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Copyright © 2013 Tiansi Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A codimension-4 homoclinic bifurcation with one orbit flip and one inclination flip at principal eigenvalue direction resonance is
considered. By introducing a local active coordinate system in some small neighborhood of homoclinic orbit, we get the Poincaré
return map and the bifurcation equation. A detailed investigation produces the number and the existence of 1-homoclinic orbit,
1-periodic orbit, and double 1-periodic orbits. We also locate their bifurcation surfaces in certain regions.

1. Introduction and Hypotheses

The study of homoclinic flip bifurcations is comprehensively
developed from the last two decades with the beginning work
of Yanagida (1987) for homoclinic-doubling bifurcations.
Generally there exist two kinds of homoclinic flips, namely
the orbit flips and the inclination flips corresponding to non-
principal homoclinic orbits or critically twisted homoclinic
orbits, respectively. Kisaka et al. in [1, 2] and Naudot in
[3] studied some cases of codimension two inclination flips;
Morales and Pacifico in [4] and Naudot in [5] considered
the orbit flips cases, while Homburg and Krauskopf in [6]
proposed several unfoldings of the resonant homoclinic flip
bifurcations around the central codimension-three point (the
organizing centre) in parameter space to study the qualitative
structure of bifurcation curves on a sphere and also that
of Oldeman et al. in [7] by a numerical investigation with
some software into these bifurcations in a specific three-
dimensional vector field.

Recently, Zhang et al. in [8–10] studied a kind of multiple
flips homoclinic resonant bifurcation and got the existence
of some saddle-node bifurcations and homoclinic-doubling
bifurcations. Meanwhile Geng et al. in [11], Lu et al. in [12],
and Liu in [13] discussed, respectively, a heterodimensional
cycle flip or accompanied by transcritical bifurcation; they

found the double and triple periodic orbit bifurcations and
gave also some coexistence conditions for homoclinic orbits
and periodic orbits.

Asmentioned in [6, 7], due to the break of three genericity
conditions, there are many complicated homoclinic flips
cases to study. In this paper, we confine our attention to
a principal eigenvalue resonance of one orbit flip and one
inclination flip homoclinic bifurcation. Compared with the
above-mentioned work, our subject is very challenging and
difficult because of the stronger degeneracy and the higher
codimension. By constructing specifically a local active coor-
dinate in a small tubular neighborhood of homoclinic orbit,
we establish a regularmap and then combine it with a singular
map defined by the approximation solutions of system to
build Poincaré return map (see also [14]). We obtain the
existence of several 1-periodic orbit, 1-homoclinic orbit, and
double 1-periodic orbits, as well as some bifurcation surfaces
with the analysis of the bifurcation equation.

We first consider a 𝐶𝑟 system

�̇� = 𝑓 (𝑧) + 𝑔 (𝑧, 𝜇) (1)

and its unperturbed system

�̇� = 𝑓 (𝑧) , (2)
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where 𝑟 ≥ 3, 𝑧 ∈ R4, 𝜇 ∈ R𝑙, 𝑙 ≥ 4, 0 < |𝜇| ≪ 1, 𝑓(0) = 0, and
𝑔(0, 𝜇) = 𝑔(𝑧, 0) = 0. Suppose that the linearization D𝑓(0)
has four simple real eigenvalues𝜆

1
,𝜆
2
,−𝜌
1
, and−𝜌

2
with𝜆

2
>

𝜆
1
> 0 > −𝜌

1
> −𝜌
2
. Accordingly, the stable manifold 𝑊𝑠

and the unstable manifold𝑊𝑢 are both two-dimensional. Let
𝑊
𝑠𝑠 and 𝑊𝑢𝑢 be the strong stable manifold and the strong

unstable manifold of the saddle 𝑧 = 𝑂, respectively. Assume
further that system (2) has a homoclinic orbit Γ = {𝑧 = 𝑟(𝑡) :

𝑡 ∈ R, 𝑟(±∞) = 0}. Hereinafter, our arguments will spread
based on the following three hypotheses.

(H1) Resonance. 𝜆
1
(𝜇) = 𝜌

1
(𝜇), |𝜇| ≪ 1, where

𝜆
1
(0) = 𝜆

1
and 𝜌
1
(0) = 𝜌

1
.

(H2) Orbit Flip. Define 𝑒+ = lim
𝑡→−∞

̇𝑟(𝑡)/| ̇𝑟(𝑡)|; 𝑒−
𝑠
=

lim
𝑡→+∞

̇𝑟(𝑡)/| ̇𝑟(𝑡)|; then 𝑒+ ∈ 𝑇
0
𝑊
𝑢 and 𝑒−

𝑠
∈ 𝑇
0
𝑊
𝑠𝑠

are unit eigenvectors corresponding to 𝜆
1
and −𝜌

2
,

respectively, where𝑇
0
𝑊
𝑢 (resp.,𝑇

0
𝑊
𝑠𝑠) is the tangent

space of the corresponding manifold𝑊𝑢 (resp.,𝑊𝑠𝑠)
at the saddle 𝑧 = 𝑂.
(H3) Inclination Flip. Let 𝑒+

𝑢
and 𝑒− be the unit eigen-

vectors corresponding to𝜆
2
and−𝜌

1
, respectively, and

lim
𝑡→+∞

{𝑇
𝑟(𝑡)
𝑊
𝑢

, 𝑇
𝑟(𝑡)
𝑊
𝑠

, 𝑒
+

𝑢
} = R

4

,

lim
𝑡→−∞

{𝑇
𝑟(𝑡)
𝑊
𝑢

, 𝑇
𝑟(𝑡)
𝑊
𝑠

, 𝑒
−

} = R
4

.

