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Multiplayer bargaining is a game inwhich all possible divisions are equilibrium outcomes.This paper presents the classical subgame
perfect equilibria strategies and analyses their weak robustness, namely, the use of weakly dominated strategies. The paper then
develops a refined equilibrium concept, based on trembling hand perfection applied only on the replies, in order to overcome such
weakness. Concluding that none of the classical equilibrium strategies survives the imposition of the extrarobustness and albeit
using more complex strategies, the equilibrium outcomes do not change.

1. Introduction

In 𝑛-players bargaining, there is a divisible good to be shared
among them. The division is obtained by the following
procedure: at each moment a player proposes a division, and
the other 𝑛 − 1 players vote in favor or against it. If all agree,
the division is made accordingly; if at least one player votes
against it, the game goes on to another round, with another
player proposing and a new suffrage taking place. The game
ends when a proposal is accepted by all. At each round, the
good in question loses value by 𝛿.

The better known result on multiplayer bargaining is that
all divisions are Subgame Perfect Nash Equilibria (SPNE)
outcomes of the game, meaning that all divisions can be
agreed on in equilibria. Crucial to obtain this result is
the existence of a credible and painful threat for deviators
of the “right” track. Reference [1] provides an ingenious
mechanism, creating a strategy in which at least one player is
unsatisfied with a deviation proposal. For this strategy, they
used a state variable and if the proponent does not propose as
implied by the state, the state changes to a new one in which
one player receives everything. Players do not want to deviate
because in the punishment state theywill receive nothing. For
this strategy to be an equilibrium, the discount value cannot
be very small; namely, with 3 players 𝛿 > 1/2. Reference
[2] noted that an equilibrium for all divisions possibilities
could be extended to 𝛿 ≤ 1/2. This strategy also uses a state
variable and punishment threats that attribute everything to
one player only; the main difference is in the repliers’ actions,

with players accepting only if the proposition is equal to the
state—any difference, even if awards all repliers, is rejected.
The belief players have that the proposition will be rejected
renders them indifferent between accepting and rejecting the
offer, and they thus opt for refusing it.

Of notice is that all these equilibria do not depend on
the replies and that it is unorthodox for players not to accept
better proposals unless they are punished by doing so.This is a
major shortcoming of this equilibrium: players, without being
punished by acting differently, choose to play a dominated
strategy.This is an evident weakness of the equilibria concept
used; players choose weakly dominated strategies. In Haller’s
strategy, players in specific history states accept zero offerings
because they do not expect to receive more in the future if
they reject them.They are powerless to change the outcome; it
is a resigned acceptance. InHerrero’s strategy, players propose
divisions in which they receive zero. Again this is a hopeless
proposition and only happens thanks to the belief that others
will also follow a resigned action course; as players believe
others will reject, they believe their own actions do not have
any effect. The need of unanimity gives total power to all
players in terms of rejecting a proposal, and other players’
actions will have no impact. This case, of the players’ actions
having no effect on the outcome of the game,may result in the
best and more accurate strategies not being played and orig-
inates nonsensible equilibria. Players only choose their best
available actions in singleton information sets; if, for example,
players knew what others had voted before them, making
their information set at the moment of voting a singleton,
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then players knew that if they accepted a good proposition,
then others could also do it. This conviction would make
them vote in favor of the good division.This type of structure
in games and the possible appearance of nonsensible equilib-
ria are very well known and have been studied and solved by
the use of refined equilibria notions.

In this work, we develop different equilibrium concepts to
analyse the game, based on Selten’s [3] perfect equilibria, and
introduce the possibilities of small mistakes by the players on
the replies. Perfect Equilibrium in Replies (PER) imposes that
all players in all replies moments commit a minor mistake.
The use of trembles involves some distortion of the game and
should be used with parsimony.The reason for the SPNE not
to work is the nonsingleton information set at the reply, and
in order to introduce the minimum distortions possible, we
only impose trembles on the replies.

When a perturbed game is played, if the strategy does
not punish replies, as is the case in all the strategies already
described, players will always accept propositions that give
them more than what they receive in future when the
proposition is refused (although this may seem obvious it
is not what happens in Haller’s equilibrium, in which better
propositions are rejected in face of the expected rejection
of the other replier). Thus, they accept better propositions
even if the chance of others accepting it is very small. This
property of the PER equilibrium strategies which simultane-
ously are independent of replies is the pivotal point to show
that Haller’s strategy is not PER. In Herrero’s strategy, the
equilibrium is supported by a punishing scheme in which
a deviator is attributed zero, and he has no possibility of
receivingmore unless someone deviates in themeantime. But
if any player can make a mistake, for example, accepting a
different proposition, the deviator will never accept zero; he
will wait for his proposal moment and hope for an opponent
to make a mistake. The deviator will always refuse a zero
proposition and the strategy is not PER.

