩󵄩󵄩𝐿𝑝,𝑘(]

𝜔⃗
)

≤ 𝐶

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑚

∏

𝑖=1

{𝑀]
𝜔⃗

([
󵄨󵄨󵄨󵄨𝑓𝑖
󵄨󵄨󵄨󵄨

𝑝
𝑖

𝜔𝑖/]𝜔⃗]
𝑡

)}

1/𝑡𝑝
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝,𝑘(]
𝜔⃗
)

≤ 𝐶

𝑚

∏

𝑖=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

{𝑀]
𝜔⃗

([
󵄨󵄨󵄨󵄨𝑓𝑖
󵄨󵄨󵄨󵄨

𝑝
𝑖

𝜔𝑖/]𝜔⃗]
𝑡

)}

1/𝑡𝑝
𝑖
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝𝑖,𝑘(]

𝜔⃗
)

≤ 𝐶

𝑚

∏

𝑖=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

{𝑀]
𝜔⃗

([
󵄨󵄨󵄨󵄨𝑓𝑖
󵄨󵄨󵄨󵄨

𝑝
𝑖

𝜔𝑖/]𝜔⃗]
𝑡

)}

1/𝑡𝑝
𝑖
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1/𝑡𝑝
𝑖

𝐿1/𝑡,𝑘(]
𝜔⃗
)

≤ 𝐶

𝑚

∏

𝑖=1

󵄩󵄩󵄩󵄩󵄩󵄩
(
󵄨󵄨󵄨󵄨𝑓𝑖
󵄨󵄨󵄨󵄨

𝑝
𝑖

𝜔𝑖/]𝜔⃗)
𝑡󵄩󵄩󵄩󵄩󵄩󵄩

1/𝑡𝑝
𝑖

𝐿1/𝑡,𝑘(]
𝜔⃗
)

≤ 𝐶

𝑚

∏

𝑖=1

󵄩󵄩󵄩󵄩𝑓𝑖
󵄩󵄩󵄩󵄩𝐿𝑝𝑖,𝑘(𝜔

𝑖
)
.

(47)

The weak version is a very similar process by the Hölder
inequality for the weak spaces. We omit the details.

Proof of Theorem 8. For any 𝐵 = 𝐵(𝑥𝐵, 𝑟𝐵) ⊂ R𝑛, we split 𝑓𝑖 =
𝑓
0

𝑖
+𝑓

∞

𝑖
where 𝑓0

𝑖
= 𝑓𝑖𝜒𝐵∗, 𝑖 = 1, 2, . . . , 𝑚, and 𝐵∗ = 8𝐵; then

𝑚

∏

𝑖=1

𝑓𝑖 (𝑦𝑖) =

𝑚

∏

𝑖=1

(𝑓
0

𝑖
(𝑦𝑖) + 𝑓

∞

𝑖
(𝑦𝑖))

= ∑

𝛼
1
,...,𝛼
𝑚
∈{0,∞}

𝑚

∏

𝑖=1

𝑓
𝛼
𝑖

𝑖
(𝑦𝑖)

=

𝑚

∏

𝑖=1

𝑓
0

𝑖
(𝑦𝑖) +

󸀠

∑𝑓
𝛼
1

1
(𝑦1) ⋅ ⋅ ⋅ 𝑓

𝛼
𝑚

𝑚
(𝑦𝑚) ,

(48)

where each term of∑󸀠 contains at least one 𝛼𝑖 ̸= 0. Write then

1

]𝜔⃗(𝐵)
𝑘/𝑝

(∫
𝐵

󵄨󵄨󵄨󵄨𝑇 (𝑓1, . . . , 𝑓𝑚) (𝑥)
󵄨󵄨󵄨󵄨

𝑝
]𝜔⃗ (𝑥) 𝑑𝑥)

1/𝑝

≤
1

]𝜔⃗(𝐵)
𝑘/𝑝

(∫
𝐵

󵄨󵄨󵄨󵄨󵄨
𝑇 (𝑓

0

1
, . . . , 𝑓

0

𝑚
) (𝑥)

󵄨󵄨󵄨󵄨󵄨

𝑝

]𝜔⃗ (𝑥) 𝑑𝑥)
1/𝑝

+

󸀠

∑
1

]𝜔⃗(𝐵)
𝑘/𝑝

(∫
𝐵

󵄨󵄨󵄨󵄨𝑇 (𝑓
𝛼
1

1
, . . . , 𝑓

𝛼
𝑚

𝑚
) (𝑥)

󵄨󵄨󵄨󵄨

𝑝
]𝜔⃗ (𝑥) 𝑑𝑥)

1/𝑝

= 𝐼
0,...,0

+

󸀠

∑𝐼
𝛼
1
,...,𝛼
𝑚 .

(49)

From Definition 12, Lemma 17, we can get

𝐼
0,...,0

≤
𝐶

]𝜔⃗(𝐵)
𝑘/𝑝

𝑚

∏

𝑖=1

(∫
𝐵∗

󵄨󵄨󵄨󵄨󵄨
𝑓
0

𝑖
(𝑥)

󵄨󵄨󵄨󵄨󵄨

𝑝
𝑖

𝜔𝑖 (𝑥) 𝑑𝑥)

1/𝑝
𝑖

≤ 𝐶
∏

𝑚

𝑖=1
𝜔𝑖(𝐵

∗
)
𝑘/𝑝
𝑖

]𝜔⃗(𝐵)
𝑘/𝑝

𝑚

∏

𝑖=1

󵄩󵄩󵄩󵄩𝑓𝑖
󵄩󵄩󵄩󵄩𝐿𝑝,𝑘(𝜔

𝑖
)

≤ 𝐶

𝑚

∏

𝑖=1

󵄩󵄩󵄩󵄩𝑓𝑖
󵄩󵄩󵄩󵄩𝐿𝑝,𝑘(𝜔

𝑖
)
.