(3)

Remark 1. Hypothesis (H2) is called an orbit flip because
homoclinic orbit trends from the weak unstable manifold
toward the strong stablemanifold. Hypothesis (H3)means an
inclination flip for its equivalence to

𝑇
𝑟(𝑡)
𝑊
𝑢

→ span {𝑒−
𝑠
, 𝑒
+

} ,

𝑇
𝑟(𝑡)
𝑊
𝑠

→ span {𝑒−
𝑠
, 𝑒
+

} .

(4)

2. Poincaré Return Map

This section treats mainly the establishment of Poincaré
return map with two steps. To begin we first need to trans-
form system (1) into a normal form in some neighborhood of
the origin 𝑂.

It is well known that there are always two 𝐶𝑟 and 𝐶
𝑟−1

transformations successively, also by the stable (or unstable)
manifold theorem in [15], to straighten the local manifolds
𝑊
𝑠

loc and𝑊
𝑢

loc as𝑊
𝑠

loc = {𝑧 ∈ 𝑈, 𝑥 = 𝑢 = 0} and𝑊𝑢loc = {𝑧 ∈

𝑈, 𝑦 = V = 0}, respectively,𝑊𝑠𝑠loc = {𝑧 ∈ 𝑈, 𝑥 = 𝑦 = 𝑢 = 0}

(resp.,𝑊𝑢𝑢loc = {𝑧 ∈ 𝑈, 𝑥 = 𝑦 = V = 0}); see [8–10]. Notice that
now Γ ∩ 𝑊

𝑢

loc = {𝑧 ∈ 𝑈, 𝑢 = 𝑢(𝑥), 𝑦 = V = 0} and Γ ∩ 𝑊𝑠loc =
𝑊
𝑠𝑠

loc, where 𝑧 = (𝑥, 𝑦, 𝑢, V) ∈ R4 and 𝑢(0) = 𝑢


(0) = 0. Thus,
system (1) can be changed to a𝐶𝑟−2 form in the neighborhood
𝑈 as follows:

�̇� = [𝜆
1
(𝜇) + 𝑎 (𝜇) 𝑥V + 𝑜 (|𝑥V|)] 𝑥

+ 𝑂 (𝑢) [𝑂 (𝑥
2V) + 𝑂 (𝑦)] ,

̇𝑦 = [−𝜌
1
(𝜇) + 𝑏 (𝜇) 𝑥V + 𝑜 (|𝑥V|)] 𝑦

+ 𝑂 (V) [𝑂 (𝑥𝑦V) + 𝑂 (𝑢)] ,

�̇� = [𝜆
2
(𝜇) + 𝑐 (𝜇) 𝑥V + 𝑜 (|𝑥V|)] 𝑢

+ 𝑥
2

𝐻
1
(𝑥, 𝑦, V) ,

V̇ = [−𝜌
2
(𝜇) + 𝑑 (𝜇) 𝑥V + 𝑜 (|𝑥V|)] V

+ 𝑦
2

𝐻
2
(𝑥, 𝑦, 𝑢) ,

(5)

where 𝐻
1
(𝑥, 0, 0) = 0, 𝐻

2
(0, 𝑦, 0) = 0, 𝜆

1
(0) = 𝜆

1
, 𝜆
2
(0) =

𝜆
2
, 𝜌
1
(0) = 𝜌

1
, and 𝜌

2
(0) = 𝜌

2
. 𝑎(𝜇), 𝑏(𝜇), 𝑐(𝜇), and 𝑑(𝜇) are

parameters depending on 𝜇.
Owing to the above straightness of the invariant mani-

folds, it is easy to find some moment 𝑇, such that 𝑟(−𝑇) =
{𝛿, 0, 𝛿

𝑢
, 0} and 𝑟(𝑇) = {0, 0, 0, 𝛿} for some sufficiently small 𝛿

and |𝛿
𝑢
| = 𝑂(𝛿

2

) with {(𝑥, 𝑦, 𝑢, V) : |𝑥|, |𝑦|, |𝑢|, |V| < 2𝛿} ⊂ 𝑈.
Wherefore one can choose

𝑆
0
= {𝑧 = 𝑧 (𝑇) : |𝑥| ,

𝑦
 , |𝑢| , |V| < 2𝛿} ⊂ 𝑈,

𝑆
1
= {𝑧 = 𝑧 (−𝑇) : |𝑥| ,

𝑦
 , |𝑢| , |V| < 2𝛿} ⊂ 𝑈,

(6)

as the cross-sections of Γ at 𝑡 = 𝑇 and 𝑡 = −𝑇, respectively.
Let 𝜏 be the time going from 𝑞

0
(𝑥
0
, 𝑦
0
, 𝑢
0
, V
0
) ∈ 𝑆

0
to

𝑞
1
(𝑥
1
, 𝑦
1
, 𝑢
1
, V
1
) ∈ 𝑆
1
and the Silnikov time 𝑠 = 𝑒

−𝜆
1
(𝜇)𝜏, with

the help of the linear approximation solutions of system (5)
(see [8–10]); we have thereby

𝑥
0
= 𝑥 (𝑇) = 𝑠𝑥

1
+ 𝑂 (𝑥

2

1
𝑦
0
𝑠
2 ln 𝑠 ) ,

𝑦
1
= 𝑦 (𝑇 + 𝜏) = 𝑠

𝜌
1
(𝜇)/𝜆

1
(𝜇)

𝑦
0
+ 𝑂 (𝑥

1
𝑦
2

0
𝑠
2 ln 𝑠) ,

𝑢
0
= 𝑢 (𝑇)

= 𝑠
𝜆
2
(𝜇)/𝜆

1
(𝜇)

𝑢
1
+ 𝑂 (𝑥

1
𝑦
0
𝑢
1
𝑠
(𝜆
2
(𝜇)/𝜆

1
(𝜇))+1 ln 𝑠) ,

V
1
= V (𝑇 + 𝜏)

= 𝑠
𝜌
2
(𝜇)/𝜆

1
(𝜇)V
0
+ 𝑂 (𝑥

1
𝑦
0
V
0
𝑠
(𝜌
2
(𝜇)/𝜆

1
(𝜇))+1 ln 𝑠) ,

(7)

which give explicitly the definition of the local transitionmap
𝐹
0
: 𝑆
0
→ 𝑆
1
: 𝑞
0
→ 𝑞
1
; see Figure 1(a).

