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The paper presents various results studying the asymptotic behavior of a sequence of lower semicontinuous functions on a metric
space. In particular, different coercivity properties are obtained extending and refining previous results. The specific features and
the structure of the terms of the sequence are used to construct appropriate quantities relevant in the verification of Palais-Smale
compactness type conditions.

1. Introduction and Main Results

Let𝑋 be a complete metric space endowed with the metric 𝑑.
We recall fromDeGiorgi et al. [1] the notion of strong slope of
a lower semicontinuous function 𝑓 : 𝑋 → R∪ {+∞} (which
is not identically +∞) at a point 𝑢 ∈ dom(𝑓) := {𝑤 ∈ 𝑋 :

𝑓(𝑤) < +∞}:

󵄨󵄨󵄨󵄨∇𝑓
󵄨󵄨󵄨󵄨 (𝑢) :=

{{{

{{{

{

0, if 𝑢 is a local
minimizer of 𝑓,

lim sup
V→𝑢

𝑓 (𝑢) − 𝑓 (V)

𝑑 (𝑢, V)
, otherwise.

(1)

If 𝑋 is a Banach space and 𝑓 ∈ 𝐶
1

(𝑋,R), then |∇𝑓|(𝑢) =

‖𝑓
󸀠

(𝑢)‖ for all 𝑢 ∈ 𝑋.
Let 𝐹 : 𝑋 → R be a function satisfying the property.
H(𝐹): there exist constants 𝛾

1
, 𝛾
2
> 0 such that

𝑑 (𝑢, V) < 𝛾
1
󳨐⇒ |𝐹 (𝑢) − 𝐹 (V)| < 𝛾

2
(for 𝑢, V ∈ 𝑋) .

(2)

Let𝑓
𝑛
: 𝑋 → R∪{+∞} (𝑛 ∈ N) be a sequence of lower semi-

continuous functions.This paper develops a general approach
for studying the asymptotic behavior of this sequence with
respect to 𝐹. An aspect which makes our approach general
and natural is that we do not require the sequence {𝑓

𝑛
} to

admit a limit (in any sense); see also Remarks 7, 9, and 11
below. We introduce the notation

𝛼
𝐹

({𝑓
𝑛
}) := lim
𝑟→+∞

lim inf
𝑛→∞

inf
[𝐹>𝑟]

𝑓
𝑛
. (3)

Here and throughout the paper, for all 𝑟 > 0 we denote

[𝐹 > 𝑟] := {𝑤 ∈ 𝑋 : 𝐹 (𝑤) > 𝑟} , (4)

while [𝐹 > 𝑟] and int[𝐹 > 𝑟] stand for the closure and the
interior of [𝐹 > 𝑟], respectively. The expression 𝛼

𝐹

({𝑓
𝑛
})

always exists, generally belonging to R ∪ {±∞}. Equivalent
expressions to 𝛼

𝐹

({𝑓
𝑛
}) can be given, for instance replacing

[𝐹 > 𝑟] by [𝐹 > 𝑟] or by [𝐹 ≥ 𝑟] := {𝑤 ∈ 𝑋 : 𝐹(𝑤) ≥ 𝑟} (see
Lemma 16 below).

In what follows, we will always assume that.
H𝐹({𝑓

𝑛
}): there holds 𝛼𝐹({𝑓

𝑛
}) > −∞.

For instance, H𝐹({𝑓
𝑛
}) is satisfied if {𝑓

𝑛
} is uniformly

bounded below.
In the following we state our main result, which studies

the asymptotic behavior of a sequence of lower semicontinu-
ous functions.

Theorem 1. Let𝑋 be a complete metric space, let 𝐹 : 𝑋 → R

be a function satisfying H(𝐹), and let 𝑓
𝑛
: 𝑋 → R ∪ {+∞}
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(𝑛 ∈ N) be a sequence of lower semicontinuous functions
satisfying 𝛼

𝐹

({𝑓
𝑛
}) ∈ R. Then, for every 𝜀 > 0, there exist

a subsequence {𝑓
𝑛𝑘
} (depending on 𝜀) of {𝑓

𝑛
} and a number

𝑘
𝜀
∈ N such that for each 𝑘 ≥ 𝑘

𝜀
one finds 𝑢

𝑘,𝜀
∈ dom(𝑓

𝑛𝑘
)

satisfying

𝛼
𝐹

({𝑓
𝑛
}) − 𝜀
2

< 𝑓
𝑛𝑘
(𝑢
𝑘,𝜀
) < 𝛼
𝐹

({𝑓
𝑛
}) + 𝜀
2

, (5)
󵄨󵄨󵄨󵄨󵄨
∇𝑓
𝑛𝑘

󵄨󵄨󵄨󵄨󵄨
(𝑢
𝑘,𝜀
) ≤ 𝜀, (6)

𝐹 (𝑢
𝑘,𝜀
) >

1

𝜀
. (7)

In particular, there are a subsequence {𝑓
𝑚ℓ
} of {𝑓

𝑛
} and

elements 𝑢
ℓ
∈ dom(𝑓

𝑚ℓ
) such that

𝑓
𝑚ℓ

(𝑢
ℓ
) 󳨀→ 𝛼

𝐹

({𝑓
𝑛
}) ,

󵄨󵄨󵄨󵄨󵄨
∇𝑓
𝑚ℓ

󵄨󵄨󵄨󵄨󵄨
(𝑢
ℓ
) 󳨀→ 0,

𝐹 (𝑢
ℓ
) 󳨀→ +∞ 𝑎𝑠 ℓ 󳨀→ ∞.

(8)

The proof of Theorem 1 is done in Section 2.
Note that, due to the hypothesis that 𝛼𝐹({𝑓

𝑛
}) ∈ R, at least

a subsequence of functions 𝑓
𝑛
is not identically +∞ and the

sets [𝐹 > 𝑟] are nonempty for all 𝑟 ∈ R.
We say that a sequence {𝑢

𝑛
} ⊂ 𝑋 is 𝐹-bounded if

the sequence {𝐹(𝑢
𝑛
)} ⊂ 𝑋 is bounded. We introduce the

following notions of Palais-Smale condition and coercivity
relative to the function 𝐹.

Definition 2. Let𝑓
𝑛
: 𝑋 → R∪{+∞} (𝑛 ∈ N) be lower semi-

continuous functions which are not identically +∞. We say
that the sequence {𝑓

𝑛
} satisfies the Palais-Smale condition

relative to 𝐹 (condition (PS)𝐹, for short) if whenever {𝑓
𝑛𝑘
} is

a subsequence of {𝑓
𝑛
} and {𝑢

𝑘
} ⊂ 𝑋 is a sequence such that

{𝑓
𝑛𝑘
(𝑢
𝑘
)} is bounded and |∇𝑓

𝑛𝑘
|(𝑢
𝑘
) → 0 as 𝑘 → ∞, then

{𝑢
𝑘
} is 𝐹-bounded.

Definition 3. Assume that the function 𝐹 satisfies in addition
the requirement that sup

𝑋
𝐹 = +∞. We say that the sequence

𝑓
𝑛
: 𝑋 → R ∪ {+∞} (𝑛 ∈ N) is 𝐹-coercive if 𝛼𝐹({𝑓

𝑛
}) = +∞.

If (𝑋, ‖ ⋅ ‖) is a Banach space, 𝐹 = ‖ ⋅ ‖, and 𝑓
𝑛
≡ 𝑓 for all

𝑛 ∈ N, then we retrieve the usual notion of coercivity.
We state the following result on the 𝐹-coercivity of a

sequence of lower semicontinuous functions.

Corollary 4. Let𝑋 be a completemetric space, let𝐹 : 𝑋 → R

be a function satisfying H(𝐹) and sup
𝑋
𝐹 = +∞, and let 𝑓

𝑛
:

𝑋 → R∪{+∞} (𝑛 ∈ N) be a sequence of lower semicontinuous
functions satisfying H𝐹({𝑓

𝑛
}). If {𝑓

𝑛
} satisfies condition (PS)𝐹,

then the sequence {𝑓
𝑛
} is 𝐹-coercive.

The proof of Corollary 4 is given in Section 2.
As an immediate consequence of Corollary 4, in a Banach

space we have the following.

Corollary 5. Let (𝑋, ‖⋅‖) be a Banach space, and let𝑓
𝑛
: 𝑋 →

R ∪ {+∞} (𝑛 ∈ N) be a sequence of lower semicontinuous
functions satisfyingH‖⋅‖({𝑓

𝑛
}). If {𝑓

𝑛
} satisfies condition (PS)‖⋅‖,

then the sequence {𝑓
𝑛
} is ‖ ⋅ ‖-coercive.

Consider now the particular case in Theorem 1 when the
number 𝛼𝐹({𝑓

𝑛
}) in H𝐹({𝑓

𝑛
}) is also a lim inf of a given lower

semicontinuous function 𝑓 : 𝑋 → R ∪ {+∞}. Setting

𝛼
𝐹

(𝑓) := lim inf
𝐹(V)→+∞

𝑓 (V)
def
= lim
𝑟→+∞

inf
[𝐹>𝑟]

𝑓, (9)

the hypothesis 𝛼
𝐹

({𝑓
𝑛
}) ∈ R in Theorem 1 is obviously

satisfied if we assume the conditions

𝛼
𝐹

({𝑓
𝑛
}) = 𝛼

𝐹

(𝑓) ; 𝛼
𝐹

(𝑓) ∈ R. (10)

It will be noted in Lemma 19 that the first condition in (10) is
satisfied if the following is assumed.

H𝐹({𝑓
𝑛
}, 𝑓): there exists 𝑟

0
∈ R such that for every 𝑟 ≥ 𝑟

0

one has

(i) for every𝑢 ∈ dom(𝑓)∩[𝐹 > 𝑟], there exists a sequence
{𝑢
𝑛
} such that 𝑢

𝑛
→ 𝑢 and 𝑓

𝑛
(𝑢
𝑛
) → 𝑓(𝑢) as 𝑛 →

∞;
(ii) lim inf

𝑛→∞
inf
[𝐹>𝑟]

𝑓
𝑛
≥ inf
[𝐹>𝑟]

𝑓.