There is no easy equilibrium solution that works for all
points in the simplex. The main difficulty is with divisions
in which one player is receiving zero; for these divisions to
be a PER outcome, we will use a strategy with a punishment
scheme that not only punishes deviators but also has a
mechanism of awarding the well-behaved players. It is the
chance of receiving this award that acts as an incentive for
players to accept receiving or proposing for themselves zero.
They are hoping that some player deviates and they receive
the premium for the compliance. This strategy is naturally
weakly dominated, but on the approximation games it is not.

In the rest of the paper, we will present in Section 2
notation; the equilibrium strategies ofHaller andHerrero are
presented and the new equilibrium concept is defined. In
Section 3, proofs that the standard equilibrium strategies are
not PER are given and a new strategy, that is, PER, is defined.
Finally, in Section 4, a conclusion is provided.

2. Materials and Methods

The set of players is 𝐼 = {1, 2, 3}. At the moment 𝑡 ∈

N, a proposal is one point of the unitary simplex 𝑝
𝑡

=
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3
) : ∑
3
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≥ 0},

and 𝑝
𝑡

𝑖
is the part attributed to player 𝑖. The proponent at 𝑡

is the player 𝑖(𝑡), with 𝑖(𝑡) the function that determines the
proponent; it has a cycle of period 3, 𝑖(𝑡) : 𝑇 → 𝐼 and
𝑖(𝑡) = {𝑖 ∈ 𝐼 : ∃𝑚 ∈ N

0
, 𝑡 = 𝑖 + 3𝑚}. 𝑡(𝑖) : 𝐼 󴁂󴀱 𝑇 is the

correspondence that defines the moments in which player 𝑖
proposes; these moments are 𝑡(𝑖) = {𝑡 ∈ 𝑇 : ∃𝑚 ∈ N

0
, 𝑡 =

𝑖 + 3𝑚}.
Player’s 𝑗 ̸= 𝑖(𝑡) response to the proposal is an action taken

on {0, 1}, with 𝑎
𝑡

𝑗
, the action of 𝑗 at 𝑡, being 0 if 𝑗 rejects the

proposition received and 1 if the player accepts it. So, 𝑎𝑡
𝑖
∈

{0, 1} if 𝑖(𝑡) ̸= 𝑖 or 𝑎𝑡
𝑖
∈ Δ if 𝑖(𝑡) = 𝑖. For the sake of simplicity,

define the set of actions available for 𝑖 at 𝑡 by

𝐴
𝑡

𝑖
= {

{0, 1} if 𝑖 ̸= 𝑖 (𝑡)
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(1)

The vector of all actions taken at moment 𝑡 is 𝑎
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For 𝑡 ≥ 1, a 𝑡-size history can be a history either after
or before the proposition is done, and a distinction between
these two cases is necessary; we therefore define a (𝑡 − 1, 2)-
history in which 𝑡−1 propositions and voting have been done
which is denoted by ℎ|𝑡−1,2 = (𝑎

1
, . . . , 𝑎

𝑡−1
) and a (𝑡, 1)-history,

when a proposition has already been done at 𝑡, but no replies
have been received yet, ℎ|𝑡,1 = (𝑎

1
, . . . , 𝑎
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, 𝑎
𝑡
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), in which,

for all 1 ≤ 𝑘 ≤ 𝑡 − 1, 𝑎𝑘 ∈ Δ and 𝑎
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∈ Δ; the space of

(𝑡, 2)-stage histories is 𝐻𝑡,2 = ∏
𝑡

𝑘=1
Δ = Δ

𝑡, and the space
of all (𝑡, 1)-histories is 𝐻𝑡,1 = 𝐻

(𝑡−1),2
× Δ = Δ

𝑡−1

× Δ. 𝐻0,2
stands for 0 the unique 0-stage history. The set of all histories
is 𝐻 = ⋃