In the following part we construct the map 𝐹
1
: 𝑆
1
→ 𝑆
0
.

Firstly consider the linear variational system

�̇� = 𝐷𝑓 (𝑟 (𝑡)) 𝑧 (8)

and its adjoint system

�̇� = −(𝐷𝑓 (𝑟 (𝑡)))
∗

𝑧. (9)



Abstract and Applied Analysis 3

S1 q1

Ou

y

F0

S0

q0

𝜐

x

(a) 𝐹
0
: 𝑆
0
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O

(b) 𝐹
1
: 𝑆
1
→ 𝑆
0

Figure 1: Transition maps.

Lemma 2. There exists a fundamental solution matrix 𝑍(𝑡) =
(𝑧
1
(𝑡), 𝑧
2
(𝑡), 𝑧
3
(𝑡), 𝑧
4
(𝑡)) of system (8) satisfying

𝑍 (−𝑇) = (

𝑤
11

𝑤
21

0 𝑤
41

𝑤
12

0 0 𝑤
42

𝑤
13

𝑤
23

1 𝑤
43

0 0 0 𝑤
44

),

𝑍 (𝑇) = (

0 0 𝑤
31

0

𝑤
14

0 𝑤
32

1

1 0 𝑤
33

0

0 1 𝑤
34

0

) ,

(10)

where 𝑧
1
(𝑡) ∈ (𝑇

𝑟(𝑡)
𝑊
𝑢

)
𝑐

∩ (𝑇
𝑟(𝑡)
𝑊
𝑠

)
𝑐, 𝑧
2
(𝑡) = − ̇𝑟(𝑡)/| ̇𝑟

𝑦

(𝑇)| ∈

𝑇
𝑟(𝑡)
𝑊
𝑢

∩ 𝑇
𝑟(𝑡)
𝑊
𝑠, 𝑧
3
(𝑡) ∈ 𝑇

𝑟(𝑡)
𝑊
𝑢, 𝑧
4
(𝑡) ∈ 𝑇

𝑟(𝑡)
𝑊
𝑠 and

𝑤
12
𝑤
21
𝑤
31
𝑤
44

̸= 0, 𝑤
23

< 0. Moreover, |𝑤
1𝑖
𝑤
−1

12
| ≪ 1, 𝑖 ̸= 2,

|𝑤
3𝑖
𝑤
−1

31
| ≪ 1, 𝑖 ̸= 1, |𝑤

4𝑖
𝑤
−1

44
| ≪ 1, 𝑖 ̸= 4 for 𝑇 → +∞.

Proof. Notice that the tangent subspace 𝑇
𝛾(−𝑇)

𝑊
𝑢 is invariant

and 𝑊
𝑢𝑢

loc ∩ 𝑈 is straightened to be 𝑢 axis; it is possible to
choose 𝑧

3
(−𝑇) = (0, 0, 1, 0) since 𝑧

3
(𝑡) ∈ 𝑇

𝛾(𝑡)
𝑊
𝑢. While

for 𝑤
31

̸= 0, it is because lim
𝑡→+∞

𝑇
𝛾(𝑡)
𝑊
𝑢

= span{𝑒+, 𝑒−
𝑠
} and

𝑧
3
(𝑇) ∈ 𝑇

𝛾(𝑇)
𝑊
𝑢 corresponding to 𝑥 axis.

As to 𝑧
𝑖
(−𝑇) or 𝑧

𝑖
(𝑇), 𝑖 = 1, 2, 4, one may refer to [8, 9]

for the similar proof, but we omit the details here.

Remark 3. The matrix (𝑍
−1

(𝑡))
∗ is a fundamental solu-

tion matrix of system (9). We denote it as Φ(𝑡) =

(𝜙
1
(𝑡), 𝜙
2
(𝑡), 𝜙
3
(𝑡), 𝜙
4
(𝑡)) = (𝑍

−1

(𝑡))
∗; then 𝜙

1
(𝑡) ∈

(𝑇
𝑟(𝑡)
𝑊
𝑢

)
𝑐

∩ (𝑇
𝑟(𝑡)
𝑊
𝑠

)
𝑐 is bounded and tends to zero expo-

nentially as |𝑡| → +∞ due to < 𝜙
𝑖
(𝑡), 𝑧
𝑖
(𝑡) ≥ 1 and 𝑧

𝑖
(𝑡)

tends exponentially to infinity.