Concerning the second condition in (10), we have the
following simple characterization: given 𝑐 ∈ R, we have that
𝑐 = 𝛼
𝐹

(𝑓) if and only if,

∀𝑎 < 𝑐, there exists 𝑟 ∈ R such that [𝑓 ≤ 𝑎] ⊂ [𝐹 ≤ 𝑟] ;

∀𝑎 > 𝑐, ∀𝑟 ∈ R,we have [𝑓 ≤ 𝑎] ̸⊂ [𝐹 ≤ 𝑟]

(11)

(see Lemma 17 below).With the above comments, the follow-
ing result is a consequence of Theorem 1.

Corollary 6 (Corvellec [2, Theorem 1󸀠]). Let𝑋 be a complete
metric space, let 𝐹 : 𝑋 → R be a function bounded on
bounded subsets of𝑋 and satisfyingH(𝐹), and let 𝑓, 𝑓

𝑛
: 𝑋 →

R∪{+∞} (𝑛 ∈ N) be lower semicontinuous functions satisfying
that,

for all 𝑢 ∈ dom (𝑓) , there exists

𝑢
𝑛
󳨀→ 𝑢with𝑓

𝑛
(𝑢
𝑛
) 󳨀→ 𝑓 (𝑢) ,

(12)

for all closed 𝑌 ⊂ 𝑋, lim inf
𝑛→∞

(inf
𝑌

𝑓
𝑛
) ≥ inf
𝑌

𝑓. (13)

Assume (11) for some 𝑐 ∈ R. Then there exist a subsequence
{𝑓
𝑛𝑘
} of {𝑓

𝑛
} and a sequence {𝑢

𝑘
} ⊂ 𝑋 such that 𝑓

𝑛𝑘
(𝑢
𝑘
) → 𝑐,

|∇𝑓
𝑛𝑘
|(𝑢
𝑘
) → 0, and 𝐹(𝑢

𝑘
) → +∞ as 𝑘 → ∞.

Remark 7. The number 𝑐 ∈ R in Corollary 6 is necessarily
𝑐 = 𝛼

𝐹

(𝑓) = 𝛼
𝐹

({𝑓
𝑛
}). Moreover, hypotheses (12)-(13) are

particular cases of H𝐹({𝑓
𝑛
}, 𝑓) (i)-(ii) that involve only sets of

the form 𝑌 = [𝐹 > 𝑟]. Hence the hypotheses of Corollary 6,
namely, (11), (12), (13), and 𝑐 ∈ R, imply that 𝛼𝐹({𝑓

𝑛
}) ∈ R.

Therefore, [2, Theorem 1󸀠] (i.e., Corollary 6) is retrieved as a
consequence of Theorem 1 (and then the hypothesis that 𝐹
is bounded on bounded subsets of 𝑋 is not even needed).
As seen from Example 12,Theorem 1 is actually more general
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than [2,Theorem 1󸀠], and besides it does not need an auxiliary
function 𝑓 in its hypotheses.

Next, we note that the hypothesis H𝐹({𝑓
𝑛
}) in Corollary 4

is satisfied if we assume the conditions

𝛼
𝐹

({𝑓
𝑛
}) = 𝛼

𝐹

(𝑓) , 𝛼
𝐹

(𝑓) > −∞. (14)

As noticed above, the first condition in (14) is satisfied if
H𝐹({𝑓

𝑛
}, 𝑓) holds, which in turn is satisfied if (12) and (13)

are assumed.The second condition in (14) is equivalent to the
property [𝐹 > 𝑏] ⊂ [𝑓 > 𝑎] for some 𝑎, 𝑏 ∈ R; that is,

[𝑓 ≤ 𝑎] ⊂ [𝐹 ≤ 𝑏] , for some 𝑎, 𝑏 ∈ R (15)

(see Lemma 18). We thus have the following consequence
of Corollary 4. Here, as in [2], it is said that 𝑓 satisfies
condition (PSB)∗ if whenever {𝑓

𝑛𝑘
} is a subsequence of {𝑓

𝑛
}

and {𝑢
𝑘
} ⊂ 𝑋 is a sequence such that {𝑓

𝑛𝑘
(𝑢
𝑘
)} is bounded

and |∇𝑓
𝑛𝑘
|(𝑢
𝑘
) → 0 as 𝑘 → ∞, then {𝑢

𝑘
} is bounded.

Corollary 8 (Corvellec [2, Theorem 1]). Let 𝑋 be a complete
metric space, let 𝐹 : 𝑋 → R be a function bounded on
bounded subsets of 𝑋 satisfying H(𝐹) and sup

𝑋
𝐹 = +∞,

and let 𝑓, 𝑓
𝑛

: 𝑋 → R ∪ {+∞} (𝑛 ∈ N) be lower
semicontinuous functions satisfying (12) and (13). If 𝑓 satisfies
(15) and condition (PSB)∗, then 𝑓 is 𝐹-coercive (i.e., 𝑓(𝑢) →

+∞ as 𝐹(𝑢) → +∞).

Remark 9. From the above discussion, Corollary 8 (i.e., [2,
Theorem 1]) is obtained as a consequence of Corollary 4. In
fact, Corollary 4 is more general (see Example 12) and does
not rely on an auxiliary function 𝑓. In fact, on the one hand
to study the coercivity of a function 𝑓we do not need to look
for a sequence {𝑓

𝑛
} as in Corollary 8 (in applications it seems

to be more difficult to prove the existence of a sequence {𝑓
𝑛
}

related to the function 𝑓 as in Corollary 8 than to prove the
coercivity of 𝑓 itself). On the other hand, while studying the
coercivity of a sequence {𝑓

𝑛
}, the interest of Corollary 4 is to

give sufficient conditions for the coercivity of the sequence
{𝑓
𝑛
} without using an auxiliary function 𝑓. Finally, we note

that in addition to the 𝐹-coercivity of 𝑓, the hypotheses
of Corollary 8 imply also the 𝐹-coercivity of {𝑓

𝑛
}, and so

𝛼
𝐹

({𝑓
𝑛
}) = 𝛼

𝐹

(𝑓) = +∞.

We also recall the following.

Corollary 10 (Corvellec [2, Corollary 1]). Let (𝑋, ‖ ⋅ ‖) be a
Banach space, let 𝑓, 𝑓

𝑛
: 𝑋 → R ∪ {+∞} (𝑛 ∈ N) be bounded

below, lower semicontinuous functions satisfying (12) and (13).
Then𝑓 is ‖⋅‖-coercive if and only if𝑓 satisfies condition (PSB)∗.

The sufficiency in Corollary 10 follows from Corollary 5
(or fromCorollary 8).The necessity can be proved arguing by
contradiction in the following way. If there are a subsequence
{𝑓
𝑛𝑘
} of {𝑓

𝑛
} and a sequence {𝑢

𝑘
} ⊂ 𝑋 such that {𝑓

𝑛𝑘
(𝑢
𝑘
)} is

bounded, |∇𝑓
𝑛𝑘
|(𝑢
𝑘
) → 0 and ‖𝑢

𝑘
‖ → +∞ as 𝑘 → ∞,

then 𝑓(𝑢
𝑘
) → +∞ as 𝑘 → ∞ (by the ‖ ⋅ ‖-coercivity of 𝑓).

Then, for every 𝑛 ∈ N, using (13) with the closed set 𝑌
𝑛
:=

{𝑢
𝑛
, 𝑢
𝑛+1

, . . .}, we have

lim inf
𝑘→∞

𝑓
𝑛𝑘
(𝑢
𝑘
) ≥ lim inf
𝑘→∞

(inf
𝑌𝑛

𝑓
𝑛𝑘
)

≥ lim inf
𝑘→∞

(inf
𝑌𝑛

𝑓
𝑘
) ≥ inf
𝑌𝑛

𝑓 󳨀→ +∞

as 𝑛 󳨀→ ∞,

(16)

which contradicts the boundedness of the sequence {𝑓
𝑛𝑘
(𝑢
𝑘
)}.

Remark 11. Hypotheses (12) and (13) imply the first part
of (10); that is, 𝛼‖⋅‖({𝑓

𝑛
}) = 𝛼

‖⋅‖

(𝑓). Hence, in view of
Corollary 5, in place of assuming that 𝑓 and 𝑓

𝑛
are bounded

below in [2, Corollary 1] it would have been enough to assume
that 𝛼‖⋅‖(𝑓) > −∞, which in fact is implied just by the
boundedness below of 𝑓. Corollary 5 is more general than
Corollary 10 and its advantage is that it studies the coercivity
of a sequence {𝑓

𝑛
}without dealing with an auxiliary function

𝑓. For the study of the coercivity of a function 𝑓 we do not
need to involve a sequence of functions {𝑓

𝑛
} (see Corollary 31

below).

Example 12. (a) Let 𝑓 : R → R ∪ {+∞} be a lower
semicontinuous, even (i.e., 𝑓(𝑥) = 𝑓(−𝑥) for all 𝑥 ∈ R)
function which is not identically +∞ onR \ {0}, let the lower
semicontinuous functions 𝑓

𝑛
: R → R ∪ {+∞} (𝑛 ∈ N) be

given by

𝑓
𝑛
(𝑥) = {

𝑓 (𝑥) , if 𝑥 ≥ 0,

+∞, if 𝑥 < 0,
(17)

and let 𝐹(𝑥) = |𝑥| for all 𝑥 ∈ R. Then we have 𝛼𝐹({𝑓
𝑛
}) =

𝛼
𝐹

(𝑓). Condition H𝐹({𝑓
𝑛
}, 𝑓) (i) is not satisfied (thus, (12) is

not satisfied) since, if 𝑥 ∈ dom(𝑓), 𝑥 < 0, then for every
sequence 𝑥

𝑛
→ 𝑥 we have 𝑓

𝑛
(𝑥
𝑛
) = +∞ > 𝑓(𝑥) for

𝑛 ∈ N large enough. So Corollaries 6, 8, and 10 cannot be
applied, while Theorem 1 can be applied whenever 𝛼𝐹(𝑓) ∈

R. Corollaries 4 and 5 can also be applied.
(b) Let 𝑓 : R → R be defined by 𝑓(𝑥) = −𝑒

−2𝑥
2

for all
𝑥 ∈ R, let 𝑓

𝑛
: R → R (𝑛 ∈ N) be defined by 𝑓

𝑛
(𝑥) =

−𝑒
−𝑥
2

− (1/𝑛) for all 𝑥 ∈ R, and let 𝐹(𝑥) = |𝑥| for all 𝑥 ∈ R.
Then we have 𝛼𝐹({𝑓

𝑛
}) = 𝛼

𝐹

(𝑓) = 0. Condition H𝐹({𝑓
𝑛
}, 𝑓)