∞

𝑡=1
(𝐻
𝑡,1

∪ 𝐻
𝑡,2
). The stage history at moment 𝑡 in

history ℎ is ℎ𝑡,1 for the proposal and ℎ
𝑡,2 for the responses,

ℎ
𝑡
= (ℎ
𝑡,1
, ℎ
𝑡,2
).The length of a history, 𝜏(ℎ), is a function from

the set of histories into the stage moment 𝜏 : 𝐻 󳨃→ N
0
×{1, 2},

with 𝜏(ℎ) = (𝑡, 𝑘) 𝑡 ∈ N
0
being themoment of the history, and

𝑘 ∈ {1, 2} whether the voting has already been made 𝑘 = 2 or
not 𝑘 = 1. 𝑡(ℎ) is the moment of history ℎ, so 𝜏(ℎ) = (𝑡(ℎ), 𝑘)

and 𝑖(ℎ) = 𝑖(𝑡(ℎ)) are the proponent at ℎ. For a history ℎ with
𝑡(ℎ) > 𝑡, ℎ|𝑡,𝑘 is the history ℎ until stage (𝑡, 𝑘). ℎ+ and ℎ

− are,
respectively, the history ℎ plus one more stage or without the
last stage, and it will be used only when the marginal actions
are obvious from the context. It is assumed that at stage (𝑡, 𝑘),
each player knows ℎ|𝑡,𝑘; that is, each player knows the actions
that were played in all previous stages. (ℎ, ℎ) is the history ℎ
followed by ℎ.

A pure strategy for player 𝑖 is a function 𝑠
𝑖

: 𝐻 →

{0, 1} ∪ Δ with 𝑠
𝑖
(ℎ) ∈ 𝐴

𝑡(ℎ
+
)

𝑖
mapping histories into actions.

The set of player 𝑖 pure strategies is denoted by 𝑆
𝑖
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3
) ∈ 𝑆 induces a path after the history

ℎ, 𝜛
𝑠
(ℎ). At ℎ, the action will be 𝑠(ℎ); then, if an agreement

has not been reached, 𝑠(ℎ, 𝑠(ℎ)) is the action played, so
we can define the future after ℎ when 𝑠 is the strategy as
𝜛
𝑠
(ℎ) = {ℎ, 𝑠(ℎ), 𝑠(ℎ, 𝑠(ℎ)), 𝑠(𝑠(ℎ, 𝑠(ℎ))), . . .}. The utility for a

given strategy isΠ𝑡
𝑖
(𝑠 | ℎ) = ∑

ℎ∈𝜛
𝑠
(ℎ)

𝛿
𝑡(ℎ)−𝑡(ℎ)

𝜋(ℎ, ℎ), in which
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𝜋(
̃
ℎ) is the value of the division agreed on at the last moment

of ̃ℎ and therefore is the product of the last moment actions
𝜋(
̃
ℎ) =

̃
ℎ
𝑡,1̃
ℎ
𝑡,2

𝑗

̃
ℎ
𝑡,2

𝑘
, 𝑘, 𝑗 ∉ −𝑖(

̃
ℎ
−
) (the usual notation will be

used, −𝑖 = 𝐼 \ {𝑖}).
In this chapter, we will present the classical equilibrium

strategies in multiplayer bargaining. Reference [1] was the
first (although he never publish his results, it is also attributed
to Shaked the creation of such strategies, see, for example, [4]
or [5]) to prove that all points in Δ are equilibria outcomes
when 𝛿 > 1/2. Later, Haller noted that if the repliers’
strategies were stricter, the equilibria could extend to any 𝛿.
Due to the dynamic character of the game, the equilibrium
concept used is the SPNE that we hereby define.

Definition 1. 𝑠 ∈ 𝑆 is a SPNE ifΠ𝑡
𝑖
(𝑠 | ℎ) ≥ Π

𝑡

𝑖
(𝑠
󸀠

𝑖
, 𝑠
−𝑖
| ℎ) ∀ℎ ∈

𝐻, ∀𝑖 ∈ 𝐼 and ∀𝑠
󸀠

𝑖
∈ 𝑆
𝑖
.

The utility function in the bargaining game can be writ-
ten, as noted before, in the form Π

𝑡

𝑖
(𝑠) = ∑

∞

𝜏=1
𝛿
𝜏
𝑎
𝜏
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𝜏
,

the payments at 𝑡 + 𝜏, which is either zero or the value of the
agreed on division at 𝑡 + 𝜏 and is bounded by 1. It is relatively
straightforward to see that if two strategies share the same
future path for a long period, their actualized payment will
be similar; therefore, utility function is continuous at infinity
and the one-shot deviation principle is valid. Therefore to
prove that a given strategy is a SPNE, we need only to look for
alternative strategies that are different on one information set.
For this purpose, we define the one-shot deviation strategy.

Definition 2. The set of one shot deviation (OSD) strategies
from 𝑠

𝑖
at ℎ is OSD(𝑠

𝑖
, ℎ) = {𝛾

𝑖
∈ 𝑆
𝑖
: 𝛾
𝑖
(ℎ) ̸= 𝑠

𝑖
(ℎ) and 𝛾

𝑖
(ℎ
󸀠
) =

𝑠
󸀠

𝑖
(ℎ
󸀠
), ∀ℎ
󸀠
∈ 𝐻 \ ℎ}.