In fact (𝑧
1
(𝑡), 𝑧
2
(𝑡), 𝑧
3
(𝑡), 𝑧
4
(𝑡)) can be regarded as a new

local coordinate system along Γ. Sowemaymake a coordinate
change as

𝑠 (𝑡) = 𝑟 (𝑡) + 𝑍 (𝑡)𝑁

= 𝑟 (𝑡) + 𝑧
1
(𝑡) 𝑛
1
+ 𝑧
3
(𝑡) 𝑛
3
+ 𝑧
4
(𝑡) 𝑛
4
,

(11)

where𝑁 = 𝑁(𝑡) = (𝑛
1
(𝑡), 0, 𝑛

3
(𝑡), 𝑛
4
(𝑡))
∗. Note that the new

𝑠(𝑡) should satisfy system (1); that is,

̇𝑠 (𝑡) = 𝑓 (𝑠 (𝑡)) + 𝑔 (𝑠 (𝑡) , 𝜇)

= 𝑓 (𝑟 (𝑡) + 𝑍 (𝑡)𝑁) + 𝑔 (𝑟 (𝑡) + 𝑍 (𝑡)𝑁, 𝜇) .

(12)

An asymptotic expansion with respect to 𝑟(𝑡) shows that

̇𝑛
𝑖
= 𝜙
∗

𝑖
(𝑡) 𝑔
𝜇
(𝑟 (𝑡) , 0) 𝜇 + 𝑂 (

𝜇


2

)

+ 𝑂 (|𝑁|
2

) + 𝑂 (
𝜇
 |𝑁|) , 𝑖 = 1, 3, 4.

(13)

Via integrating both sides from −𝑇 to 𝑇 of this equation, one
can finally obtain

𝑛
𝑖
(𝑇) = 𝑛

𝑖
(−𝑇) +𝑀

𝑖
𝜇 + h.o.t., 𝑖 = 1, 3, 4, (14)

where 𝑀
𝑖
= ∫
𝑇

−𝑇

𝜙
∗

𝑖
(𝑡)𝑔
𝜇
(𝑟(𝑡), 0) d𝑡, 𝑖 = 1, 3, 4 are the

Melnikov vectors. And further𝑀
1
= ∫
𝑇

−𝑇

𝜙
∗

1
(𝑡)𝑔
𝜇
(𝑟(𝑡), 0) d𝑡 =

∫
+∞

−∞

𝜙
∗

1
(𝑡)𝑔
𝜇
(𝑟(𝑡), 0) d𝑡.

Equation (14) defines exactly the map 𝐹
1
: 𝑆
1
→ 𝑆
0
;

𝑁(−𝑇) → 𝑁(𝑇) under the new coordinate system; see
Figure 1(b).

In order to combine 𝐹
0
and 𝐹

1
into the Poincaré return

map, we still need to establish a relationship between the
original and the new coordinate systems. In doing so, recall
that 𝑧(𝑡) = 𝑟(𝑡) + 𝑍(𝑡)𝑁(𝑡); then by taking time 𝑡 = 𝑇 and
𝑡 = −𝑇, respectively, together with 𝑧(𝑇) = 𝑞

2𝑗
(𝑥
2𝑗
, 𝑦
2𝑗
, 𝑢
2𝑗
,

V
2𝑗
) ∈ 𝑆
0
, 𝑧(−𝑇) = 𝑞

2𝑗+1
(𝑥
2𝑗+1

, 𝑦
2𝑗+1

, 𝑢
2𝑗+1

, V
2𝑗+1

) ∈ 𝑆
1
and

𝑁
2𝑗
(𝑇) = (𝑛

2𝑗,1
, 0, 𝑛
2𝑗,3

, 𝑛
2𝑗,4

),𝑁
2𝑗+1

(−𝑇) = (𝑛
2𝑗+1,1

, 0,𝑛
2𝑗+1,3

,
𝑛
2𝑗+1,4

), 𝑗 = 0, 1, 2, . . . , we obtain immediately the following
formulas:

𝑛
2𝑗,1

= 𝑢
2𝑗
− 𝑤
33
𝑤
−1

31
𝑥
2𝑗
,

𝑛
2𝑗,3

= 𝑤
−1

31
𝑥
2𝑗
,

𝑛
2𝑗,4

= 𝑦
2𝑗
− 𝑤
14
𝑢
2𝑗
+ (𝑤
14
𝑤
33
− 𝑤
32
) 𝑤
−1

31
𝑥
2𝑗
,

𝑛
2𝑗+1,1

= 𝑤
−1

12
𝑦
2𝑗+1

− 𝑤
42
𝑤
−1

12
𝑤
−1

44
V
2𝑗+1

,

𝑛
2𝑗+1,3

= 𝑢
2𝑗+1

− 𝛿
𝑢
− 𝑤
13
𝑤
−1

12
𝑦
2𝑗+1

+ (𝑤
13
𝑤
42
𝑤
−1

12
− 𝑤
43
)𝑤
−1

44
V
2𝑗+1

,

𝑛
2𝑗+1,4

= 𝑤
−1

44
V
2𝑗+1

,

𝑥
2𝑗+1

≈ 𝛿, V
2𝑗
≈ 𝛿.

(15)
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With all of the above, the Poincaré return map is given as
𝐹 = 𝐹

1
∘ 𝐹
0
. Therefore, the associated successor function 𝐺(𝑠,

𝑢
1
, 𝑦
0
) = (𝐺

1
, 𝐺
3
, 𝐺
4
) = 𝐹(𝑞

0
) − 𝑞
0
is

𝐺
1
= 𝑤
−1

12
𝑠
𝜌
1
(𝜇)/𝜆

1
(𝜇)

𝑦
0
− 𝑢
1
𝑠
𝜆
2
(𝜇)/𝜆

1
(𝜇)

+ 𝑤
33
𝑤
−1

31
𝛿𝑠

− 𝑤
42
𝑤
−1

12
𝑤
−1

44
𝛿𝑠
𝜌
2
(𝜇)/𝜆

1
(𝜇)

+𝑀
1
𝜇 + h.o.t.,

𝐺
3
= 𝑢
1
− 𝛿
𝑢
− 𝑤
13
𝑤
−1

12
𝑠𝑦
0
− 𝑤
−1

31
𝛿𝑠

+ (𝑤
13
𝑤
42
𝑤
−1

12
− 𝑤
43
)𝑤
−1

44
𝛿𝑠
𝜌
2
(𝜇)/𝜆

1
(𝜇)

+𝑀
3
𝜇 + h.o.t.,

𝐺
4
= 𝑤
−1

44
𝛿𝑠
𝜌
2
(𝜇)/𝜆

1
(𝜇)

− 𝑦
0
+ 𝑤
14
𝑠
𝜆
2
(𝜇)/𝜆

1
(𝜇)

𝑢
1

+ (𝑤
32
− 𝑤
14
𝑤
33
) 𝑤
−1

31
𝛿𝑠 +𝑀

4
𝜇 + h.o.t..