(ii) is not satisfied (so neither (13)) since for every 𝑟 > 0 we
have

lim inf
𝑛→∞

inf
|𝑥|≥𝑟

𝑓
𝑛
(𝑥) = −𝑒

−𝑟
2

< −𝑒
−2𝑟
2

= inf
|𝑥|≥𝑟

𝑓 (𝑥) . (18)

Hence we may applyTheorem 1 to the sequence {𝑓
𝑛
}, but not

Corollary 6 with {𝑓
𝑛
} and the chosen 𝑓. Besides being more

general, the advantage ofTheorem 1 is to study the asymptotic
behavior of a sequence {𝑓

𝑛
} without an auxiliary function 𝑓

(if it exists) as in Corollary 6.
(c) Let 𝑓 : R → R be defined by 𝑓(𝑥) = 𝑒

|𝑥| for all
𝑥 ∈ R, let 𝑓

𝑛
: R → R (𝑛 ∈ N) be defined by 𝑓

𝑛
(𝑥) =

(𝑥
2

/2) − (1/𝑛) for all 𝑥 ∈ R, and let 𝐹(𝑥) = |𝑥| for all 𝑥 ∈ R.
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Then 𝛼
𝐹

({𝑓
𝑛
}) = 𝛼

𝐹

(𝑓) = +∞. Condition H𝐹({𝑓
𝑛
}, 𝑓) (ii) is

not satisfied (so neither (13)) since for every 𝑟 > 0 we have

lim inf
𝑛→∞

inf
|𝑥|≥𝑟

𝑓
𝑛
(𝑥) =

𝑟
2

2
< 𝑒
𝑟

= inf
|𝑥|≥𝑟

𝑓 (𝑥) . (19)

Corollary 4 (or Corollary 5) can be applied to {𝑓
𝑛
} (note that

{𝑓
𝑛
} satisfies condition (PS)𝐹), while Corollaries 8 and 10

cannot be applied to {𝑓
𝑛
} and 𝑓 (however, 𝑓 is coercive).

(d) Let (𝑋, ‖ ⋅ ‖) be a Banach space and 𝐹 : 𝑋 → R

be a continuous function satisfying H(𝐹). Let 𝑔 : R →

R ∪ {+∞} and ℎ : R → R be nondecreasing, lower
semicontinuous functions with the property that there exists
𝑟
0
> 0 such that ℎ(𝑟) < 𝑔(𝑟) for all 𝑟 ≥ 𝑟

0
and lim

𝑟→+∞
ℎ(𝑟) =

lim
𝑟→+∞

𝑔(𝑟) > −∞. Define 𝑓 = 𝑔 ∘ 𝐹 and let 𝑓
𝑛
: R → R

(𝑛 ∈ N) be given by

𝑓
𝑛
(𝑥) = {

ℎ (𝐹 (𝑥)) + 𝑠
𝑛
, if 𝐹 (𝑥) ≤ 𝑛,

+∞, if 𝐹 (𝑥) > 𝑛,
(20)

where {𝑠
𝑛
} ⊂ R. Suppose lim inf

𝑛→∞
𝑠
𝑛
= 0. Then 𝛼

𝐹

({𝑓
𝑛
}) =

𝛼
𝐹

(𝑓), but condition H𝐹({𝑓
𝑛
}, 𝑓) (ii) is not satisfied (so

neither (13)) since for every 𝑟 > 𝑟
0
we have

lim inf
𝑛→∞

inf
𝐹(𝑥)≥𝑟

𝑓
𝑛
(𝑥) = ℎ (𝑟) < 𝑔 (𝑟) = inf

𝐹(𝑥)≥𝑟

𝑓 (𝑥) . (21)

So, neither Corollary 6 nor Corollary 8 can be applied. The-
orem 1 can be applied whenever 𝛼𝐹({𝑓

𝑛
}) = lim

𝑟→+∞
ℎ(𝑟) +

lim inf
𝑛→∞

𝑠
𝑛
∈ R (e.g., we do not need that lim inf

𝑛→∞
𝑠
𝑛
=

0, and then 𝛼
𝐹

({𝑓
𝑛
}) = 𝛼

𝐹

(𝑓) + lim inf
𝑛→∞

𝑠
𝑛
) and its

application is not related to some auxiliary function 𝑓. For
Corollary 4, we must necessarily have 𝛼𝐹({𝑓

𝑛
}) = +∞.

Example 13. (a) As examples of functions 𝐹 : 𝑋 → R

satisfying H(𝐹), we can consider any Lipschitz continuous
function on a metric space 𝑋, or any uniformly continuous
function. For example, if 𝑋 is a metric space endowed with
the metric 𝑑, then the function

𝐹 (𝑢) = 𝑑 (𝑢, 𝐴) , ∀𝑢 ∈ 𝑋, (22)

for some nonempty subset 𝐴 of 𝑋, satisfies hypothesis H(𝐹)

with any 𝛾
1
= 𝛾
2
, and if 𝑋 \ 𝐴 is unbounded, then 𝐹 satisfies

also that sup
𝑋
𝐹 = +∞ (so both Theorem 1 and Corollary 4

can be applied in this case). In particular, in the case where
(𝑋, ‖ ⋅ ‖) is a Banach space, the function 𝐹 = ‖ ⋅‖ satisfies H(𝐹)

and that sup
𝑋
𝐹 = +∞.

(b) Note that if 𝐴 is a bounded subset of the metric space
𝑋, then the expression 𝛼

𝑑(⋅,𝐴)

({𝑓
𝑛
}) (i.e., 𝛼𝐹({𝑓

𝑛
}) for 𝐹(⋅) =

𝑑(⋅, 𝐴)) and the notion of 𝑑(⋅, 𝐴)-coercivity do not depend on
the choice of the set𝐴 (for this reason, we refer to𝑑-coercivity
in place of 𝑑(⋅, 𝐴)-coercivity). If 𝐴 is unbounded, then it is
not anymore the case: for example, if 𝑋 = R2, 𝐴 = {(𝑥, 𝑦) ∈

R2 : 𝑦 = 0}, and 𝑓 : R2 → R given by 𝑓(𝑥, 𝑦) = |𝑦|, then
𝑓 is 𝑑(⋅, 𝐴)-coercive, but it is not norm coercive (taking the
Euclidean norm and denoting by 𝑑 the induced distance).

(c) As another example of 𝐹 (which is not even continu-
ous), let𝑋 = R, 𝐹 : R → R given by

𝐹 (𝑥) = {
0, if |𝑥| < 1,

𝑥, if |𝑥| ≥ 1.
(23)

The function 𝐹 satisfies H(𝐹) with 𝛾
1
= 1, 𝛾

2
= 2. Note that

for every 𝑟 ∈ R, we have 𝐹(𝑟 + 1) > 𝑟 (so the sets [𝐹 > 𝑟] are
nonempty).

Remark 14. (a) If 𝐹 : 𝑋 → R and 𝐹 : 𝑋 → R are two
functions satisfying H(𝐹) and that sup

𝑋
𝐹 = sup

𝑋
𝐹 = +∞,

and if 𝐹 − 𝐹 is bounded, then the 𝐹-coercivity and the 𝐹-
coercivity of a sequence {𝑓

𝑛
} as in Corollary 4 are equivalent.

(b) If𝑋 is a metric space endowed with twometrics 𝑑 and
𝑑which induce the same topology, then a sequence {𝑓

𝑛
} as in

Corollary 4 may be 𝑑-coercive and non-𝑑-coercive.
(c) Let𝑋 be ametric space endowed with themetric 𝑑, let

𝐹 : 𝑋 → R be a function satisfying H(𝐹) and sup
𝑋
𝐹 = +∞,

and let us define a new metric:

𝑑 (𝑥, 𝑦) = 𝑑 (𝑥, 𝑦) +
󵄨󵄨󵄨󵄨𝐹 (𝑥) − 𝐹 (𝑦)

󵄨󵄨󵄨󵄨 .
(24)

The topology induced by 𝑑 is finer than the topology induced
by 𝑑 (if 𝐹 is Lipschitz continuous with respect to 𝑑, then
they are equivalent). Applying Corollary 4 to the metric 𝑑,
if 𝑑 is bounded, then the 𝐹-coercivity is equivalent to the
𝑑-coercivity. In this case, Corollary 4 yields that if {𝑓

𝑛
} is a

sequence of lower semicontinuous functions with respect to
𝑑 (thus with respect to 𝑑) satisfying H𝐹({𝑓

𝑛
}) and such that

condition (PS)𝐹 holds with respect to the metric 𝑑, then {𝑓
𝑛
}

is 𝑑-coercive.

The rest of the paper is organized as follows.
Section 2 contains the proofs of the results stated in

Section 1, based on the Ekeland variational principle. Our
approach in showing Theorem 1 relies on the ideas in the
proof of Motreanu-Motreanu [3, Theorem 3.1], which is a
different approach from the one of Corvellec [2].

Section 3 contains further applications of Theorem 1 and
Corollary 4 to special classes of sequences of lower semicon-
tinuous functions. Section 3.1 is concernedwith the coercivity
of a sequence of lower semicontinuous functions fulfilling
H𝐹({𝑓

𝑛
}) in the case where lim inf in the definition of

𝛼
𝐹

({𝑓
𝑛
}) is actually a limit. Section 3.2 studies the coercivity

of a sequence of lower semicontinuous functionals which
can be written as a sum of a locally Lipschitz function
and a convex, lower semicontinuous function which is not
identically +∞. Section 3.3 deals with the coercivity of a
continuously differentiable functional 𝑓 on a Banach space
under a Palais-Smale type condition relative to a sequence of
Galerkin approximations of𝑓. Section 3.4 deals with the case
of a constant sequence of lower semicontinuous functions.
Section 3.5 discusses what happens if in place of hypothesis
H𝐹({𝑓

𝑛
}) we consider the case where the limits in 𝛼

𝐹

({𝑓
𝑛
})

are interchanged.