2.1. Haller Equilibrium Strategy. In this subsection, we will
present the equilibrium defined by [2]; a proof that such
strategy is a SPNE will be presented for completeness. In the
proof, we are only looking for better pure strategies; if no pure
strategy is better, then no mixed strategy can be better either.
This strategy uses a state function 𝑟(ℎ) : 𝐻 → 𝐸 that tracks
for any history ℎ if a player has deviated from the planned
and induces the punishment for that player. There is a bond
between the state and the division to be proposed under the
strategy; for this reason, we use the same symbol for a state
and the division associated with it. 𝐸 = {𝑒

0
, 𝑒
1
, 𝑒
2
, 𝑒
3
} is set of

states; 𝑒0 is any point in Δ; 𝑒𝑖 is the division in which player 𝑖
receives 1; 𝑒𝑖

𝑘
= {
1, if 𝑘=𝑖
0, if 𝑘 ̸= 𝑖 . At ℎ ∈ 𝐻

𝑡−1,2, if the player 𝑖 = 𝑖(𝑡)

does not propose 𝑟(ℎ), the state changes to 𝑒
𝑖(𝑡+1), in which

the player 𝑖 receives nothing. The state at the initial moment
ℎ = 0 is 𝑟(ℎ) = 𝑒

0. Transition takes place immediately
after the proposal and before the replies so for 𝜏(ℎ) = (𝑡, 2),
𝑟(ℎ) = 𝑟(ℎ

−
). For 𝜏(ℎ) = (𝑡, 1),

𝑟 (ℎ) = {

𝑟 (ℎ) if ℎ𝑡,1 = 𝑟 (ℎ)

𝑒
𝑖(𝑡+1) if ℎ𝑡,1 ̸= 𝑟 (ℎ) .

(2)

Now, we will present Haller’s equilibrium strategy, that is
summarized in Table 1.

Table 1: Haller’s strategy.

State 𝑒
𝑗

Player 𝑖 Proposal 𝑒
𝑗

Accept 𝑝 𝑝 = 𝑒
𝑗

Definition 3. In Haller’s equilibrium strategy for ℎ such that
𝜏(ℎ) = (𝑡−1, 2), 𝑠

𝑖(ℎ)
(ℎ) = 𝑟(ℎ), so the proposition will always

be equal to the state. For 𝜏(ℎ) = (𝑡, 2), replier’s 𝑗 ̸= 𝑖(ℎ) strategy
is

𝑠
𝑗
(ℎ) = {

1 𝑠𝑒ℎ
𝑡,1

= 𝑟 (ℎ
−
)

0 𝑠𝑒ℎ
𝑡,1

̸= 𝑟 (ℎ
−
) .

(3)

Repliers accept the proposition if it is equal to the state
and reject if it is different; note that for replier 𝑗, the share
offered is as important to him as to others; what matters is
that the proposition is equal to 𝑟(ℎ−) so the share of all players
is relevant.

Theorem 4. Haller’s strategy is a SPNE and any 𝑒0 ∈ Δ is an
equilibrium outcome.

Proof. 𝑠 is Haller’s strategy with 𝑟(0) = 𝑒
0, for any but fixed

𝑒
0
∈ Δ. We will prove that there is no history ℎ after which the

player can change his strategy to 𝑠󸀠
𝑖
∈ OSD(𝑠

𝑖
, ℎ) and improve

his payment. Let us start by noting that due to 𝑟(ℎ) = 𝑟(ℎ
−
)

for 𝜏(ℎ) = (𝑡, 2), ℎ𝑡,2 has no influence on the state; whatever
the responses are the state does not change.

For i = i(t), 𝜏(h) = (t − 1, 2), if all players play according
to the strategy 𝑠, 𝑖 proposes 𝑟(ℎ) and all others accept, Π𝑡

𝑖
(𝑠 |

ℎ) = 𝑟
𝑖
(ℎ). If 𝑠󸀠

𝑖
∈ OSD(𝑠

𝑖
, ℎ), then 𝑝 = 𝑠

󸀠

𝑖
(ℎ) ̸= 𝑠

𝑖
(ℎ) = 𝑟(ℎ);

𝑖 made a different proposal; repliers 𝑗, 𝑘 only accept if the
proposal is 𝑝 = 𝑟(ℎ