(16)

3. Bifurcation Results

From the definition of the Silnikov time 𝑠 = 𝑒−𝜆1(𝜇)𝜏, we know
that a solution with 𝑠 > 0 of (16) or equivalently 𝜏 > 0

corresponds to a periodic orbit near Γ and a solution with
𝑠 = 0 of (16) or equivalently 𝜏 = +∞ corresponds to a
homoclinic orbit near Γ. It is enough to study the solutions
of the successor function 𝐺(𝑠, 𝑢

1
, 𝑦
0
) = 0 for bifurcation

analysis. Consider for concision that we omit the dependence
on parameter 𝜇 from now on in the exponent notation.

From 𝐺
3
= 0 and 𝐺

4
= 0, there are

𝑢
1
= 𝛿
𝑢
+ 𝑤
−1

31
𝛿𝑠 −𝑀

3
𝜇

+ 𝑂 (𝑠𝑦
0
) + 𝑂 (𝑠

𝜌
2
/𝜆
1) ,

𝑦
0
= (𝑤
32
− 𝑤
33
𝑤
14
) 𝑤
−1

31
𝛿𝑠

+𝑀
4
𝜇 + 𝑂 (𝑠

𝜌
2
/𝜆
1) + 𝑂 (𝑠

𝜆
2
/𝜆
1) .

(17)

Put 𝑢
1
and 𝑦

0
into 𝐺

1
= 0; we have

𝐹 (𝑠, 𝜇) ≡ 𝑀
4
𝜇𝑠 − 𝑤

42
𝑤
−1

44
𝛿𝑠
𝜌
2
/𝜆
1 + 𝑤
12
𝑤
33
𝑤
−1

31
𝛿𝑠

− 𝛿
𝑢
𝑤
12
𝑠
𝜆
2
/𝜆
1 + 𝑤
12
𝑀
3
𝜇𝑠
𝜆
2
/𝜆
1

+ (𝑤
32
− 𝑤
33
𝑤
14
) 𝑤
−1

31
𝛿𝑠
2

+ 𝑤
−1

44
𝛿𝑠
(𝜌
1
+𝜌
2
)/𝜆
1

− 𝑤
12
𝑤
−1

31
𝛿𝑠
1+(𝜆
2
/𝜆
1
)

+ 𝑤
12
𝑀
1
𝜇 + 𝑤

14
𝛿
𝑢
𝑠
(𝜌
1
+𝜆
2
)/𝜆
1

+ 𝑤
13
𝑀
4
𝜇𝑠
(𝜆
1
+𝜆
2
)/𝜆
1 + h.o.t. = 0,

(18)

which is the bifurcation equation. Furthermore, for 𝑤
33

̸= 0,

det𝐺𝑄=0
𝜇=0

=



𝑤
33
𝑤
−1

31
𝛿 0 0

−𝛿𝑤
−1

31
1 0

(𝑤
32
− 𝑤
33
𝑤
14
) 𝑤
−1

31
𝛿 0 −1



̸= 0,

(19)

where 𝐺 = 𝜕(𝐺
1
, 𝐺
3
, 𝐺
4
)/𝜕𝑄(𝑠, 𝑢

1
, 𝑦
0
). Implicit function

theorem reveals that (16) has a unique solution as

𝑠 = 𝑠 (𝜇) , 𝑢
1
= 𝑢
1
(𝜇) , 𝑦

0
= 𝑦
0
(𝜇) , (20)

with 𝑠(0) = 0, 𝑢
1
(0) = 0, and 𝑦

0
(0) = 0. It means that system

(1) has a unique periodic orbit as 𝑠 > 0 or a unique homoclinic
orbit as 𝑠 = 0, and they cannot coexist.

Theorem 4. Suppose that 𝑀
1
̸= 0 and 𝑤

33
̸= 0 are true;

then system (1) has a unique 1-periodic orbit near Γ for
𝑤
31
𝑤
33
𝑀
1
𝜇 < 0 or has a unique 1-homoclinic orbit Γ

𝜇
near

Γ as 𝜇 ∈ 𝐻1 Δ= {𝜇 : 𝑀
1
𝜇 + ℎ.𝑜.𝑡. = 0}, and they do not coexist.

Proof. Clearly 𝐹(𝑠, 𝜇) = 0 has a small positive solution 𝑠 =
−𝛿
−1

𝑤
−1

33
𝑤
31
𝑀
1
𝜇 + h.o.t., for 𝑤

31
𝑤
33
𝑀
1
𝜇 < 0, and has a

zero solution 𝑠 = 0 for 𝜇 ∈ 𝐻
1 which is a codimension-one

hypersurface.