2. Proofs of Theorem 1, Corollary 4, and
Additional Lemmas

A basic ingredient in proving our results is the following
version of the Ekeland variational principle (see Ekeland [4]).
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Theorem 15. Let (𝑋, 𝑑) be a complete metric space and let 𝑓 :

𝑋 → R ∪ {+∞} be a lower semicontinuous function which is
bounded below and not identically +∞. Then for every 𝜀 > 0

and every V ∈ 𝑋 there exists 𝑢 ∈ 𝑋 such that

𝑓 (𝑢) ≤ 𝑓 (V) − 𝜀𝑑 (𝑢, V) , 𝑓 (𝑤) > 𝑓 (𝑢) − 𝜀𝑑 (𝑤, 𝑢) ,

∀𝑤 ∈ 𝑋 \ {𝑢} .

(25)

We need the following preliminary lemma.

Lemma 16. If 𝐹 : 𝑋 → R satisfiesH(𝐹), then for every 𝑟 ∈ R

one has,

(a) [𝐹 > 𝑟] ⊂ [𝐹 > 𝑟 − 𝛾
2
],

(b) [𝐹 > 𝑟] ⊂ int[𝐹 > 𝑟 − 𝛾
2
].

Proof. (a) Let 𝑢 ∈ [𝐹 > 𝑟], and let {𝑢
𝑛
} ⊂ [𝐹 > 𝑟] be a

sequence such that 𝑢
𝑛

→ 𝑢 as 𝑛 → ∞. Since, for 𝑛

sufficiently large, 𝑑(𝑢
𝑛
, 𝑢) < 𝛾

1
, by hypothesis H(𝐹) we have

that 𝐹(𝑢) > 𝐹(𝑢
𝑛
) − 𝛾
2
> 𝑟 − 𝛾

2
.

(b) Let𝑢 ∈ [𝐹 > 𝑟], and let V ∈ 𝑋 be such that𝑑(V, 𝑢) < 𝛾
1
.

Then hypothesis H(𝐹) yields 𝐹(V) > 𝐹(𝑢) − 𝛾
2
> 𝑟−𝛾

2
, which

completes the proof.

Proof of Theorem 1. We denote 𝛼 := 𝛼
𝐹

({𝑓
𝑛
}) ∈ R. Fix 𝜀 ∈

(0, 𝛾
1
/2). By the definition of 𝛼, it follows that there exists 𝑟

𝜀
>

0 such that

𝛼 − 𝜀
2

< lim inf
𝑛→∞

inf
[𝐹>𝑟]

𝑓
𝑛
< 𝛼 + 𝜀

2

, ∀𝑟 ≥ 𝑟
𝜀
. (26)

This implies that for every 𝑟 ≥ 𝑟
𝜀
we find a number 𝑛

𝑟,𝜀
∈ N

such that

𝛼 − 𝜀
2

< inf
[𝐹>𝑟]

𝑓
𝑛
, ∀𝑛 ≥ 𝑛

𝑟,𝜀 (27)

and a subsequence {𝑓
(𝑟)

𝑛𝑘

} (depending on 𝑟) of {𝑓
𝑛
} and a

number 𝑘
𝑟,𝜀

∈ N such that

inf
[𝐹>𝑟]

𝑓
(𝑟)

𝑛𝑘

< 𝛼 + 𝜀
2

, ∀𝑘 ≥ 𝑘
𝑟,𝜀
. (28)

Denote

𝑟
𝜀
= max {𝑟

𝜀
,
1

𝜀
+ 𝛾
2
, 2𝛾
2
} . (29)

In particular, from (27), for 𝑟 = 𝑟
𝜀
, we find a number 𝑛

𝑟𝜀,𝜀
∈ N

such that

𝛼 − 𝜀
2

< inf
[𝐹>𝑟𝜀]

𝑓
𝑛
, ∀𝑛 ≥ 𝑛

𝑟𝜀,𝜀
, (30)

while from (28), for 𝑟 = 2𝑟
𝜀
we find a subsequence {𝑓

𝑛𝑘
}

(which is the subsequence {𝑓(2𝑟𝜀)
𝑛𝑘

}) of {𝑓
𝑛
} and a number 𝑘

2𝑟𝜀,𝜀

such that

inf
[𝐹>2𝑟𝜀]

𝑓
𝑛𝑘
< 𝛼 + 𝜀

2

, ∀𝑘 ≥ 𝑘
2𝑟𝜀 ,𝜀

. (31)

Fix 𝑘 ≥ 𝑘
𝜀
:= max{𝑛

𝑟𝜀,𝜀
, 𝑘
2𝑟𝜀,𝜀

}. Using (31) we find a point

V
𝑘,𝜀

∈ [𝐹 > 2𝑟
𝜀
] (32)

for which one has

𝑓
𝑛𝑘
(V
𝑘,𝜀
) < 𝛼 + 𝜀

2

. (33)

Corresponding to the set [𝐹 > 𝑟
𝜀
] (see (29)), consider the

function 𝑓
𝑛𝑘
: [𝐹 > 𝑟

𝜀
] → R ∪ {+∞} as follows:

𝑓
𝑛𝑘
= 𝑓
𝑛𝑘

󵄨󵄨󵄨󵄨󵄨[𝐹>𝑟𝜀]
. (34)

It is clear that the set [𝐹 > 𝑟
𝜀
] is a complete metric space with

respect to themetric induced by 𝑑 and that the function𝑓
𝑛𝑘
is

lower semicontinuous. In addition, 𝑓
𝑛𝑘
is not identically +∞

since by (32), (33), and (34) we have that V
𝑘,𝜀

∈ dom(𝑓
𝑛𝑘
). By

(34), (30) and using that 𝑛
𝑘
≥ 𝑘 ≥ 𝑘

𝜀
≥ 𝑛
𝑟𝜀 ,𝜀

, we see that

𝑓
𝑛𝑘
(𝑤) = 𝑓

𝑛𝑘
(𝑤) > 𝛼 − 𝜀

2

, ∀𝑤 ∈ [𝐹 > 𝑟
𝜀
]; (35)

hence 𝑓
𝑛𝑘

is bounded from below. Therefore we are in a
position to apply Theorem 15 to the function 𝑓

𝑛𝑘
on the

complete metric space [𝐹 > 𝑟
𝜀
]. Then there exists

𝑢
𝑘,𝜀

∈ [𝐹 > 𝑟
𝜀
] (36)

such that

𝑓
𝑛𝑘
(𝑢
𝑘,𝜀
) ≤ 𝑓
𝑛𝑘
(V
𝑘,𝜀
) − 𝜀𝑑 (𝑢

𝑘,𝜀
, V
𝑘,𝜀
) , (37)

𝑓
𝑛𝑘
(𝑤) > 𝑓

𝑛𝑘
(𝑢
𝑘,𝜀
) − 𝜀𝑑 (𝑤, 𝑢

𝑘,𝜀
) , ∀𝑤 ∈ [𝐹 > 𝑟

𝜀
] \ {𝑢
𝑘,𝜀
} .

(38)

In view of (33), we see that 𝑓
𝑛𝑘
(V
𝑘,𝜀
) < +∞, which combined

with (37) ensures that 𝑢
𝑘,𝜀

∈ dom(𝑓
𝑛𝑘
).

By (36) and Lemma 16 (a) we have that 𝑢
𝑘,𝜀

∈ [𝐹 > 𝑟
𝜀
] ⊂

[𝐹 > 𝑟
𝜀
−𝛾
2
], which, in view of (29), yields 𝐹(𝑢

𝑘,𝜀
) > 𝑟
𝜀
−𝛾
2
≥

1/𝜀, so (7) holds true.
Using (35), (36), (37), and (33) we have

𝛼 − 𝜀
2

< 𝑓
𝑛𝑘
(𝑢
𝑘,𝜀
) ≤ 𝑓
𝑛𝑘
(V
𝑘,𝜀
) − 𝜀𝑑 (𝑢

𝑘,𝜀
, V
𝑘,𝜀
)

< 𝛼 + 𝜀
2

− 𝜀𝑑 (𝑢
𝑘,𝜀
, V
𝑘,𝜀
) ,

(39)

which proves (5).
Let us show that

𝑢
𝑘,𝜀

∈ int [𝐹 > 𝑟
𝜀
]. (40)

Let 𝜇
𝜀
∈ (0, 𝛾

1
− 2𝜀). To get (40) it suffices to prove that

𝑑 (𝑤, 𝑢
𝑘,𝜀
) < 𝜇
𝜀
󳨐⇒ 𝑤 ∈ [𝐹 > 𝑟

𝜀
] . (41)

To see this, let 𝑤 satisfy 𝑑(𝑤, 𝑢
𝑘,𝜀
) < 𝜇
𝜀
. By (39), we have that

𝑑(𝑢
𝑘,𝜀
, V
𝑘,𝜀
) < 2𝜀, which implies that 𝑑(𝑤, V

𝑘,𝜀
) ≤ 𝑑(𝑤, 𝑢

𝑘,𝜀
) +

𝑑(𝑢
𝑘,𝜀
, V
𝑘,𝜀
) < 𝜇

𝜀
+ 2𝜀 < 𝛾

1
. In view of H(𝐹), this leads

to |𝐹(𝑤) − 𝐹(V
𝑘,𝜀
)| < 𝛾

2
. On the other hand, by (32) and
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Lemma 16 (a), we know that V
𝑘,𝜀

∈ [𝐹 > 2𝑟
𝜀
] ⊂ [𝐹 > 2𝑟

𝜀
−𝛾
2
].