−
); as 𝑝 ̸= 𝑟(ℎ), they reject it.The state after

the deviated proposition changes to 𝑟(ℎ, 𝑝) = 𝑒
𝑖(𝑡+1) and 𝑖’s

payoff is Π𝑡
𝑖
(𝑠
󸀠

𝑖
, 𝑠
−𝑖

| ℎ) = 𝛿Π
𝑡+1

𝑖
(𝑠
󸀠

𝑖
, 𝑠
−𝑖

| ℎ
+
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ℎ
+
) = 𝛿𝑒

𝑖(𝑡+1)
= 0. Clearly, Π𝑡

𝑖
(𝑠
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𝑖
, 𝑠
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| ℎ) ≤ Π
𝑡

𝑖
(𝑠 | ℎ) for any

OSD(𝑠
𝑖
, ℎ); the proponent 𝑖(𝑡) has no advantage in altering his

strategy.
For j ̸= i(t) and 𝜏(h) = (t, 1) we have two possibilities for

the player to act differently from 𝑠, either to accept a proposal
different from 𝑟(ℎ) or to reject the proposal of 𝑟(ℎ). When
the proposal was equal to the state ht,1 = r(h), if all players
act by 𝑠, the proposition is accepted and Π

𝑡

𝑗
(𝑠 | ℎ) = 𝑟

𝑗
(ℎ).

If 𝑠󸀠
𝑗
∈ OSD(𝑠

𝑗
, ℎ), 𝑗 refuses the proposition, 𝑠󸀠

𝑗
(ℎ) = 0; we

can define the stage history ℎ𝑡,2 = (𝑠
󸀠

𝑗
(ℎ), 𝑠
𝑘
(ℎ)) = (0, 1) and

ℎ
+
= (ℎ, ℎ

𝑡,2
). The state does not change, as the proposition

was done according to 𝑠, so 𝑟(ℎ+) = 𝑟(ℎ). 𝑗’s refusal delays the
agreement one period because after ℎ+ all players follow 𝑠 and
the agreement is 𝑟(ℎ+) = 𝑟(ℎ). Π𝑡

𝑗
(𝑠
󸀠

𝑗
, 𝑠
−𝑗

| ℎ) = 𝛿Π
𝑡+1

𝑗
(𝑠
󸀠

𝑗
, 𝑠
−𝑗

|

ℎ
+
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𝑗
(𝑠 | ℎ

+
) = 𝛿𝑟

𝑗
(ℎ
+
) = 𝛿𝑟

𝑗
(ℎ) ≤ 𝑟

𝑗
(ℎ), and we

conclude that Π𝑡(𝑠󸀠
𝑗
, 𝑠
−𝑗

| ℎ) ≤ Π
𝑡

𝑗
(𝑠 | ℎ). When the proposal

is not equal to the stateht,1 ̸= r(h) if−𝑖(ℎ) follow 𝑠 the proposal
is refused; the state has changed to 𝑟(ℎ

+
) = 𝑟(ℎ) = 𝑒

𝑖(𝑡+1),
where ℎ

+
= (ℎ, (0, 0)) and Π

𝑡

𝑗
(𝑠 | ℎ) = 𝛿Π

𝑡+1

𝑗
(𝑠 | ℎ

+
) =

𝑒
𝑖(𝑡+1)

𝑗
. If 𝑗 follows 𝑠󸀠

𝑗
∈ OSD(𝑠

𝑗
, ℎ), accepting the proposition,
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Table 2: Herrero’s startegy.

State 𝑒
𝑗

Player 𝑖 Proposal 𝑒
𝑗

Reply 𝑝
𝑖
≥ 𝛿𝑒
𝑗

𝑖

𝑠
󸀠

𝑗
(ℎ) = 1. The proposal will still be declined by the other

player and there will be no change in state caused by 𝑗

response, and 𝑟(ℎ

+

) = 𝑒
𝑖(𝑡+1), with ℎ

+

= (ℎ, (1, 0)). Π𝑡
𝑗
(𝑠
󸀠

𝑗
, 𝑠
−𝑗

|

ℎ) = 𝛿Π
𝑡+1

𝑗
(𝑠 | ℎ

+
) = 𝛿𝑒

𝑖(𝑡+1)

𝑗
= 𝛿Π

𝑡+1

𝑗
(𝑠 | ℎ

+
) = Π

𝑡

𝑗
(𝑠 | ℎ).

Player 𝑗 does not improve by changing strategy.