In the following part we restrict our attention on the case
𝑤
33
= 0 for 2𝜆

1
> 𝜆
2
> 𝜌
2
. Define

𝑅
𝑘𝑙

𝑖𝑗
= {𝜇 : (−1)

𝑘

(𝑤
12
)
𝑙

𝑀
𝑖
𝜇𝑀
𝑗
𝜇 > 0} ,

𝐸
𝑘𝑙

𝑗
= {𝜇 : (−1)

𝑘

(𝑤
12
)
𝑙

𝑤
42
𝑤
44
𝑀
𝑗
𝜇 > 0} ,

(21)

where 𝑘, 𝑙 = 0, 1, 𝑖 = 1, 3, 𝑗 = 1, 3, 4.
In order to well solve (18), we rewrite it into two parts,

namely, a line 𝑊 = 𝑃(𝑠, 𝜇) and a curve 𝑊 = 𝑄(𝑠, 𝜇) with
respect to 𝑠:

𝑃 (𝑠, 𝜇) = 𝑀
4
𝜇𝑠 + 𝑤

12
𝑀
1
𝜇 + h.o.t.,

𝑄 (𝑠, 𝜇) = 𝑤
42
𝑤
−1

44
𝛿𝑠
𝜌
2
/𝜆
1 + 𝛿
𝑢
𝑤
12
𝑠
𝜆
2
/𝜆
1 − 𝑤
12
𝑀
3
𝜇𝑠
𝜆
2
/𝜆
1

− 𝑤
32
𝑤
−1

31
𝛿𝑠
2

− 𝑤
−1

44
𝛿𝑠
(𝜌
1
+𝜌
2
)/𝜆
1

+ 𝑤
12
𝑤
−1

31
𝛿𝑠
(𝜆
1
+𝜆
2
)/𝜆
1 + h.o.t..

(22)

Then there are firstly the following conclusions based on
an analysis of the relative position of the line𝑊 = 𝑃(𝑠, 𝜇) and
the curve𝑊 = 𝑄(𝑠, 𝜇).

Lemma 5. Suppose that 2𝜆
1
> 𝜆
2
> 𝜌
2
, 𝑤
33
= 0, and 𝑤

42
̸= 0

hold; then 𝐹(𝑠, 𝜇) = 0 has a unique small positive solution
𝑠 ∈ (0, 𝑠

∗

) for 𝜇 ∈ 𝐸
01

1
, where 𝑠∗ = [𝑤

44
𝑤
−1

42
𝛿(2𝑤
12
𝑀
1
𝜇 +

𝑀
4
𝜇)]
𝜆
1
/𝜌
2 .

Proof. It is clear that

𝑃 (0, 𝜇) = 𝑤
12
𝑀
1
𝜇 + h.o.t., 𝑄 (0, 𝜇) = 0,

𝑃


(𝑠, 𝜇) = 𝑀
4
𝜇 + h.o.t.,

𝑄


(𝑠, 𝜇) = 𝜌
2
𝜆
−1

1
𝑤
42
𝑤
−1

44
𝛿𝑠
(𝜌
2
/𝜆
1
)−1

+ h.o.t..

(23)

Therefore, the line 𝑊 = 𝑃(𝑠, 𝜇) intersects the curve 𝑊 =

𝑄(𝑠, 𝜇) at a unique point 𝑠 for 𝜇 ∈ 𝐸01
1
. Notice that 𝑄(𝑠∗, 𝜇) =

2𝑤
12
𝑀
1
𝜇+𝑀
4
𝜇+h.o.t. > 𝑤

12
𝑀
1
𝜇+𝑀
4
𝜇𝑠
∗

+h.o.t. = 𝑃(𝑠∗, 𝜇),
so 𝑠 ∈ (0, 𝑠∗).
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SN1
1

x

O

O

y

u 𝜐

M4𝜇

M1𝜇

(a) Double 1-periodic orbit

M1𝜇

M4𝜇

SN1
1

x

O

O

y

u 𝜐

2

(b) Two 1-periodic orbits

SN1
1

x

O

O

y

u

𝜐

0

M1𝜇

M4𝜇

(c) No 1-periodic orbit

Figure 2: Rank (𝑀
1
,𝑀
4
) = 2 and 𝜇 ∈ 𝐸11

1
∩ 𝑅
11

14
.

Theorem6. Suppose that 2𝜆
1
> 𝜆
2
> 𝜌
2
,𝑤
33
= 0, and𝑤

42
̸= 0

hold; then system (1) has exactly a unique (resp., not any) 1-
periodic orbit for 𝜇 ∈ 𝐸01

1
(resp., 𝜇 ∈ 𝐸11

1
∩ 𝑅
01

14
).

Proof. From Lemma 5, we know that 𝐹(𝑠, 𝜇) = 0 has exactly a
unique small positive solution for 𝜇 ∈ 𝐸01

1
which corresponds

exactly to a 1-periodic orbit of system (1). Moreover, 𝐹(𝑠, 𝜇) =
0 does not have any small positive solutions for 𝜇 ∈ 𝐸

11

1
∩

𝑅
01

14
.

Theorem 7. Suppose that 2𝜆
1
> 𝜆
2
> 𝜌
2
, 𝑤
33

= 0, and
𝑤
42

̸= 0 hold; then, for 𝜇 ∈ 𝐸11
1
∩ 𝑅
11

14
and 𝑅𝑎𝑛𝑘 (𝑀

1
,𝑀
4
) = 2,

system (1) has a unique double 1-periodic orbit near Γ on the
bifurcation surface

𝑆𝑁
1

: 𝑤
12
𝑀
1
𝜇 +

𝜌
2
− 𝜆
1

𝜌
2

(
𝜆
1
𝑤
44

𝜌
2
𝑤
42
𝛿
)

𝜆
1
/(𝜌
2
−𝜆
1
)

× (𝑀
4
𝜇)
𝜌
2
/(𝜌
2
−𝜆
1
)

+ h.o.t. = 0,

(24)

which has a normal vector 𝑀
1
at 𝜇 = 0. The corresponding

double positive zero point is

𝑠
∗
= (

𝜆
1
𝑤
44
𝑀
4
𝜇

𝜌
2
𝑤
42
𝛿

)

𝜆
1
/(𝜌
2
−𝜆
1
)

+ h.o.t. (25)

as 𝜇 ∈ 𝐸00
4
(see Figure 2(a)).