(50)

The last inequality holds by Lemma 15. For∑󸀠
𝐼
𝛼
1
,...,𝛼
𝑚 , we first

consider the casewhen𝛼1 = ⋅ ⋅ ⋅ = 𝛼𝑚 = ∞. Taking 𝑡 = (2𝑟𝐵)
𝑠,

since 𝑥 ∈ 𝐵 and 𝑦𝑖 ∈ R𝑛
\ 8𝐵, we get

󵄨󵄨󵄨󵄨𝑦𝑖 − 𝑥
󵄨󵄨󵄨󵄨 > 7𝑟𝐵 > 2𝑡

1/𝑠
, for all 𝑗 = 1, . . . , 𝑚; (51)

hence, ℎ(|𝑦𝑖 − 𝑥|/𝑡
1/𝑠
) = 0. By Assumption 4, we have that

󵄨󵄨󵄨󵄨󵄨
𝐾 (𝑥, 𝑦1, . . . , 𝑦𝑚) − 𝐾

(0)

𝑡
(𝑥, 𝑦1, . . . , 𝑦𝑚)

󵄨󵄨󵄨󵄨󵄨

≤
𝐴𝑡

𝜖/𝑡

(∑
𝑚

𝑘=1

󵄨󵄨󵄨󵄨𝑥 − 𝑦𝑘
󵄨󵄨󵄨󵄨)
𝑚𝑛+𝜖

≤
𝐴

(∑
𝑚

𝑘=1

󵄨󵄨󵄨󵄨𝑥 − 𝑦𝑘
󵄨󵄨󵄨󵄨)
𝑚𝑛 .

(52)

For any 𝑥 ∈ 𝐵, then by Assumption 4,
󵄨󵄨󵄨󵄨𝑇 (𝑓

∞

1
, . . . , 𝑓

∞

𝑚
) (𝑥)

󵄨󵄨󵄨󵄨

≤ ∫
(R𝑛\𝐵∗)

𝑚

󵄨󵄨󵄨󵄨󵄨
𝐾 (𝑥, 𝑦1, . . . , 𝑦𝑚) − 𝐾

(0)

𝑡
(𝑥, 𝑦1, . . . , 𝑦𝑚)

󵄨󵄨󵄨󵄨󵄨

×

𝑚

∏

𝑖=1

󵄨󵄨󵄨󵄨𝑓
∞

𝑖
(𝑦𝑖)

󵄨󵄨󵄨󵄨 𝑑
⃗𝑦

+ ∫
(R𝑛\𝐵∗)

𝑚

󵄨󵄨󵄨󵄨󵄨
𝐾
(0)

𝑡
(𝑥, 𝑦1, . . . , 𝑦𝑚)

󵄨󵄨󵄨󵄨󵄨

𝑚

∏

𝑖=1

󵄨󵄨󵄨󵄨𝑓
∞

𝑖
(𝑦𝑖)

󵄨󵄨󵄨󵄨 𝑑
⃗𝑦

≤ 𝐶∫
(R𝑛\𝐵∗)

𝑚

𝐴

(
󵄨󵄨󵄨󵄨𝑥 − 𝑦1

󵄨󵄨󵄨󵄨 + ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨𝑥 − 𝑦𝑚

󵄨󵄨󵄨󵄨)
𝑚𝑛

×

𝑚

∏

𝑖=1

󵄨󵄨󵄨󵄨𝑓
∞

𝑖
(𝑦𝑖)

󵄨󵄨󵄨󵄨 𝑑
⃗𝑦

≤ 𝐶

∞

∑

𝑙=1

𝑚

∏

𝑖=1

∫
8𝑙+1𝐵\8𝑗𝐵

󵄨󵄨󵄨󵄨𝑓𝑖 (𝑦𝑖)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥 − 𝑦𝑖
󵄨󵄨󵄨󵄨

𝑛 𝑑𝑦𝑖

≤ 𝐶

∞

∑

𝑙=1

𝑚

∏

𝑖=1

1

󵄨󵄨󵄨󵄨8
𝑙+1𝐵

󵄨󵄨󵄨󵄨

(∫
8𝑙+1𝐵

󵄨󵄨󵄨󵄨𝑓𝑖 (𝑦𝑖)
󵄨󵄨󵄨󵄨

𝑝
𝑖

𝜔𝑖 (𝑦𝑖) 𝑑𝑦𝑖)

1/𝑝
𝑖

× (∫
8𝑙+1𝐵

𝜔𝑖(𝑦𝑖)
1−𝑝
󸀠

𝑖
𝑑𝑦𝑖)

1/𝑝
󸀠

𝑖

≤ 𝐶

∞

∑

𝑙=1

𝑚

∏

𝑖=1

𝜔𝑖(8
𝑙+1
𝐵)

𝑘/𝑝
𝑖

󵄨󵄨󵄨󵄨8
𝑙+1𝐵

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑓𝑖
󵄩󵄩󵄩󵄩𝐿𝑝𝑖,𝑘(𝜔

𝑖
)

󵄨󵄨󵄨󵄨󵄨
8
𝑙+1
𝐵
󵄨󵄨󵄨󵄨󵄨

𝜔𝑖(8
𝑙+1𝐵)

1/𝑝
𝑖

≤ 𝐶

∞

∑

𝑙=1

]𝜔⃗(8
𝑙+1
𝐵)

(𝑘−1)/𝑝
𝑚

∏

𝑖=1

󵄩󵄩󵄩󵄩𝑓𝑖
󵄩󵄩󵄩󵄩𝐿𝑝𝑖,𝑘(𝜔

𝑖
)
.