2.2. Herrero’s Strategy. Being less general than Haller’s
strategy, Herrero had proposed an equilibrium strategy that
is less fragile. In this case, the players’ acceptance is not
reduced to one division only; they apparently consider only
their own share, and the acceptance rule has a threshold. The
punishment scheme is activated if a player does not propose
what he was supposed to. A state function defining the state
at history ℎ and which division should be proposed (again
there is an identification between state and proposal), 𝑟(ℎ) :

𝐻 → 𝐸, is updated after each proposal but before the replies,
so 𝑟(ℎ) = 𝑟(ℎ

−
) when 𝜏(ℎ) = (𝑡, 2). The states are again

𝐸 = {𝑒
0
, 𝑒
1
, 𝑒
2
, 𝑒
3
}, with 𝑒

𝑖 the division in which player 𝑖

receives the totality; the initial state is 𝑟(0) = 𝑒
0.

Define 𝑘(𝑝, 𝑡) as the replier worst off in proposition
𝑝 made at 𝑡 (of smaller index if there is more than
one), 𝑘(𝑝, 𝑡) = min{𝑗 ∈ 𝐼 \ 𝑖(𝑡) : 𝑝

𝑗
= min

𝑘∈𝐼\𝑖(𝑡)
𝑝
𝑘
}. The

state is defined in the following way for 𝜏(ℎ) = (𝑡, 1):

𝑟 (ℎ) = {

𝑟 (ℎ
−
) if ℎ𝑡,1 = 𝑟 (ℎ

−
)

𝑒
𝑘 if ℎ𝑡,1 ̸= 𝑟 (ℎ

−
) .

(4)

Briefly, if the player made the expected proposal, ℎ𝑡,1 =
𝑟(ℎ
−
), there is no state change; if he did not, then the strategy

enters in a punishment scheme of 𝑖(ℎ) that gives everything to
player 𝑘 = 𝑘(ℎ

𝑡,1
, 𝑡). Herrero’s strategy is resumed in Table 2

and formally defined subsequently.

Definition 5. The proponent always proposes 𝑟(ℎ), 𝑠
𝑖(ℎ)

(ℎ) =

𝑟(ℎ); the strategy for repliers 𝑗 ̸= 𝑖(ℎ) is

𝑠
𝑗
(ℎ) = {

1 if ℎ𝑡,1
𝑗

≥ 𝛿𝑟(ℎ)
𝑗

0 if ℎ𝑡,1
𝑗

< 𝛿𝑟(ℎ)
𝑗
.

(5)

Theorem 6. For 𝛿 > 1/2 Herrero’s strategy is SPNE for any
𝑒
𝑜
∈ Δ.

Proof. We will use the one-shot deviation principle once
more. Let us start by seeing that at ℎ ∈ 𝐻

𝑡−1,2 the player
i = i(t) gains nothing to act differently from 𝑠; when all
players act accordingly, 𝑖 utility after ℎ ∈ 𝐻

𝑡−1,2 is Π
𝑡

𝑖
(𝑠 |

ℎ) = 𝑟(ℎ)
𝑖
. If 𝑖 uses 𝑠󸀠

𝑖
∈ OSD (𝑠, ℎ) and makes a different

proposition, 𝑝 ̸= 𝑟(ℎ), there is immediately a change of state
to 𝑟(ℎ

+
) = 𝑒
𝑘, with 𝑘 = 𝑘(𝑝, 𝑡) ̸= 𝑖. If ℎ++ = (ℎ, 𝑝, 𝑟), where

𝑟 is the reply to ℎ
𝑡,1, 𝑟 ∈ {0, 1}

2; if min 𝑟
𝑗

= 0, at least
one player refused the proposition and Π

𝑡+1

𝑖
(𝑠
󸀠

𝑖
, 𝑠
−𝑖

| ℎ) =

𝛿Π
𝑡+1

𝑖
(𝑠 | ℎ

++
) = 𝛿𝑟(ℎ

++
)
𝑖
= 𝛿𝑒
𝑘

𝑖
= 0 ≤ Π

𝑡

𝑖
(𝑠
𝑖
, 𝑠
−𝑖

| ℎ).
Then, the only way 𝑖 can improve is when all players accept.
After proposition 𝑝 ̸= 𝑟(ℎ), state becomes 𝑒𝑘, with 𝑘 being the
player receiving the minimum, according to 𝑠 for 𝑘 to accept
𝑝
𝑘
= min{𝑝

𝑗
, 𝑝
𝑘
} ≥ 𝛿, and then 𝑝

𝑗
≥ 𝛿. The total amount

given to the repliers, for both of them to accept the proposal,
must be at least 2𝛿; as the total cannot be bigger than a unity,
we conclude that𝛿 ≤ 1/2, contradicting the initial hypothesis.
So, both repliers cannot accept simultaneously the out of
equilibrium proposition. For j ̸= i(t) and 𝜏(h) = (t, 1), the
payment for player 𝑗 under 𝑠 depends on the actions of the
other replier 𝑘 as well; if ℎ𝑡,1