Proof. Weknow that the existence of a double 1-periodic orbit
corresponds to the equations 𝑃(𝑠, 𝜇) = 𝑄(𝑠, 𝜇), 𝑃(𝑠, 𝜇) =

𝑄


(𝑠, 𝜇), and 𝑃(𝑠, 𝜇) ̸= 𝑄


(𝑠, 𝜇), that is,

𝑀
4
𝜇𝑠 + 𝑤

12
𝑀
1
𝜇 = 𝑤

42
𝑤
−1

44
𝛿𝑠
𝜌
2
/𝜆
1 + 𝛿
𝑢
𝑤
12
𝑠
𝜆
2
/𝜆
1

− 𝑤
12
𝑀
3
𝜇𝑠
𝜆
2
/𝜆
1 − 𝑤
32
𝑤
−1

31
𝛿𝑠
2

− 𝑤
−1

44
𝛿𝑠
(𝜌
1
+𝜌
2
)/𝜆
1 + 𝑤
12
𝑤
−1

31
𝛿𝑠
(𝜆
1
+𝜆
2
)/𝜆
1

+ h.o.t.,

𝑀
4
𝜇 =

𝜌
2

𝜆
1

𝑤
42
𝑤
−1

44
𝛿𝑠
(𝜌
2
/𝜆
1
)−1

+
𝜆
2

𝜆
1

𝛿
𝑢
𝑤
12
𝑠
(𝜆
2
/𝜆
1
)−1

−
𝜆
2

𝜆
1

𝑤
12
𝑀
3
𝜇𝑠
(𝜆
2
/𝜆
1
)−1

− 2𝑤
32
𝑤
−1

31
𝛿𝑠

−
𝜌
1
+ 𝜌
2

𝜆
1

𝑤
−1

44
𝛿𝑠
𝜌
2
/𝜆
1

+
𝜆
1
+ 𝜆
2

𝜆
1

𝑤
12
𝑤
−1

31
𝛿𝑠
𝜆
2
/𝜆
1 + h.o.t.,

0 ̸= 𝜌
2
(𝜌
2
− 𝜆
1
) 𝑤
42
𝑤
−1

44
𝛿𝑠
(𝜌
2
/𝜆
1
)−2

+ 𝜆
2
(𝜆
2
− 𝜆
1
) 𝛿
𝑢
𝑤
12
𝑠
(𝜆
2
/𝜆
1
)−2

− 𝜆
2
(𝜆
2
− 𝜆
1
) 𝑤
12
𝑀
3
𝜇𝑠
(𝜆
2
/𝜆
1
)−2

− 2𝜆
2

1
𝑤
32
𝑤
−1

31
𝛿

+ 𝜌
2
(𝜌
1
+ 𝜌
2
) 𝑤
−1

44
𝛿𝑠
(𝜌
2
/𝜆
1
)−1

+ 𝜆
2
(𝜆
1
+ 𝜆
2
) 𝑤
12
𝑤
−1

31
𝛿𝑠
(𝜆
2
/𝜆
1
)−1

+ h.o.t.,
(26)

having solutions. Indeed, the second equation of (26) permits
the double positive zero point 𝑠

∗
as 𝜇 ∈ 𝐸00

4
. Putting it into the

first equation of (26), there is

𝑀
4
𝜇(

𝜆
1
𝑤
44
𝑀
4
𝜇

𝜌
2
𝑤
42
𝛿

)

𝜆
1
/(𝜌
2
−𝜆
1
)

+ 𝑤
12
𝑀
1
𝜇

= 𝑤
42
𝑤
−1

44
𝛿(

𝜆
1
𝑤
44
𝑀
4
𝜇

𝜌
2
𝑤
42
𝛿

)

𝜌
2
/(𝜌
2
−𝜆
1
)

+ h.o.t..

(27)

Then 𝑆𝑁1 exists for 𝜇 ∈ 𝐸11
1
∩ 𝑅
11

14
.

From the above proof, we see that, when 𝑀
4
𝜇 > 0 and

𝑤
12
𝑀
1
𝜇 < 0, the line𝑊 = 𝑃(𝑠, 𝜇) has a positive slope lying

under the curve𝑊 = 𝑄(𝑠, 𝜇) when𝑤
42
𝑤
44
> 0, so if𝑤

12
𝑀
1
𝜇
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x

O

u

y

𝜐

1-H

(a) 𝐹(0, 𝜇) = 0, 𝑦
0
= 𝑀
4
𝜇 + h.o.t. ̸= 0

x

O

u

y

𝜐

1-OH

(b) 𝐹(0, 𝜇) = 0, 𝑦
0
= 𝑀
4
𝜇 + h.o.t. = 0

Figure 3: 1-homoclinic orbit (1-H) and (1-OH).

increases, the line must intersect the curve at two sufficiently
small positive points, which can be equal to the existence of
two 1-periodic orbits of system (1). For 𝑀

4
𝜇 < 0, 𝑤

42
𝑤
44
<

0, and 𝑤
12
𝑀
1
𝜇 > 0, the arguments are similar. So we have

immediately a complement of Theorem 7.