(53)
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Since ]𝜔⃗ ∈ 𝐴𝑚𝑝, then there is a positive 𝛿 such that

]𝜔 (𝐵)

]𝜔 (8
𝑙+1𝐵)

≤ 𝐶(
|𝐵|

󵄨󵄨󵄨󵄨8
𝑙+1𝐵

󵄨󵄨󵄨󵄨

)

𝛿

. (54)

Hence

𝐼
∞,...,∞

≤ ]𝜔⃗(𝐵)
(1−𝑘)/𝑝sup

𝑥∈𝐵

󵄨󵄨󵄨󵄨𝑇 (𝑓
∞

1
, . . . , 𝑓

∞

𝑚
) (𝑥)

󵄨󵄨󵄨󵄨

≤ 𝐶

∞

∑

𝑙=1

(
|𝐵|

󵄨󵄨󵄨󵄨8
𝑙+1𝐵

󵄨󵄨󵄨󵄨

)

𝛿(1−𝑘)/𝑝 𝑚

∏

𝑖=1

󵄩󵄩󵄩󵄩𝑓𝑖
󵄩󵄩󵄩󵄩𝐿𝑝𝑖,𝑘(𝜔

𝑖
)

≤ 𝐶

𝑚

∏

𝑖=1

󵄩󵄩󵄩󵄩𝑓𝑖
󵄩󵄩󵄩󵄩𝐿𝑝𝑖,𝑘(𝜔

𝑖
)
.

(55)

It remains to estimate the terms with 𝛼𝑖
1

= ⋅ ⋅ ⋅ = 𝛼𝑖
𝑗

= 0 for
some {𝑖1, . . . , 𝑖𝑗} ⊂ {1, . . . , 𝑚} and 1 ≤ 𝑗 < 𝑚. We have
󵄨󵄨󵄨󵄨𝑇 (𝑓

𝛼
1

1
, . . . , 𝑓

𝛼
𝑚

𝑚
) (𝑥)

󵄨󵄨󵄨󵄨

≤ ∫
(R𝑛\𝐵∗)

𝑚

󵄨󵄨󵄨󵄨𝐾 (𝑥, 𝑦1, . . . , 𝑦𝑚)

− 𝐾
(0)

𝑡
(𝑥, 𝑦1, . . . , 𝑦𝑚)

󵄨󵄨󵄨󵄨󵄨

𝑚

∏

𝑖=1

󵄨󵄨󵄨󵄨𝑓
𝛼
𝑖

𝑖
(𝑦𝑖)

󵄨󵄨󵄨󵄨 𝑑
⃗𝑦

+ ∫
(R𝑛\𝐵∗)

𝑚

󵄨󵄨󵄨󵄨󵄨
𝐾
(0)

𝑡
(𝑥, 𝑦1, . . . , 𝑦𝑚)

󵄨󵄨󵄨󵄨󵄨

𝑚

∏

𝑖=1

󵄨󵄨󵄨󵄨𝑓
𝛼
𝑖

𝑖
(𝑦𝑖)

󵄨󵄨󵄨󵄨 𝑑
⃗𝑦

≤ 𝐶 ∏

𝑖∈{𝑖1,...,𝑖𝑗}

∫
𝐵∗

󵄨󵄨󵄨󵄨𝑓𝑖 (𝑦𝑖)
󵄨󵄨󵄨󵄨 𝑑𝑦𝑖

×
[
[

[

∫
(R𝑛\𝐵∗)

𝑚−𝑗

𝑡
𝜖/𝑠
∏

𝑖∉{𝑖1 ,...,𝑖𝑗}

󵄨󵄨󵄨󵄨𝑓𝑖 (𝑦𝑖)
󵄨󵄨󵄨󵄨 𝑑𝑦𝑖

(∑
𝑖∉{𝑖1 ,...,𝑖𝑗}

󵄨󵄨󵄨󵄨𝑥 − 𝑦𝑖
󵄨󵄨󵄨󵄨)

𝑚𝑛+𝜖

+ ∫
(R𝑛\𝐵∗)

𝑚−𝑗

∏
𝑖∉{𝑖1 ,...,𝑖𝑗}

󵄨󵄨󵄨󵄨𝑓𝑖 (𝑦𝑖)
󵄨󵄨󵄨󵄨 𝑑𝑦𝑖

(∑
𝑖∉{𝑖1 ,...,𝑖𝑗}

󵄨󵄨󵄨󵄨𝑥 − 𝑦𝑖
󵄨󵄨󵄨󵄨)

𝑚𝑛

]
]

]