It follows that 𝐹(𝑤) > 𝐹(V
𝑘,𝜀
) − 𝛾
2
> 2𝑟
𝜀
− 2𝛾
2
≥ 𝑟
𝜀
, where we

have used (29). This yields (41), which proves (40).
On the other hand, (38) yields

𝑓
𝑛𝑘
(𝑢
𝑘,𝜀
) − 𝑓
𝑛𝑘
(𝑤)

𝑑 (𝑢
𝑘,𝜀
, 𝑤)

< 𝜀, ∀𝑤 ∈ [𝐹 > 𝑟
𝜀
] \ {𝑢
𝑘,𝜀
} . (42)

Taking (40) into account, we can pass to lim sup as𝑤 → 𝑢
𝑘,𝜀

in (42) to obtain

lim sup
𝑤→𝑢𝑘,𝜀

𝑓
𝑛𝑘
(𝑢
𝑘,𝜀
) − 𝑓
𝑛𝑘
(𝑤)

𝑑 (𝑢
𝑘,𝜀
, 𝑤)

≤ 𝜀, (43)

where the lim sup is taken for 𝑤 ∈ 𝑋 (using (41)). If 𝑢
𝑘,𝜀

is
not a local minimum of 𝑓

𝑛𝑘
, then inequality (43) means that

|∇𝑓
𝑛𝑘
|(𝑢
𝑘,𝜀
) ≤ 𝜀, while if 𝑢

𝑘,𝜀
is a local minimum of 𝑓

𝑛𝑘
, then

we know that |∇𝑓
𝑛𝑘
|(𝑢
𝑘,𝜀
) = 0. Hence (6) is proved. Since there

is no loss of generality in taking 𝜀 ∈ (0, 𝛾
1
/2), the proof of the

first part of the conclusion is complete.
For every fixed integer ℓ ≥ 1, applying the first part of

the conclusion with 𝜀 = 1/ℓ, we find a subsequence {𝑓
𝑛𝑘
}

(depending on ℓ) of {𝑓
𝑛
} and a number 𝑘

ℓ
∈ N such that for

all 𝑘 ≥ 𝑘
ℓ
there exists 𝑢

𝑘,ℓ
∈ dom(𝑓

𝑛𝑘
) satisfying

𝛼 −
1

ℓ2
< 𝑓
𝑛𝑘
(𝑢
𝑘,ℓ
) < 𝛼 +

1

ℓ2
,

󵄨󵄨󵄨󵄨󵄨
∇𝑓
𝑛𝑘

󵄨󵄨󵄨󵄨󵄨
(𝑢
𝑘,ℓ
) ≤

1

ℓ
,

𝐹 (𝑢
𝑘,ℓ
) > ℓ.

(44)

In particular, we obtain a subsequence {𝑓
𝑚ℓ
} of {𝑓

𝑛𝑘
} (setting

𝑚
ℓ
= 𝑛
𝑘ℓ
) and 𝑢

ℓ
:= 𝑢
𝑘ℓ ,ℓ

∈ dom(𝑓
𝑚ℓ
) with the properties

stated in the second part of the conclusion.

Proof of Corollary 4. Arguing by contradiction, suppose that
the sequence {𝑓

𝑛
} is not 𝐹-coercive; that is, 𝛼 := 𝛼

𝐹

({𝑓
𝑛
}) <

+∞. Combining this with hypothesis H𝐹({𝑓
𝑛
}), we infer

that 𝛼 ∈ R. With all the hypotheses of Theorem 1 being
satisfied, we then obtain a subsequence {𝑓

𝑚ℓ
} of {𝑓

𝑛𝑘
} and

𝑢
ℓ
∈ dom(𝑓

𝑚ℓ
) satisfying

𝑓
𝑚ℓ

(𝑢
ℓ
) 󳨀→ 𝛼,

󵄨󵄨󵄨󵄨󵄨
∇𝑓
𝑚ℓ

󵄨󵄨󵄨󵄨󵄨
(𝑢
ℓ
) 󳨀→ 0, 𝐹 (𝑢

ℓ
) 󳨀→ +∞

as ℓ 󳨀→ ∞.

(45)

The first two convergences in (45) in conjunction with
condition (PS)𝐹 yield that the sequence {𝑢

ℓ
} is 𝐹-bounded,

which contradicts the last convergence in (45).

We conclude this section with the proof of some asser-
tions stated in Section 1. First, recall that

𝛼
𝐹

(𝑓) = lim inf
𝐹(V)→+∞

𝑓 (V) = sup
𝑟∈R

inf
[𝐹>𝑟]

𝑓 = sup
𝑟∈R

inf
[𝐹>𝑟]

𝑓, (46)

where the last equality is true in view of Lemma 16(a).

Lemma 17. Let𝑋 be ametric space and let𝐹 : 𝑋 → R satisfy
H(𝐹). Given 𝑐 ∈ R, for every 𝑓 : 𝑋 → R∪ {+∞} one has that
𝑐 = 𝛼
𝐹

(𝑓) if and only if (11) holds.

Proof. Suppose that 𝑐 = 𝛼
𝐹

(𝑓). Then, we see from (46) that
if 𝑎 < 𝑐 then there exists 𝑟 ∈ R such that inf

[𝐹>𝑟]
𝑓 > 𝑎 (i.e.,

[𝑓 ≤ 𝑎] ⊂ [𝐹 ≤ 𝑟]), and if 𝑎 > 𝑐 then inf
[𝐹>𝑟]

𝑓 < 𝑎 for all
𝑟 ∈ R (i.e., for every 𝑟 ∈ R there exists V

𝑟
∈ [𝑓 ≤ 𝑎]\ [𝐹 ≤ 𝑟]).

Conversely, suppose that 𝑐 satisfies (11). From the first part
of (11), we have that if 𝑎 < 𝑐, then there exists 𝑟 ∈ R such that
[𝐹 > 𝑟] ⊂ [𝑓 > 𝑎]. It follows that 𝛼𝐹(𝑓) ≥ inf

[𝐹>𝑟]
𝑓 ≥ 𝑎 (see

(46)), whence 𝛼𝐹(𝑓) ≥ 𝑐. From the second part of (11), we
have that if 𝑎 > 𝑐, then for every 𝑟 ∈ R, there exists V

𝑟
∈ [𝐹 >

𝑟] such that 𝑓(V
𝑟
) ≤ 𝑎; hence inf

[𝐹>𝑟]
𝑓 ≤ 𝑎. We conclude that

𝛼
𝐹

(𝑓) ≤ 𝑎 for all 𝑎 > 𝑐, whence 𝛼𝐹(𝑓) ≤ 𝑐.

Lemma 18. Let𝑋 be ametric space and let𝐹 : 𝑋 → R satisfy
H(𝐹).Then for every𝑓 : 𝑋 → R∪{+∞} one has that 𝛼𝐹(𝑓) >
−∞ if and only if [𝐹 > 𝑏] ⊂ [𝑓 > 𝑎] for some 𝑎, 𝑏 ∈ R.

Proof. Suppose that 𝛼𝐹(𝑓) > −∞. Then, by (46), there exist
𝑎, 𝑏 ∈ R with 𝑎 < 𝛼

𝐹

(𝑓) such that inf
[𝐹>𝑏]

𝑓 > 𝑎; that is,
[𝐹 > 𝑏] ⊂ [𝑓 > 𝑎]. Conversely, if [𝐹 > 𝑏] ⊂ [𝑓 > 𝑎] for some
𝑎, 𝑏 ∈ R, then 𝛼

𝐹

(𝑓) ≥ inf
[𝐹>𝑏]

𝑓 ≥ 𝑎 > −∞ (see (46)).

Lemma 19. Let 𝑋 be a metric space, let 𝐹 : 𝑋 → R satisfy
H(𝐹), and let 𝑓, 𝑓

𝑛
: 𝑋 → R ∪ {+∞} (𝑛 ∈ N) satisfy

H𝐹({𝑓
𝑛
}, 𝑓). Then

𝛼
𝐹

({𝑓
𝑛
}) (= lim

𝑟→+∞

lim inf
𝑛→∞

inf
[𝐹>𝑟]

𝑓
𝑛
) = 𝛼

𝐹

(𝑓) . (47)

Proof. Fix 𝑟 ≥ 𝑟
0
, with 𝑟

0
given in H𝐹({𝑓

𝑛
}, 𝑓), and let 𝑢 ∈

dom(𝑓) ∩ [𝐹 > 𝑟]. By H𝐹({𝑓
𝑛
}, 𝑓) (i), there exists a sequence

{𝑢
𝑛
} such that 𝑢

𝑛
→ 𝑢 and 𝑓

𝑛
(𝑢
𝑛
) → 𝑓(𝑢) as 𝑛 → ∞. By

Lemma 16, we have 𝑢 ∈ [𝐹 > 𝑟] ⊂ int[𝐹 > 𝑟 − 2𝛾
2
]. Then

𝑢
𝑛
∈ [𝐹 > 𝑟 − 2𝛾

2
] for all 𝑛 ∈ N sufficiently large, say 𝑛 ≥ 𝑛

0
.

It follows that

inf
[𝐹>𝑟−2𝛾2]

𝑓
𝑛
≤ 𝑓
𝑛
(𝑢
𝑛
) , ∀𝑛 ≥ 𝑛

0
. (48)

Passing to lim inf as 𝑛 → ∞ and using H𝐹({𝑓
𝑛
}, 𝑓) (ii), we

infer that

inf
[𝐹>𝑟]

𝑓 ≤ lim inf
𝑛→∞

inf
[𝐹>𝑟−2𝛾2]

𝑓
𝑛
≤ lim
𝑛→∞

𝑓
𝑛
(𝑢
𝑛
) = 𝑓 (𝑢) . (49)

Since this inequality holds for every 𝑢 ∈ [𝐹 > 𝑟], we obtain

lim inf
𝑛→∞

inf
[𝐹>𝑟−2𝛾2]

𝑓
𝑛
= inf
[𝐹>𝑟]

𝑓. (50)

Since 𝑟 ≥ 𝑟
0
is arbitrary, letting 𝑟 → +∞ establishes the

lemma.

3. Special Cases and Further Remarks

3.1. Case of the Existence of Limit in 𝛼
𝐹

({𝑓
𝑛
}). Let 𝑋 be a

Banach space, let 𝐹 : 𝑋 → R be a function satisfying H(𝐹),
and let 𝑓

𝑛
: 𝑋 → R ∪ {+∞} (𝑛 ∈ N) be a sequence of lower

semicontinuous functions which are not identically +∞. We
assume the following.
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H̃𝐹({𝑓
𝑛
}): there exists 𝑟

0
∈ R such that for all 𝑟 > 𝑟

0
,

lim
𝑛→∞

inf
[𝐹>𝑟]

𝑓
𝑛
exists.

Note that H̃𝐹({𝑓
𝑛
}) is satisfied by all the functions in

Example 12(a), (b), and (c). We consider another notion of
Palais-Smale condition relative to 𝐹.