𝜄
≥ 𝛿𝑟(ℎ)

𝜄
, for 𝜄 = 𝑗, 𝑘. all repliers

will accept, min
𝜄∈−𝑖(ℎ)

𝑠
𝜄
(ℎ) = 1; payment is immediate and

equal to ℎ
𝑡,1

𝑗
= Π
𝑡

𝑗
(𝑠 | ℎ); if any of the repliers rejects (due

to his share being smaller than the established by the state),
min
𝜄∈−𝑖(ℎ)

𝑠
𝜄
(ℎ) = 0; the agreement is delayed one period, but

the state is not changed; once the state does not depend on
the replies, ℎ+ = (ℎ, (𝑠

𝑗
(ℎ), 𝑠
𝑘
(ℎ))) ∈ 𝐻

𝑡,2, and 𝑟(ℎ
+
) = 𝑟(ℎ).

In this case, Π𝑡
𝑗
(𝑠 | ℎ) = 𝛿Π

𝑡+1

𝑗
(𝑠 | ℎ

+
) = 𝛿𝑟(ℎ

+
)
𝑗
= 𝛿𝑟(ℎ)

𝑗
.

And we can conclude that Π𝑡
𝑗
(𝑠 | ℎ) ≥ 𝛿𝑟(ℎ)

𝑗
independently

of the proposition ℎ
𝑡,1. At this moment, there are two ways

in which the players can act contrarily to the strategy 𝑠: to
accept a proposal that should be refused or to reject one that
should be accepted. In neither one does the player improve.
If sj(h) = 1, player 𝑗 chooses 𝑠󸀠

𝑗
∈ OSD(𝑠

𝑗
, ℎ); then 𝑠

󸀠

𝑗
(ℎ) = 0

his payment is Π𝑡
𝑗
(𝑠
󸀠

𝑗
, 𝑠
−𝑗

| ℎ) = 𝛿Π
𝑡+1

𝑗
(𝑠
󸀠

𝑗
, 𝑠
−𝑗

| ℎ
+
), with

ℎ
+

= (ℎ, (𝑠
󸀠

𝑗
(ℎ), 𝑠
𝑘
(ℎ))), as 𝑟(ℎ+) = 𝑟(ℎ), the state does not

depend on the replies;Π𝑡+1
𝑗

(𝑠
󸀠

𝑗
, 𝑠
−𝑗

| ℎ
+
) = Π
𝑡+1

𝑗
(𝑠
𝑗
, 𝑠
−𝑗

| ℎ
+
) =

𝑟(ℎ
+
)
𝑗
= 𝑟(ℎ)

𝑗
. 𝑗’s rejection leads to Π

𝑡

𝑗
(𝑠
󸀠

𝑗
, 𝑠
−𝑗

| ℎ) = 𝛿𝑟(ℎ)
𝑗
,

Π
𝑡

𝑗
(𝑠
󸀠

𝑖
, 𝑠
𝑗
| ℎ) ≤ Π

𝑡

𝑗
(𝑠 | ℎ). When sj(h) = 0, then a strategy

𝑠
󸀠

𝑗
∈ OSD(𝑠

𝑗
, ℎ) has 𝑠󸀠

𝑗
(ℎ) = 1. If player 𝑘 accepts, 𝑠

𝑘
(ℎ) = 1,

the agreement is immediate and the payment of 𝑗 is ℎ𝑡,1
𝑗
. It is

smaller than 𝛿𝑟(ℎ)
𝑗
because according to 𝑠

𝑗
a proposal should

only be rejected, 𝑠
𝑗
(ℎ) = 0, if ℎ𝑡,1 < 𝛿𝑟(ℎ)

𝑗
. If 𝑠
𝑘
(ℎ) = 0, the

agreement is postponed and 𝑗’s payment is 𝛿Π𝑡+1
𝑗

(𝑠 | ℎ
+
). We

can therefore define the payment of 𝑗 as

Π
𝑡

𝑗
(𝑠
󸀠

𝑗
, 𝑠
−𝑗

| ℎ)

= 𝑠
𝑘
(ℎ) ℎ
𝑡,1

𝑗
+ (1 − 𝑠

𝑘
(ℎ)) 𝛿Π

𝑡+1

𝑗
(𝑠
󸀠

𝑗
, 𝑠
−𝑗

| ℎ
+
)