≤ 𝐶
1

󵄨󵄨󵄨󵄨8
𝑗+1𝐵

󵄨󵄨󵄨󵄨

𝑚 ∏

𝑖∈{𝑖1,...,𝑖𝑗}

∫
𝐵∗

󵄨󵄨󵄨󵄨𝑓𝑖 (𝑦𝑖)
󵄨󵄨󵄨󵄨 𝑑𝑦𝑖

×

∞

∑

𝑙=1

∏

𝑖∉{𝑖1 ,...,𝑖𝑗}

∫
8𝑗+1𝐵\8𝑗𝐵

󵄨󵄨󵄨󵄨𝑓𝑖 (𝑦𝑖)
󵄨󵄨󵄨󵄨 𝑑𝑦𝑖

≤ 𝐶

∞

∑

𝑙=1

]𝜔⃗(8
𝑙+1
𝐵)

(𝑘−1)/𝑝
𝑚

∏

𝑖=1

󵄩󵄩󵄩󵄩𝑓𝑖
󵄩󵄩󵄩󵄩𝐿𝑝𝑖,𝑘(𝜔

𝑖
)
.

(56)

Therefore, we also have

𝐼
𝛼
1
,...,𝛼
𝑚 ≤ 𝐶

𝑚

∏

𝑖=1

󵄩󵄩󵄩󵄩𝑓𝑖
󵄩󵄩󵄩󵄩𝐿𝑝𝑖,𝑘(𝜔

𝑖
)
. (57)

Combining the above estimates and then taking the super-
mum over all balls 𝐵 inR𝑛, we have proved the previous part
of Theorem 8.

Next, we turn to complete the proof of the weak inequal-
ity. For any 𝜆 > 0, we can write

]𝜔⃗({𝑥 ∈ 𝐵 :
󵄨󵄨󵄨󵄨𝑇 (𝑓1, . . . , 𝑓𝑚) (𝑥)

󵄨󵄨󵄨󵄨 > 𝜆})
1/𝑝

≤ ]𝜔⃗({𝑥 ∈ 𝐵 :
󵄨󵄨󵄨󵄨𝑇 (𝑓

∞

1
, . . . , 𝑓

∞

𝑚
) (𝑥)

󵄨󵄨󵄨󵄨 > 𝜆})
1/𝑝

+

󸀠

∑ ]𝜔⃗({𝑥 ∈ 𝐵 :
󵄨󵄨󵄨󵄨𝑇 (𝑓

𝛼
1

1
, . . . , 𝑓

𝛼
𝑚

𝑚
) (𝑥)

󵄨󵄨󵄨󵄨 > 𝜆})
1/𝑝

= 𝐼𝐼
0,...,0

+

󸀠

∑𝐼𝐼
𝛼
1
,...,𝛼
𝑚 .

(58)

By Lemmas 17 and 15, we can easily check that

𝐼𝐼
0,...,0

≤
𝐶

𝜆

𝑚

∏

𝑖=1

(∫
𝐵∗
𝑓
0

𝑖
(𝑦𝑖)

𝑝
𝑖

𝜔𝑖 (𝑦𝑖) 𝑑𝑦𝑖)

1/𝑝
𝑖

≤
𝐶]𝜔⃗(𝐵)

𝑘/𝑝

𝜆

𝑚

∏

𝑖=1

󵄩󵄩󵄩󵄩𝑓𝑖
󵄩󵄩󵄩󵄩𝐿𝑝𝑖,𝑘(𝜔

𝑖
)
.

(59)

From the proof of (53) and (56), we have the following
pointwise estimate:

󵄨󵄨󵄨󵄨𝑇 (𝑓
𝛼
1

1
, . . . , 𝑓

𝛼
𝑚

𝑚
) (𝑥)

󵄨󵄨󵄨󵄨 ≤ 𝐶

∞

∑

𝑙=1

𝑚

∏

𝑖=1

1

󵄨󵄨󵄨󵄨8
𝑙+1𝐵

󵄨󵄨󵄨󵄨

∫
8𝑙+1𝐵

󵄨󵄨󵄨󵄨𝑓𝑖 (𝑦𝑖)
󵄨󵄨󵄨󵄨 𝑑𝑦𝑖.

(60)

Since at least one 𝑝𝑖 = 1, we can assume that {𝑖1, . . . , 𝑖𝑗} ⊂
{1, . . . , 𝑚} such that 𝑝𝑖

1

= ⋅ ⋅ ⋅ = 𝑝𝑖
𝑗

= 1 and others greater
than 1. Then,

󵄨󵄨󵄨󵄨𝑇 (𝑓
𝛼
1

1
, . . . , 𝑓

𝛼
𝑚

𝑚
) (𝑥)

󵄨󵄨󵄨󵄨

≤ 𝐶

∞

∑

𝑙=1

∏

𝑖∈{𝑖1 ,...,𝑖𝑗}

1

󵄨󵄨󵄨󵄨8
𝑙+1𝐵

󵄨󵄨󵄨󵄨

∫
8𝑙+1𝐵

󵄨󵄨󵄨󵄨𝑓𝑖 (𝑦𝑖)
󵄨󵄨󵄨󵄨 𝜔𝑖 (𝑦𝑖) 𝑑𝑦𝑖

× ( inf
𝑦
𝑖
∈8𝑙+1𝐵

𝜔𝑖 (𝑦𝑖))