Definition 20. Let 𝑓
𝑛
: 𝑋 → R ∪ {+∞} (𝑛 ∈ N) be lower

semicontinuous functions which are not identically +∞. We
say that the sequence {𝑓

𝑛
} satisfies the generalized Palais-

Smale condition relative to 𝐹 (condition (gPS)𝐹, for short) if
there exists a subsequence {𝑓

𝑛𝑘
} of {𝑓

𝑛
} such that whenever

{𝑢
𝑘
} ⊂ 𝑋 is a sequence such that {𝑓

𝑛𝑘
(𝑢
𝑘
)} is bounded and

|∇𝑓
𝑛𝑘
|(𝑢
𝑘
) → 0 as 𝑘 → ∞, then {𝑢

𝑘
} is 𝐹-bounded.

Remark 21. Condition (gPS)𝐹 is more general than condition
(PS)𝐹 of Definition 2.

Corollary 22. Assume thatH𝐹({𝑓
𝑛
}) and H̃𝐹({𝑓

𝑛
}) hold.

(i) Assume 𝛼𝐹({𝑓
𝑛
}) < +∞. Then for every 𝜀 > 0, there

exists 𝑛
𝜀
∈ N such that for each 𝑛 ≥ 𝑛

𝜀
one finds 𝑢

𝑛,𝜀
∈

dom(𝑓
𝑛
) satisfying

𝛼
𝐹

({𝑓
𝑛
}) − 𝜀
2

< 𝑓
𝑛
(𝑢
𝑛,𝜀
) < 𝛼
𝐹

({𝑓
𝑛
}) + 𝜀
2

,

󵄨󵄨󵄨󵄨∇𝑓𝑛
󵄨󵄨󵄨󵄨 (𝑢𝑛,𝜀) ≤ 𝜀, 𝐹 (𝑢

𝑛,𝜀
) >

1

𝜀
.

(51)

In particular, there exists 𝑢
𝑛

∈ dom(𝑓
𝑛
) (𝑛 ∈ N)

satisfying

𝑓
𝑛
(𝑢
𝑛
) 󳨀→ 𝛼

𝐹

({𝑓
𝑛
}) ,

󵄨󵄨󵄨󵄨∇𝑓𝑛
󵄨󵄨󵄨󵄨 (𝑢𝑛) 󳨀→ 0,

𝐹 (𝑢
𝑛
) 󳨀→ +∞ as 𝑛 󳨀→ ∞.

(52)

(ii) Assume that {𝑓
𝑛
} satisfies condition (gPS)𝐹 and that

sup
𝑋
𝐹 = +∞. Then the sequence {𝑓

𝑛
} is 𝐹-coercive.

Proof. (i) We argue as in the proof of Theorem 1 noting that,
due to the assumption, in place of (27) and (28) we have

𝛼 − 𝜀
2

< inf
[𝐹>𝑟]

𝑓
𝑛
< 𝛼 + 𝜀

2

, ∀𝑛 ≥ 𝑛
𝑟,𝜀 (53)

and choosing 𝑛
𝜀
= max{𝑛

𝑟𝜀,𝜀
, 𝑛
2𝑟𝜀,𝜀

}.
(ii) Arguing by contradiction, suppose that the sequence

{𝑓
𝑛
} is not 𝐹-coercive; that is, 𝛼 := 𝛼

𝐹

({𝑓
𝑛
}) < +∞; thus 𝛼 ∈

R (see H𝐹({𝑓
𝑛
})).Then, by part (i), we can find 𝑢

𝑛
∈ dom(𝑓

𝑛
)

satisfying (52). Let {𝑓
𝑛𝑘
} be the subsequence of {𝑓

𝑛
} that

satisfies condition (gPS)𝐹.Then the convergences𝑓
𝑛𝑘
(𝑢
𝑛𝑘
) →

𝛼 and |∇𝑓
𝑛𝑘
|(𝑢
𝑛𝑘
) → 0 yield that {𝑢

𝑛𝑘
} is 𝐹-bounded, which

contradicts the third convergence in (52).

3.2. Case of Functionals with Special Structure. Let (𝑋, ‖ ⋅ ‖)
be a Banach space, 𝐹 : 𝑋 → R be a function satisfying H(𝐹),
and 𝑓

𝑛
: 𝑋 → R ∪ {+∞} (𝑛 ∈ N) be of the form

𝑓
𝑛
= Φ
𝑛
+ Ψ
𝑛

(54)

withΦ
𝑛
: 𝑋 → R locally Lipschitz andΨ

𝑛
: 𝑋 → R∪{+∞}

convex, lower semicontinuous, not identically +∞. In this
setting we consider an appropriate version of Palais-Smale
condition (see Motreanu and Panagiotopoulos [5, Chapter
3]).

Definition 23. The sequence of functionals {𝑓
𝑛
} as in (54)

satisfies the Palais-Smale condition in the sense of Motreanu
and Panagiotopoulos relative to 𝐹 (condition (PS+)𝐹 for
short) if whenever {𝑓

𝑛𝑘
} is a subsequence of {𝑓

𝑛
} and {𝑢

𝑘
} ⊂ 𝑋

is a sequence such that {𝑓
𝑛𝑘
(𝑢
𝑘
)} is bounded and for which

there exists a sequence {𝜀
𝑘
} ⊂ R+, 𝜀

𝑘
↓ 0, such that

Φ
0

𝑛𝑘

(𝑢
𝑘
; V − 𝑢

𝑘
) + Ψ
𝑛𝑘
(V) − Ψ

𝑛𝑘
(𝑢
𝑘
)

≥ −𝜀
𝑘

󵄩󵄩󵄩󵄩V − 𝑢
𝑘

󵄩󵄩󵄩󵄩 , ∀V ∈ 𝑋, ∀𝑘 ≥ 1,

(55)

then {𝑢
𝑘
} is 𝐹-bounded.

Hereafter, the notationΦ0(𝑢; V) stands for the generalized
directional derivative of a locally Lipschitz functional Φ :

𝑋 → R at the point 𝑢 ∈ 𝑋 in the direction V ∈ 𝑋 (see
Clarke [6]) given by

Φ
0

(𝑢; V) = lim sup
𝑤→𝑢

𝑡↓0

1

𝑡
(Φ (𝑤 + 𝑡V) − Φ (𝑤)) . (56)

Remark 24. Condition (PS+)𝐹 in the above definition gener-
alizes the Palais-Smale conditions of Chang [7] (for the case
where Φ

𝑛
≡ Φ is locally Lipschitz, Ψ = 0, and 𝐹 = ‖ ⋅ ‖)

and Szulkin [8] (for the case where Φ
𝑛
≡ Φ ∈ 𝐶

1

(𝑋,R),
Ψ
𝑛
≡ Ψ is lower semicontinuous, convex, not identically +∞,

and 𝐹 = ‖ ⋅ ‖).

Lemma 25. (a) Let Φ : 𝑋 → R be a locally Lipschitz
functional, let Ψ : 𝑋 → R ∪ {+∞} be a convex, lower
semicontinuous function which is not identically +∞, and let
𝑓 = Φ + Ψ. Then

Φ
0

(𝑢; V − 𝑢) + Ψ (V) − Ψ (𝑢)

≥ −
󵄨󵄨󵄨󵄨∇𝑓

󵄨󵄨󵄨󵄨 (𝑢) ‖𝑢 − V‖ , ∀𝑢, V ∈ 𝑋.

(57)

(b) For a sequence {𝑓
𝑛
} as in Definition 23, one has

(PS+)𝐹 (of Definition 23) 󳨐⇒ (PS)𝐹 (of Definition 2) .

(58)
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Proof. (a) Using the convexity of Ψ, for every 𝑢, V ∈ 𝑋, V ̸= 𝑢,
we have

Φ
0

(𝑢; V − 𝑢)

‖𝑢 − V‖
+
Ψ (V) − Ψ (𝑢)

‖𝑢 − V‖

≥ lim sup
𝑡↓0

Φ (𝑢 + 𝑡 (V − 𝑢)) − Φ (𝑢)

𝑡 ‖V − 𝑢‖

+ lim
𝑡↓0

Ψ (𝑢 + 𝑡 (V − 𝑢)) − Ψ (𝑢)

𝑡 ‖𝑢 − V‖

≥ lim inf
𝑤→𝑢

(
Φ (𝑤) − Φ (𝑢)

‖𝑤 − 𝑢‖
+
Ψ (𝑤) − Ψ (𝑢)

‖𝑤 − 𝑢‖
)

= −lim sup
𝑤→𝑢

𝑓 (𝑢) − 𝑓 (𝑤)

‖𝑢 − 𝑤‖
.

(59)

If 𝑢 is not a local minimum of 𝑓, then the desired inequality
follows. If 𝑢 is a local minimum of 𝑓, then it is a critical point
of𝑓 in the sense ofMotreanu-Panagiotopoulos [5, Definition
3.1]; that is, Φ0(𝑢; V − 𝑢) + Ψ(V) − Ψ(𝑢) ≥ 0 for all V ∈ 𝑋, and
so again we are done.

(b) This is an immediate consequence of part (a).

Corollary 26. Let 𝑋 be a Banach space and let 𝐹 : 𝑋 → R

satisfy H(𝐹). Let 𝑓
𝑛
= Φ
𝑛
+ Ψ
𝑛
: 𝑋 → R ∪ {+∞} (𝑛 ∈ N) as

in (54). Assume thatH𝐹({𝑓
𝑛
}) holds.

(i) Assume 𝛼𝐹({𝑓
𝑛
}) < +∞. Then, for every 𝜀 > 0, there

exist a subsequence {𝑓
𝑛𝑘
} (depending on 𝜀) of {𝑓

𝑛
} and

a number 𝑘
𝜀
∈ N such that for each 𝑘 ≥ 𝑘

𝜀
one finds

𝑢
𝑘,𝜀

∈ dom(𝑓
𝑛𝑘
) satisfying

𝛼
𝐹

({𝑓
𝑛
}) − 𝜀
2

< 𝑓
𝑛𝑘
(𝑢
𝑘,𝜀
) < 𝛼
𝐹

({𝑓
𝑛
}) + 𝜀
2

, 𝐹 (𝑢
𝑘,𝜀
) >

1

𝜀
,

Φ
0

𝑛𝑘

(𝑢
𝑘,𝜀
; V − 𝑢

𝑘,𝜀
) + Ψ
𝑛𝑘
(V) − Ψ

𝑛𝑘
(𝑢
𝑘,𝜀
)

≥ −𝜀
󵄩󵄩󵄩󵄩V − 𝑢

𝑘,𝜀

󵄩󵄩󵄩󵄩 , ∀V ∈ 𝑋, ∀𝑘 ≥ 1.