Corollary 8. Assume that the hypotheses of Theorem 7 are
valid, system (1) then has two (resp., not any) 1-periodic orbits
near Γ when 𝜇 lies on the side of 𝑆𝑁1 which points to the
direction (sgn𝑤

12
𝑤
42
𝑤
44
) 𝑀
1
(resp., in the opposite direction)

(see Figures 2(b) and 2(c)).

As Melnikov functions generally play an important role
in bifurcation study, the following theorem shows also the
existence of some double 1-periodic orbits relying on the
investigation of𝑀

𝑖
= 0 for 𝑖 = 1, 3, 4.

Theorem 9. Suppose 2𝜆
1
> 𝜆
2
> 𝜌
2
, 𝑤
33
= 0, and 𝑤

42
̸= 0 are

valid; then the following applies.

(1) For𝑀
1
= 0 or𝑀2

1
+𝑀
2

3
= 0, system (1) has exactly one

1-homoclinic orbit and one (resp., not any) 1-periodic
orbit near Γ and they (resp., do not) coexist as 𝜇 ∈ 𝐸00

4

(resp., 𝜇 ∈ 𝐸10
4
).

(2) For𝑀
3
= 0, system (1) has exactly one (resp., not any)

1-periodic orbit near Γ as 𝜇 ∈ 𝐸01
1
(resp., 𝜇 ∈ 𝐸11

1
∩𝑅
01

14
).

system (1) has a unique double 1-periodic orbit near
Γ as 𝜇 ∈ 𝐸

11

1
∩ 𝑅
11

14
and 𝑅𝑎𝑛𝑘 (𝑀

1
,𝑀
4
) = 2.

Accordingly, the double 1-periodic orbit
bifurcation surface is 𝑆𝑁

1

: 𝑤
12
𝑀
1
𝜇 + ((𝜌

2
−

𝜆
1
)𝑤
42
𝛿/𝜆
1
𝑤
44
)(𝜆
1
𝑤
44
𝑀
4
𝜇/𝜌
2
𝛿𝑤
42
)
𝜌
2
/(𝜌
2
−𝜆
1
)

+ h.o.t.
= 0 with a normal vector 𝑀

1
at 𝜇 = 0, and it may

generate two 1-periodic orbits when 𝜇 lies in the
direction (sgn𝑤

42
𝑤
44
𝑤
12
)𝑀
1
of 𝑆𝑁1 and no such a

1-periodic orbit in the opposite direction.
(3) For𝑀

4
= 0 or𝑀2

3
+ 𝑀
2

4
= 0, system (1) has only one

(resp. not any) 1-periodic orbit near Γ as 𝜇 ∈ 𝐸01
1
(resp.,

𝜇 ∈ 𝐸
11

1
).

(4) For 𝑀2
1
+ 𝑀
2

4
= 0, system (1) does not have any 1-

periodic orbit near Γ.
(5) For 𝑀2

1
+ 𝑀
2

3
+ 𝑀
2

4
= 0, system (1) has only one 1-

homoclinic orbit near Γ.

Proof. When 𝑀
1
= 0 or 𝑀

1
= 𝑀
3
= 0, 𝐹(𝑠, 𝜇) = 𝑠(𝑀

4
𝜇 −

𝑤
42
𝑤
−1

44
𝛿𝑠
(𝜌
2
−𝜆
1
)/𝜆
1 − 𝛿
𝑢
𝑤
12
𝑠
(𝜆
2
−𝜆
1
)/𝜆
1 + 𝑤

12
𝑀
3
𝜇𝑠
(𝜆
2
−𝜆
1
)/𝜆
1 +

𝑤
32
𝑤
−1

31
𝛿𝑠 + 𝑤

−1

44
𝛿𝑠
𝜌
2
/𝜆
1 + h.o.t.) = 0 has two solutions 𝑠

1
= 0

and 𝑠
2
= (𝑤
44
𝑀
4
𝜇/𝑤
42
𝛿)
𝜆
1
/(𝜌
2
−𝜆
1
)

+ h.o.t. for 𝜇 ∈ 𝐸
00

4
which

correspond to a 1-periodic orbit, and a 1-homoclinic orbit
respectively. Thus, (1) is true.

The result of the cases (2) is exactly the same as that of
Theorem 7.

If𝑀
4
= 0 or𝑀

3
= 𝑀
4
= 0, 𝐹(𝑠, 𝜇) = 0 has only a positive

solution 𝑠
3
= (𝑤
44
𝑤
12
𝑀
1
𝜇/𝛿𝑤
42
)
𝜆
1
/𝜌
2 + h.o.t. for 𝜇 ∈ 𝐸

01

1
,

which means system (1) has a 1-periodic orbit. Then (3) is
valid.

In case of𝑀2
1
+ 𝑀
2

4
= 0, it is clear that 𝐹(𝑠, 𝜇) = 0 does

not have any small nonnegative solutions, so system (1) does
not have, any 1-homoclinic orbits or 1-periodic orbits.

The last conclusion is obvious. Thereby, the proof is
complete.

Remark 10. Notice that, inTheorem 9 (1) and (5), 𝐹(𝑠, 𝜇) = 0
has a solution 𝑠 = 0, which means that system (1) has a
codimension-1 1-homoclinic orbit (see Figure 3(a)), so the
existing homoclinic orbit is no longer orbit flip for 𝑦

0
=

𝑀
4
𝜇 + h.o.t. ̸= 0. But if 𝑦

0
= 0, an orbit flip homoclinic orbit

could still exist, where 𝑦
0
is given by 𝐺

4
= 0; see Figure 3(b).

Remark 11. There still exist some double 1-periodic orbits or
triple 1-periodic orbits for the case 𝑤

42
= 0 and 𝛿

𝑢
̸= 0; one

may pursue the similar process to discuss, so we leave it here.
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