−1

× ∏

𝑖∉{𝑖1 ,...,𝑖𝑗}

1

󵄨󵄨󵄨󵄨8
𝑙+1𝐵

󵄨󵄨󵄨󵄨

(∫
8𝑙+1𝐵

󵄨󵄨󵄨󵄨𝑓𝑖 (𝑦𝑖)
󵄨󵄨󵄨󵄨

𝑝
𝑖

𝜔𝑖 (𝑦𝑖) 𝑑𝑦𝑖)

1/𝑝
𝑖

× (∫
8𝑙+1𝐵

𝜔𝑖(𝑦𝑖)
1−𝑝
󸀠

𝑖
𝑑𝑦𝑖)

1/𝑝
󸀠

𝑖

≤
𝐶

]𝜔⃗(𝐵)
(1−𝑘)/𝑝

𝑚

∏

𝑖=1

󵄩󵄩󵄩󵄩𝑓𝑖
󵄩󵄩󵄩󵄩𝐿𝑝𝑖,𝑘(𝜔

𝑖
)
.

(61)

Suppose that {𝑥 ∈ 𝐵 : |𝑇(𝑓
𝛼
1

1
, . . . , 𝑓

𝛼
𝑚

𝑚
)(𝑥)| > 𝜆} ̸= 0; then we

have that

]𝜔⃗(𝐵)
1/𝑝

≤
𝐶]𝜔⃗(𝐵)

𝑘/𝑝

𝜆

𝑚

∏

𝑖=1

󵄩󵄩󵄩󵄩𝑓𝑖
󵄩󵄩󵄩󵄩𝐿𝑝𝑖,𝑘(𝜔

𝑖
)
; (62)
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therefore,

𝐼𝐼
𝛼
1
,...,𝛼
𝑚 ≤ ]𝜔⃗(𝐵)

1/𝑝
≤
𝐶]𝜔⃗(𝐵)

𝑘/𝑝

𝜆

𝑚

∏

𝑖=1

󵄩󵄩󵄩󵄩𝑓𝑖
󵄩󵄩󵄩󵄩𝐿𝑝𝑖,𝑘(𝜔

𝑖
)
. (63)

Taking the supremum over all balls 𝐵 ⊂ R𝑛 and all 𝜆 > 0, we
complete the proof of Theorem 6.

Proof of Theorem 9. We will show the proof for 𝑇
Π𝑏⃗

because
the proof for 𝑇

Σ𝑏⃗
is very similar but easier. Moreover, for

simplicity of the expansion, we only present the case𝑚 = 2.
For any cube 𝐵, we also split 𝑓𝑖 as 𝑓𝑖 = 𝑓

0

𝑖
+ 𝑓

∞

𝑖
with

𝑓
0

𝑖
= 𝑓𝑖𝜒𝐵⋆ and 𝑓

∞

𝑖
= 𝑓𝑖 − 𝑓

0

𝑖
. Then it remains only to verify

the following inequalities:

𝐼 = (
1

]𝜔⃗(𝑄)
𝑘
∫
𝑄

󵄨󵄨󵄨󵄨󵄨
𝑇Πb (𝑓

0

1
, 𝑓

0

2
) (𝑥)

󵄨󵄨󵄨󵄨󵄨

𝑝

]𝜔⃗ (𝑥) 𝑑𝑥)
1/𝑝

≤ 𝐶

2

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑏𝑗

󵄩󵄩󵄩󵄩󵄩BMO

2

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑓𝑗

󵄩󵄩󵄩󵄩󵄩𝐿
𝑝𝑗,𝑘(𝜔

𝑗
)
,

𝐼𝐼 = (
1

]𝜔⃗(𝑄)
𝑘
∫
𝑄

󵄨󵄨󵄨󵄨󵄨
𝑇Πb (𝑓

0

1
, 𝑓

∞

2
) (𝑥)

󵄨󵄨󵄨󵄨󵄨

𝑝

]𝜔⃗ (𝑥) 𝑑𝑥)
1/𝑝

≤ 𝐶

2

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑏𝑗

󵄩󵄩󵄩󵄩󵄩BMO

2

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑓𝑗

󵄩󵄩󵄩󵄩󵄩𝐿
𝑝𝑗,𝑘(𝜔

𝑗
)
,

𝐼𝐼𝐼 = (
1

]𝜔⃗(𝑄)
𝑘
∫
𝑄

󵄨󵄨󵄨󵄨󵄨
𝑇Πb (𝑓

∞

1
, 𝑓

0

2
) (𝑥)

󵄨󵄨󵄨󵄨󵄨

𝑝

]𝜔⃗ (𝑥) 𝑑𝑥)
1/𝑝

≤ 𝐶

2

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑏𝑗

󵄩󵄩󵄩󵄩󵄩BMO

2

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑓𝑗

󵄩󵄩󵄩󵄩󵄩𝐿
𝑝𝑗,𝑘(𝜔

𝑗
)
,

𝐼𝑉 = (
1

]𝜔⃗(𝑄)
𝑘
∫
𝑄

󵄨󵄨󵄨󵄨𝑇Πb (𝑓
∞

1
, 𝑓

∞

2
) (𝑥)

󵄨󵄨󵄨󵄨

𝑝
]𝜔⃗ (𝑥) 𝑑𝑥)

1/𝑝

≤ 𝐶

2

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑏𝑗

󵄩󵄩󵄩󵄩󵄩BMO

2

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑓𝑗

󵄩󵄩󵄩󵄩󵄩𝐿
𝑝𝑗,𝑘(𝜔

𝑗
)
.