(60)

(ii) Assume that {𝑓
𝑛
} satisfies condition (PS+)𝐹 and that

sup
𝑋
𝐹 = +∞. Then the sequence {𝑓

𝑛
} is 𝐹-coercive.

Proof. Part (i) follows from Theorem 1 by using Lemma 25
(a), while part (ii) follows from Corollary 4 by using
Lemma 25(b).

Remark 27. When all the terms of the sequence {𝑓
𝑛
} coincide

(and𝐹 = ‖⋅‖), an extension of Corollary 26 has been obtained
in Motreanu et al. [9] by means of a general Palais-Smale
condition incorporating the Palais-Smale conditions in the
sense of Cerami [10] and Zhong [11].

3.3. Case ofGalerkinApproximations. Let (𝑋, ‖⋅‖)be aBanach
space, let {𝑋

𝑛
} be a sequence of closed vector subspaces of 𝑋

(not necessarily increasing) such that ⋃∞
𝑛=1

𝑋
𝑛
= 𝑋, and let

𝐹 : 𝑋 → R be a function satisfying H(𝐹). Let 𝑓 ∈ 𝐶
1

(𝑋,R)

and let
𝑓
𝑛
:= 𝑓

󵄨󵄨󵄨󵄨󵄨𝑋𝑛
∈ 𝐶
1

(𝑋
𝑛
;R) , ∀𝑛 ∈ N. (61)

We consider the following Palais-Smale condition (see Li and
Willem [12]).

Definition 28. The function 𝑓 ∈ 𝐶
1

(𝑋,R) satisfies the Palais-
Smale condition in the sense of Li-Willem relative to 𝐹

(condition (PS∗)𝐹 for short) if every sequence {𝑢
𝑛
} ⊂ 𝑋 with

𝑢
𝑛
∈ 𝑋
𝛼𝑛
, 𝛼
𝑛
→ +∞, {𝑓(𝑢

𝑛
)} bounded and 𝑓

󸀠

𝛼𝑛

(𝑢
𝑛
) → 0 is

𝐹-bounded.

For all 𝑛 ∈ N, define the functions 𝑓
𝑛
: 𝑋 → R ∪ {+∞}

by

𝑓
𝑛
(𝑢) = {

𝑓 (𝑢) , if 𝑢 ∈ 𝑋
𝑛
,

+∞, otherwise.
(62)

It is clear that the functions 𝑓
𝑛
are lower semicontinuous and

not identically +∞.

Lemma 29. (a) |∇𝑓
𝑛
|(𝑢) = ‖𝑓

󸀠

𝑛
(𝑢)‖
𝑋
∗
𝑛

for all 𝑢 ∈ 𝑋
𝑛
and all

𝑛 ∈ N.
(b) (PS∗)𝐹 (of Definition 28 for𝑓 ∈ 𝐶

1

(𝑋,R))⇔ (PS)𝐹 (of
Definition 2 for {𝑓

𝑛
}).

Proof. (a) Using that 𝑓
𝑛
∈ 𝐶
1

(𝑋
𝑛
,R), for every 𝑢 ∈ 𝑋

𝑛
which

is not a local minimizer of𝑓
𝑛
(equivalently, nor of𝑓

𝑛
) we have

󵄨󵄨󵄨󵄨󵄨
∇𝑓
𝑛

󵄨󵄨󵄨󵄨󵄨
(𝑢) = lim sup

𝑤→𝑢

𝑤∈𝑋𝑛

𝑓
𝑛
(𝑢) − 𝑓

𝑛
(𝑤)

‖𝑢 − 𝑤‖

=
󵄨󵄨󵄨󵄨∇𝑓𝑛

󵄨󵄨󵄨󵄨 (𝑢) =
󵄩󵄩󵄩󵄩󵄩
𝑓
󸀠

𝑛
(𝑢)

󵄩󵄩󵄩󵄩󵄩𝑋∗
𝑛

.

(63)

The case where 𝑢 ∈ 𝑋
𝑛
is a local minimizer of 𝑓

𝑛
is

straightforward.
(b) This easily follows from part (a).

Denote 𝛼𝐹
𝑓
:= lim

𝑟→+∞
lim inf

𝑛→∞
inf
[𝐹>𝑟]∩𝑋𝑛

𝑓.

Corollary 30. Let𝑋 be a Banach space, let {𝑋
𝑛
} be a sequence

of closed vector subspaces of𝑋 such that⋃∞
𝑛=1

𝑋
𝑛
= 𝑋, and let

𝐹 : 𝑋 → R be a function satisfying H(𝐹). Let 𝑓 ∈ 𝐶
1

(𝑋,R)

and 𝑓
𝑛
:= 𝑓|
𝑋𝑛

(𝑛 ∈ N). Assume that 𝛼𝐹
𝑓
> −∞.

(i) Assume 𝛼𝐹
𝑓
< +∞. Then, for every 𝜀 > 0, there exist

a subsequence {𝑓
𝑛𝑘
} (depending on 𝜀) of {𝑓

𝑛
} and a

number 𝑘
𝜀
∈ N such that for each 𝑘 ≥ 𝑘

𝜀
one finds

𝑢
𝑘,𝜀

∈ 𝑋
𝑛𝑘
satisfying

𝛼
𝐹

𝑓
− 𝜀
2

< 𝑓 (𝑢
𝑘,𝜀
) < 𝛼
𝐹

𝑓
+ 𝜀
2

,

󵄩󵄩󵄩󵄩󵄩
𝑓
󸀠

𝑛𝑘

(𝑢
𝑘,𝜀
)
󵄩󵄩󵄩󵄩󵄩𝑋∗
𝑛𝑘

≤ 𝜀, 𝐹 (𝑢
𝑘,𝜀
) >

1

𝜀
.

(64)

(ii) Assume that 𝑓 satisfies condition (PS∗)𝐹 and that
sup
𝑋
𝐹 = +∞. Then 𝛼

𝐹

𝑓
= +∞.

Proof. Part (i) follows by applyingTheorem 1 to the sequence
{𝑓
𝑛
} in (62), noting that 𝛼

𝐹

({𝑓
𝑛
}) = 𝛼

𝐹

𝑓
and using
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Lemma 29(a). To prove part (ii), apply Corollary 4 to {𝑓
𝑛
} and

use Lemma 29(b).

3.4. Case of a Constant Sequence of Functions. When all the
terms of the sequence {𝑓

𝑛
} coincide, say 𝑓

𝑛
= 𝑓, for all 𝑛,

Theorem 1 and Corollary 4 yield the following.

Corollary 31. Let 𝑋 be a complete metric space and let 𝐹 :

𝑋 → R satisfy H(𝐹). Let 𝑓 : 𝑋 → R ∪ {+∞} be a lower
semicontinuous function with the property

𝛼
𝐹

(𝑓) := lim inf
𝐹(V)→+∞

𝑓 (V) (= lim
𝑟→+∞

inf
[𝐹>𝑟]

𝑓) > −∞. (65)

(i) If 𝛼𝐹(𝑓) < +∞, then for every 𝜀 > 0 there exists 𝑢
𝜀
∈

dom(𝑓) such that

𝛼
𝐹

(𝑓) − 𝜀
2

< 𝑓 (𝑢
𝜀
) < 𝛼
𝐹

(𝑓) + 𝜀
2

,

󵄨󵄨󵄨󵄨∇𝑓
󵄨󵄨󵄨󵄨 (𝑢𝜀) ≤ 𝜀, 𝐹 (𝑢

𝜀
) >

1

𝜀
.

(66)

(ii) Assume that 𝑓 satisfies the following Palais-Smale
condition: every sequence {𝑢

𝑘
} ⊂ 𝑋 such that {𝑓(𝑢

𝑘
)} is

bounded and |∇𝑓|(𝑢
𝑘
) → 0 as 𝑘 → ∞ is 𝐹-bounded.

Assume also that sup
𝑋
𝐹 = +∞. Then 𝑓 is 𝐹-coercive;

that is, 𝛼𝐹(𝑓) = +∞, or, equivalently, 𝑓(V) → +∞ as
𝐹(V) → +∞.

Proof. Part (i) follows from Theorem 1 applied with 𝑓
𝑛
= 𝑓

for all 𝑛 ∈ N (note that 𝛼𝐹(𝑓) = 𝛼
𝐹

({𝑓})), while part (ii)
follows from Corollary 4 in the same way.

Remark 32. (a) The condition that 𝛼𝐹(𝑓) ∈ R ensures that
the function𝑓 is not identically +∞ and that the sets {V ∈ 𝑋 :

𝐹(V) > 𝑟} are nonempty for all 𝑟 ∈ R.
(b) In Motreanu et al. [13], results concerning the asymp-

totic behavior as in Corollary 31(i) and the 𝐹-coercivity as
in Corollary 31(ii) are given in the more general setting of
a metric space endowed with a quasiorder ≤ and of ≤-
lower semicontinuous functions, by means of an appropriate
notion of strong slope. Corollary 31 can be obtained from [13,
Theorems 6.1, and 6.2] in the case where the quasiorder is the
trivial one.

We apply Corollary 31 to the special situation 𝐹 = 𝑑(⋅, 𝐴)

(see Example 13(a)).

Corollary 33. Let 𝑋 be a complete metric space, let 𝐴 be a
nonempty subset of 𝑋, and let 𝑓 : 𝑋 → R ∪ {+∞} be a lower
semicontinuous function with the property

𝛼
𝑑(⋅,𝐴)

(𝑓) := lim inf
𝑑(V,𝐴)→+∞

𝑓 (V) > −∞. (67)

(i) If 𝛼𝑑(⋅,𝐴)(𝑓) < +∞, then for every 𝜀 > 0 there is 𝑢
𝜀
∈

dom(𝑓) such that

𝛼
𝑑(⋅,𝐴)

(𝑓) − 𝜀
2

< 𝑓 (𝑢
𝜀
) < 𝛼
𝑑(⋅,𝐴)

(𝑓) + 𝜀
2

,

󵄨󵄨󵄨󵄨∇𝑓
󵄨󵄨󵄨󵄨 (𝑢𝜀) ≤ 𝜀, 𝑑 (𝑢

𝜀
, 𝐴) >

1

𝜀
.

(68)

(ii) Assume that 𝑓 satisfies the following Palais-Smale
condition: every sequence {𝑢

𝑘
} ⊂ 𝑋 such that {𝑓(𝑢

𝑘
)}

is bounded and |∇𝑓|(𝑢
𝑘
) → 0 as 𝑘 → ∞ satisfies

that {𝑑(𝑢
𝑘
, 𝐴)} is bounded. If 𝑋 \ 𝐴 is unbounded,

then 𝑓 is coercive in the sense that 𝑓(V) → +∞ as
𝑑(V, 𝐴) → +∞.

Proof. This readily follows from Corollary 31 applied to 𝐹 =

𝑑(⋅, 𝐴).

Remark 34. In the case where 𝐴 is bounded, the expression
𝛼
𝑑(⋅,𝐴)

(𝑓) in Corollary 33 and the coercivity property in (ii)
do not depend on the set 𝐴 ⊂ 𝑋.

In particular, we can consider 𝐴 = {𝑢
0
}, for some 𝑢

0
∈ 𝑋.

If𝑋 is a Banach space and 𝑢
0
= 0, then Corollary 33 becomes

the following.

Corollary 35. Let (𝑋, ‖ ⋅ ‖) be a Banach space and let𝑓 : 𝑋 →

R∪{+∞} be a lower semicontinuous functionwith the property
𝛼
‖⋅‖

(𝑓) := lim inf
‖V‖→+∞𝑓(V) > −∞.

(i) If 𝛼‖⋅‖(𝑓) < +∞, then for every 𝜀 > 0 there exists 𝑢
𝜀
∈

dom(𝑓) such that

𝛼
‖⋅‖

(𝑓) − 𝜀
2

< 𝑓 (𝑢
𝜀
) < 𝛼
‖⋅‖

(𝑓) + 𝜀
2

,

󵄨󵄨󵄨󵄨∇𝑓
󵄨󵄨󵄨󵄨 (𝑢𝜀) ≤ 𝜀,

󵄩󵄩󵄩󵄩𝑢𝜀
󵄩󵄩󵄩󵄩 >

1

𝜀
.

(69)

(ii) Assume that 𝑓 satisfies the following Palais–Smale
condition: every sequence {𝑢

𝑘
} ⊂ 𝑋 such that {𝑓(𝑢

𝑘
)}

is bounded and |∇𝑓|(𝑢
𝑘
) → 0 as 𝑘 → ∞ is bounded.

Then 𝑓 is coercive in the sense that 𝑓(V) → +∞ as
‖V‖ → +∞.

Remark 36. Corollary 35 extends the corresponding result in
the smooth case, that is, for 𝑓 of class 𝐶1 (see Brezis and
Nirenberg [14]).

3.5. Case Where the Limits in 𝛼
𝐹

({𝑓
𝑛
}) Are Interchanged. It is

natural to ask what happens when the expression 𝛼
𝐹

({𝑓
𝑛
}) in

H𝐹({𝑓
𝑛
}) is replaced with

𝛼̃
𝐹

({𝑓
𝑛
}) := lim
𝑛→∞

lim inf
𝐹(V)→+∞

𝑓
𝑛
(V)

def
= lim
𝑛→∞

lim
𝑟→+∞

inf
[𝐹>𝑟]

𝑓
𝑛

= lim
𝑛→∞

sup
𝑟∈R

inf
[𝐹>𝑟]

𝑓
𝑛
,

(70)

that is, when the limits inH𝐹({𝑓
𝑛
}) are interchanged (wework

directly with a sequence {𝑓
𝑛
} for which the limit as 𝑛 → ∞

in (70) exists in place of considering lim inf).
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Proposition 37. Let𝑋 be a completemetric space, let𝐹 : 𝑋 →

R be a function satisfying H(𝐹), and let 𝑓
𝑛
: 𝑋 → R ∪ {+∞}

(𝑛 ∈ N) be a sequence of lower semicontinuous functions with
the property 𝛼̃𝐹({𝑓

𝑛
}) > −∞.

(i) Assume 𝛼̃𝐹({𝑓
𝑛
}) < +∞. Then for every 𝜀 > 0, there

exists 𝑛
𝜀
∈ N such that for each 𝑛 ≥ 𝑛

𝜀
one finds 𝑢

𝑛,𝜀
∈

dom(𝑓
𝑛
) satisfying

𝛼̃
𝐹

({𝑓
𝑛
}) − 𝜀
2

< 𝑓
𝑛
(𝑢
𝑛,𝜀
) < 𝛼̃
𝐹

({𝑓
𝑛
}) + 𝜀
2

,

󵄨󵄨󵄨󵄨∇𝑓𝑛
󵄨󵄨󵄨󵄨 (𝑢𝑛,𝜀) ≤ 𝜀, 𝐹 (𝑢

𝑛,𝜀
) >

1

𝜀
.

(71)

(ii) Assume that {𝑓
𝑛
} satisfies condition (gPS)𝐹 (see

Definition 20) and that sup
𝑋
𝐹 = +∞. Then

𝛼̃
𝐹

({𝑓
𝑛
}) = +∞.

Proof. (i) We denote 𝛼̃ := 𝛼̃
𝐹

({𝑓
𝑛
}) ∈ R. Fix 𝜀 > 0. By (70),

there exists 𝑛
𝜀
∈ N such that

𝛼̃ −
𝜀
2

2
< lim
𝑟→+∞

inf
[𝐹>𝑟]

𝑓
𝑛
< 𝛼̃ +

𝜀
2

2
, ∀𝑛 ≥ 𝑛

𝜀
. (72)

Denote 𝛼
𝑛
:= lim

𝑟→+∞
inf
[𝐹>𝑟]

𝑓
𝑛
. In view of (72) we have

𝛼
𝑛
∈ R for all 𝑛 ≥ 𝑛

𝜀
. Then, for each 𝑛 ≥ 𝑛

𝜀
we can apply

Corollary 31(i) to the function 𝑓 := 𝑓
𝑛
and the number 𝜀 :=

𝜀/√2. Thus, we find 𝑢
𝑛,𝜀

∈ dom(𝑓
𝑛
) such that

𝛼̃ − 𝜀
2

< 𝛼
𝑛
−
𝜀
2

2
< 𝑓
𝑛
(𝑢
𝑛,𝜀
) < 𝛼
𝑛
+
𝜀
2

2
< 𝛼̃ + 𝜀

2

,

󵄨󵄨󵄨󵄨∇𝑓𝑛
󵄨󵄨󵄨󵄨 (𝑢𝑛,𝜀) ≤

𝜀

√2

< 𝜀, 𝐹 (𝑢
𝑛,𝜀
) >

√2

𝜀
>
1

𝜀
.

(73)

(ii) Arguing by contradiction, suppose that 𝛼̃ :=

𝛼̃
𝐹

({𝑓
𝑛
}) ∈ R. Let a subsequence of {𝑓

𝑛
}, denoted again by

{𝑓
𝑛
}, with the property in condition (gPS)𝐹. Applying part (i)

of the proposition to the subsequence {𝑓
𝑛
} and 𝜀 = 1/𝑘 (𝑘 ∈

N), we find a number 𝑛
𝑘
∈ N and an element 𝑢

𝑘
∈ dom(𝑓

𝑛𝑘
)

with the properties

𝛼̃ −
1

𝑘2
< 𝑓
𝑛𝑘
(𝑢
𝑘
) < 𝛼̃ +

1

𝑘2
,

󵄨󵄨󵄨󵄨󵄨
∇𝑓
𝑛𝑘

󵄨󵄨󵄨󵄨󵄨
(𝑢
𝑘
) ≤

1

𝑘
,

𝐹 (𝑢
𝑘
) > 𝑘.

(74)

Consequently, we have 𝑓
𝑛𝑘
(𝑢
𝑘
) → 𝛼̃, |∇𝑓

𝑛𝑘
|(𝑢
𝑘
) → 0, and

𝐹(𝑢
𝑘
) → +∞ as 𝑘 → ∞.The first two convergences in con-

junction with condition (gPS)𝐹 yield that the sequence {𝑢
𝑘
} is

𝐹-bounded, which contradicts the third convergence.

Remark 38. The above proof shows that Proposition 37(i)
is a consequence of Corollary 31(i). On the other hand,
Corollary 31(i) can be obtained from Proposition 37(i) by
taking 𝑓

𝑛
= 𝑓, for all 𝑛 ∈ N. So, Proposition 37(i) and

Corollary 31(i) are conceptually equivalent, in the sense that
Corollary 31(i) 󳨐⇒ Proposition 37(i) 󳨐⇒ Corollary 31(i) .

(75)
Thus our main result, Theorem 1 (involving the expression
𝛼
𝐹

({𝑓
𝑛
}) in H𝐹({𝑓

𝑛
}) is more general than Proposition 37(i)

(involving the expression 𝛼̃
𝐹

({𝑓
𝑛
}) in (70)).
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Zhong’s coercivity result for a general class of nonsmooth
functionals,”Abstract andAppliedAnalysis, vol. 7, no. 11, pp. 601–
612, 2002.

[10] G. Cerami, “An existence criterion for the critical points
on unbounded manifolds,” Istituto Lombardo, Accademia di
Scienze e Lettere. Rendiconti, vol. 112, no. 2, pp. 332–336, 1978.

[11] C. K. Zhong, “A generalization of Ekeland’s variational principle
and application to the study of the relation between theweakP.S.
condition and coercivity,” Nonlinear Analysis: Theory, Methods
& Applications, vol. 29, no. 12, pp. 1421–1431, 1997.

[12] S. J. Li and M. Willem, “Applications of local linking to
critical point theory,” Journal of Mathematical Analysis and
Applications, vol. 189, no. 1, pp. 6–32, 1995.

[13] D. Motreanu, V. V. Motreanu, and M. Turinici, “Coerciveness
property for conical nonsmooth functionals,” Journal of Opti-
mization Theory and Applications, vol. 145, no. 1, pp. 148–163,
2010.

[14] H. Brezis andL.Nirenberg, “Remarks onfinding critical points,”
Communications on Pure and Applied Mathematics, vol. 44, no.
8-9, pp. 939–963, 1991.