(64)

From Lemma 19, Lemma 15, and Hölder’s inequality, we can
get

𝐼 ≤ 𝐶
1

]𝜔⃗(𝑄)
𝑘/𝑝

2

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑏𝑗

󵄩󵄩󵄩󵄩󵄩BMO(∫
R𝑛

󵄨󵄨󵄨󵄨󵄨
𝑓
0

𝑗
(𝑥)

󵄨󵄨󵄨󵄨󵄨

𝑝
𝑗

𝜔𝑗 (𝑥) 𝑑𝑥)

1/𝑝
𝑗

≤ 𝐶
1

]𝜔⃗(𝑄)
𝑘/𝑝

2

∏

𝑗=1

[
󵄩󵄩󵄩󵄩󵄩
𝑏𝑗

󵄩󵄩󵄩󵄩󵄩BMO𝜔𝑗(2𝑄)
𝑘/𝑝
𝑗
󵄩󵄩󵄩󵄩󵄩
𝑓𝑗

󵄩󵄩󵄩󵄩󵄩𝐿
𝑝𝑗,𝑘(𝜔

𝑗
)
]

≤ 𝐶

2

∏

𝑗=1

[
󵄩󵄩󵄩󵄩󵄩
𝑏𝑗

󵄩󵄩󵄩󵄩󵄩BMO
󵄩󵄩󵄩󵄩󵄩
𝑓𝑗

󵄩󵄩󵄩󵄩󵄩𝐿
𝑝𝑗,𝑘(𝜔

𝑗
)
] .

(65)

Since 𝐼𝐼 and 𝐼𝐼𝐼 are symmetric, we only estimate 𝐼𝐼. Taking
𝜆𝑗 = (𝑏𝑗)𝐵,𝜔

𝑗

, 𝑇
Π𝑏⃗

can be divided into four part:

𝑇Πb (𝑓
0

1
, 𝑓

∞

2
) (𝑥)

= (𝑏1 (𝑥) − 𝜆1) (𝑏2 (𝑥) − 𝜆2) 𝑇 (𝑓
0

1
, 𝑓

∞

2
) (𝑥)

− (𝑏1 (𝑥) − 𝜆1) 𝑇 (𝑓
0

1
, (𝑏2 − 𝜆2) 𝑓

∞

2
) (𝑥)

− (𝑏2 (𝑥) − 𝜆2) 𝑇 ((𝑏1 − 𝜆1) 𝑓
0

1
, 𝑓

∞

2
) (𝑥)

+ 𝑇 ((𝑏1 − 𝜆1) 𝑓
0

1
, (𝑏2 − 𝜆2) 𝑓

∞

2
) (𝑥)

= 𝐼𝐼1 + 𝐼𝐼2 + 𝐼𝐼3 + 𝐼𝐼4.

(66)

From the proof of Theorem 8 we know that, for any 𝑥 ∈ 𝐵,

󵄨󵄨󵄨󵄨󵄨
𝑇 (𝑓

0

1
, 𝑓

∞

2
) (𝑥)

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶

∞

∑

𝑙=1

]𝜔⃗(8
𝑙+1
𝐵)

(𝑘−1)/𝑝
𝑚

∏

𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝑓𝑗

󵄩󵄩󵄩󵄩󵄩𝐿
𝑝𝑗,𝑘(𝜔

𝑗
)
.

(67)

Applying (67), Hölder’s inequality and Lemma 16, we have

(
1

]𝜔⃗(𝑄)
𝑘
∫
𝑄

󵄨󵄨󵄨󵄨𝐼𝐼1
󵄨󵄨󵄨󵄨

𝑝
]𝜔⃗ (𝑥) 𝑑𝑥)

1/𝑝

≤
1

]𝜔⃗(𝑄)
𝑘/𝑝

(∫
𝑄

󵄨󵄨󵄨󵄨(𝑏1 (𝑥) − 𝜆1) (𝑏2 (𝑥) − 𝜆2)
󵄨󵄨󵄨󵄨

𝑝

× ]𝜔⃗ (𝑥) 𝑑𝑥)
1/𝑝

×

2

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑓𝑗

󵄩󵄩󵄩󵄩󵄩𝐿
𝑝𝑗,𝑘

∞

∑

𝑙=1

]𝜔⃗(2
𝑙+1
𝑄)

(𝑘−1)/𝑝

≤
]𝜔⃗(𝑄)

1/𝑝

]𝜔⃗(𝑄)
𝑘/𝑝

2

∏

𝑗=1

(
1

]𝜔⃗ (𝑄)
∫
𝑄

󵄨󵄨󵄨󵄨󵄨
(𝑏𝑗 (𝑥) − 𝜆1)

󵄨󵄨󵄨󵄨󵄨

2𝑝

]𝜔⃗(𝑥)𝑑𝑥)
1/2𝑝

×

2

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑓𝑗

󵄩󵄩󵄩󵄩󵄩𝐿
𝑝𝑗,𝑘

∞

∑

𝑙=1

]𝜔⃗(2
𝑙+1
𝑄)

(𝑘−1)/𝑝

≤

2

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑏𝑗

󵄩󵄩󵄩󵄩󵄩BMO
󵄩󵄩󵄩󵄩󵄩
𝑓𝑗

󵄩󵄩󵄩󵄩󵄩𝐿
𝑝𝑗,𝑘(𝜔

𝑗
)
.

(68)

The last inequality is obtained by the property of𝐴∞: there is
a constant 𝛿 > 0 such that

]𝜔⃗ (𝑄)

]𝜔⃗ (2
𝑙+1𝑄)

≤ 𝐶(
|𝑄|

󵄨󵄨󵄨󵄨2
𝑙+1𝑄

󵄨󵄨󵄨󵄨

)

𝛿

. (69)
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For 𝐼𝐼2, by the Assumption 4, Lemma 15, and Lemma 16, it
follows that

󵄨󵄨󵄨󵄨󵄨
𝑇 (𝑓

0

1
, (𝑏2 − 𝜆2) 𝑓

∞

2
) (𝑥)

󵄨󵄨󵄨󵄨󵄨

≤ ∫
(R𝑛)
2

󵄨󵄨󵄨󵄨󵄨
𝐾 (𝑥, 𝑦1, 𝑦2) − 𝐾

(0)

𝑡
(𝑥, 𝑦1, 𝑦2)

󵄨󵄨󵄨󵄨󵄨

×
󵄨󵄨󵄨󵄨󵄨
𝑓
0

1
(𝑦1) (𝑏2 (𝑦2) − 𝜆2) 𝑓

∞

2
(𝑦2)

󵄨󵄨󵄨󵄨󵄨
𝑑𝑦1𝑑𝑦2

+ ∫
(R𝑛)
2

󵄨󵄨󵄨󵄨󵄨
𝐾
(0)

𝑡
(𝑥, 𝑦1, 𝑦2)

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑓
0

1
(𝑦1) (𝑏2 (𝑦2) − 𝜆2)

×𝑓
∞

2
(𝑦2)

󵄨󵄨󵄨󵄨 𝑑𝑦1𝑑𝑦2

≤ 𝐶∫
8𝐵

󵄨󵄨󵄨󵄨𝑓1 (𝑦1)
󵄨󵄨󵄨󵄨 𝑑𝑦1

∞

∑

𝑙=1

1

󵄨󵄨󵄨󵄨8
𝑙𝐵
󵄨󵄨󵄨󵄨

2

× ∫
2𝑙+1𝑄\2𝑙𝑄

󵄨󵄨󵄨󵄨(𝑏2 (𝑦2) − 𝜆2) 𝑓2 (𝑦2)
󵄨󵄨󵄨󵄨 𝑑𝑦2

≤ 𝐶

∞

∑

𝑙=1

󵄩󵄩󵄩󵄩𝑏2
󵄩󵄩󵄩󵄩BMO

󵄨󵄨󵄨󵄨8
𝑙+1𝐵

󵄨󵄨󵄨󵄨

2
(∫

8𝑙+1𝐵

󵄨󵄨󵄨󵄨𝑓1 (𝑦1)
󵄨󵄨󵄨󵄨

𝑝
1

𝜔𝑗 (𝑦1) 𝑑𝑦1)

1/𝑝
1

× (∫
2𝑙+1𝑄

𝜔1(𝑦1)
1−𝑝
󸀠

1
𝑑𝑦𝑗)

1/𝑝
󸀠

1

× (∫
2𝑙+1𝑄

󵄨󵄨󵄨󵄨𝑓2 (𝑦2)
󵄨󵄨󵄨󵄨

𝑝
2

𝜔2 (𝑦2) 𝑑𝑦2)

1/𝑝
2

× (∫
2𝑙+1𝑄

󵄨󵄨󵄨󵄨𝑏2 (𝑦2) − 𝜆2
󵄨󵄨󵄨󵄨

𝑝
󸀠

2
𝜔2(𝑦2)

−𝑝
󸀠

2
/𝑝
2

𝑑𝑦2)

1/𝑝
󸀠

2

≤ 𝐶

∞

∑

𝑙=1

𝑙

2

∏

𝑗=1

󵄩󵄩󵄩󵄩𝑏2
󵄩󵄩󵄩󵄩BMO

󵄨󵄨󵄨󵄨8
𝑙+1𝐵

󵄨󵄨󵄨󵄨

(∫
8𝑙+1𝐵

󵄨󵄨󵄨󵄨󵄨
𝑓𝑗 (𝑦𝑗)

󵄨󵄨󵄨󵄨󵄨

𝑝
𝑗

𝜔𝑗 (𝑦𝑗) 𝑑𝑦𝑗)

1/𝑝
𝑗

× (∫
2𝑙+1𝑄

𝜔𝑗(𝑦𝑗)
1−𝑝
󸀠

𝑗

𝑑𝑦𝑗)

1/𝑝
󸀠

𝑗

≤ 𝐶
󵄩󵄩󵄩󵄩𝑏2

󵄩󵄩󵄩󵄩BMO

2

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑓𝑗

󵄩󵄩󵄩󵄩󵄩𝐿
𝑝𝑗,𝑘(𝜔

𝑗
)

∞

∑

𝑙=1

𝑙]𝜔⃗(8
𝑙+1
𝐵)

(𝑘−1)/𝑝

.

(70)

Hölder’s inequality and Lemma 16 tell us that

(
1

]𝜔⃗(𝑄)
𝑘
∫
𝑄

󵄨󵄨󵄨󵄨𝐼𝐼2
󵄨󵄨󵄨󵄨

𝑝
]𝜔⃗ (𝑥) 𝑑𝑥)

1/𝑝

≤ 𝐶
1

]𝜔⃗(𝑄)
𝑘/𝑝

(∫
𝑄

󵄨󵄨󵄨󵄨𝑏1 (𝑥) − 𝜆1
󵄨󵄨󵄨󵄨

𝑝
]𝜔⃗ (𝑥) 𝑑𝑥)

1/𝑝

×

2

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑓𝑗

󵄩󵄩󵄩󵄩󵄩𝐿
𝑝𝑗,𝑘

∞

∑

𝑙=1

𝑙]𝜔⃗(2
𝑙+1
𝑄)

(𝑘−1)/𝑝

≤ 𝐶
]𝜔⃗(𝑄)

1/𝑝

]𝜔⃗(𝑄)
𝑘/𝑝

2

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑓𝑗

󵄩󵄩󵄩󵄩󵄩𝐿
𝑝𝑗,𝑘

∞

∑

𝑙=1

𝑙]𝜔⃗(2
𝑙+1
𝑄)

(𝑘−1)/𝑝

≤ 𝐶

2

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑏𝑗

󵄩󵄩󵄩󵄩󵄩BMO
󵄩󵄩󵄩󵄩󵄩
𝑓𝑗

󵄩󵄩󵄩󵄩󵄩𝐿
𝑝𝑗,𝑘(𝜔

𝑗
)
.

(71)

Similarly, we also have that

(
1

]𝜔⃗(𝑄)
𝑘
∫
𝑄

󵄨󵄨󵄨󵄨𝐼𝐼3
󵄨󵄨󵄨󵄨

𝑝
]𝜔⃗ (𝑥) 𝑑𝑥)

1/𝑝

≤ 𝐶

2

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑏𝑗

󵄩󵄩󵄩󵄩󵄩BMO
󵄩󵄩󵄩󵄩󵄩
𝑓𝑗

󵄩󵄩󵄩󵄩󵄩𝐿
𝑝𝑗,𝑘(𝜔

𝑗
)
.

(72)

By Assumption 4, Lemma 15, and Lemma 16, a similar way
deduces that
󵄨󵄨󵄨󵄨󵄨
𝑇 ((𝑏1 − 𝜆1) 𝑓

0

1
, (𝑏2 − 𝜆2) 𝑓

∞

2
) (𝑥)

󵄨󵄨󵄨󵄨󵄨

≤ 𝐶
󵄩󵄩󵄩󵄩𝑏1

󵄩󵄩󵄩󵄩BMO
󵄩󵄩󵄩󵄩𝑏2

󵄩󵄩󵄩󵄩BMO

2

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑓𝑗

󵄩󵄩󵄩󵄩󵄩𝐿
𝑝𝑗,𝑘(𝜔

𝑗
)

∞

∑

𝑙=1

𝑙
2]𝜔⃗(8

𝑙+1
𝐵)

(𝑘−1)/𝑝

,

(73)

and so,

(
1

]𝜔⃗(𝑄)
𝑘
∫
𝑄

󵄨󵄨󵄨󵄨𝐼𝐼4
󵄨󵄨󵄨󵄨

𝑝
]𝜔⃗ (𝑥) 𝑑𝑥)

1/𝑝

≤ 𝐶

2

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑏𝑗

󵄩󵄩󵄩󵄩󵄩BMO
󵄩󵄩󵄩󵄩󵄩
𝑓𝑗

󵄩󵄩󵄩󵄩󵄩𝐿
𝑝𝑗,𝑘(𝜔

𝑗
)
.

(74)

Finally, we still decompose 𝑇Πb(𝑓
∞

1
, 𝑓

∞

2
)(𝑥) into four terms:

𝑇Πb (𝑓
∞

1
, 𝑓

∞

2
) (𝑥)

= (𝑏1 (𝑥) − 𝜆1) (𝑏2 (𝑥) − 𝜆2) 𝑇 (𝑓
∞

1
, 𝑓

∞

2
) (𝑥)

− (𝑏1 (𝑥) − 𝜆1) 𝑇 (𝑓
∞

1
, (𝑏2 − 𝜆2) 𝑓

∞

2
) (𝑥)

− (𝑏2 (𝑥) − 𝜆2) 𝑇 ((𝑏1 − 𝜆1) 𝑓
∞

1
, 𝑓

∞

2
) (𝑥)

+ 𝑇 ((𝑏1 − 𝜆1) 𝑓
∞

1
, (𝑏2 − 𝜆2) 𝑓

∞

2
) (𝑥)

= 𝐼𝑉1 + 𝐼𝑉2 + 𝐼𝑉3 + 𝐼𝑉4.

(75)

Because each term of 𝐼𝑉𝑗 is completely analogous to 𝐼𝐼𝑗, 𝑗 =
1, 2, 3, 4with a bit difference, so we get the following estimate
without details:

(
1

]𝜔⃗(𝑄)
𝑘
∫
𝑄

|𝐼𝑉|
𝑝]𝜔⃗ (𝑥) 𝑑𝑥)

1/𝑝

≤ 𝐶

2

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑏𝑗

󵄩󵄩󵄩󵄩󵄩BMO
󵄩󵄩󵄩󵄩󵄩
𝑓𝑗

󵄩󵄩󵄩󵄩󵄩𝐿
𝑝𝑗,𝑘(𝜔

𝑗
)
.

(76)

To this, we end the proof of Theorem 9.
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