= 𝑠
𝑘
(ℎ) ℎ
𝑡,1

𝑗
+ (1 − 𝑠

𝑘
(ℎ)) 𝛿Π

𝑡+1

𝑗
(sj, 𝑠−𝑗 | ℎ

+
)

= 𝑠
𝑘
(ℎ) ℎ
𝑡,1

𝑗
+ (1 − 𝑠

𝑘
(ℎ)) 𝛿𝑟(ℎ

+
)
𝑗

≤ 𝑠
𝑘
(ℎ) 𝛿𝑟(ℎ)

𝑗
+ (1 − 𝑠

𝑘
(ℎ)) 𝛿𝑟(h)

𝑗
= 𝛿𝑟(ℎ)

𝑗
= Π
𝑡

𝑗
(𝑠 | ℎ) .

(6)

2.3. Perfect Equilibrium in Replies. In Haller’s strategy,
repliers, without being punished by acting differently, reject
propositions that leave them better off; they are choosing
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weakly dominated strategies. At the moment of an answer,
when player 𝑗 rejects the proposition, whatever 𝑘 does, the
proposal will still be rejected, the agreement moment will be
delayed, and 𝑗’s action is, for the time being, useless.Then, he
can either accept or reject that his payment does not change.
Of course the game continues and the path after rejection is
important, but at thismoment the player’s actions do not have
any impact on the game.

When a replier believes the other is rejecting the proposal,
he is indifferent between accepting and rejecting it. If both
players think the same way, there may be a rejection of a
good proposal to both. This problem is a known weakness
of SPNE and was in the origin of the sequential and perfect
equilibrium concepts; for example, [6, page 9] identifies
the problem with the fact that not all information sets are
singletons.

“(. . .) For a subgame perfect equilibrium to be
sensible, it is necessary that this equilibrium pre-
scribes at each information set which is singleton a
choice which maximizes the expected payoff after
that information set. Note that the restriction to
singleton information sets is necessary to ensure
that the expected payoff after the information
set is well defined. This restriction, however, has
the consequence that not all subgame perfect
equilibria which satisfy this additional condition
are sensible.”

So, if all information sets are singleton, the SPNE is sen-
sible; if they are not, then there might be a problem in some
equilibria strategies. If the information set is nonsingleton, a
choice of an action that is not the best may happen; the use
of the concept is, in this case, questionable. Haller’s strategy
clearly demonstrates that a refined equilibrium concept
should be used in the multibargaining game.

For the purpose of this paper, we propose using one
concept in the vein of perfect equilibria of [3], different from
SPNE, that try to overcome the described problem by adding
small randomness to replier’s actions. In this way, all players’
actions are decisive in everymoment and all their actions and
choices do have an impact on the future payments. We adopt
an equilibriumnotion inwhich players onlymistake in replies
because it is at these moments that the information sets are
nonsingleton. The proponent information set is a singleton,
he always knows what the repliers have just done and all the
previous history. His actions always impact on the outcome
of the game and therefore SPNE is a sensible equilibrium
for this case. In this way, in order to avoid unnecessary
complications and the distortions that the trembling hand
perfection requirement induces, we opted for introducing the
minimumnumber of alterations to the approximating games,
and therefore the concept of Perfect Equilibrium in Replies
(PER) uses only trembles in the replies.

A mixed strategy for this game will be defined in terms
of behavioral mixed strategies, meaning that to each ℎ, the
player will choose a probability distribution over the possi-
bilities 𝐴

ℎ
available at the time. According to [7], to choose

a mixed distribution at each ℎ is equivalent to choosing a
mixed strategy over all simple strategies; this result is Khun’s

theorem adaptation for the case of infinite extensive games
with continuum space of actions. Denote byF(𝑋, 𝜎

𝑋
) the set

of probabilities measures over the set 𝑋 with 𝜎-algebra 𝜎
𝑋
.

At moment ℎ, with 𝐴
ℎ
the actions available for the players,

a behavioral strategy at ℎ for each 𝑖 is to pick a probability
measure 𝜎

𝑖
(ℎ) ∈ F(𝐴

ℎ
,B(𝐴

ℎ
)) (for 𝐴

ℎ
= Δ, we will use

the Borelian𝜎-algebra). A behavioral mixed strategy for player
𝑖, 𝜎
𝑖
is a behavioral mixed strategies for every history 𝜎

𝑖
(ℎ),

∀ℎ ∈ 𝐻; the set of all possible behavioral mixed strategy is Σ
𝑖
.

A behavioral mixed strategy is 𝜎 = (𝜎
1
, 𝜎
2
, 𝜎
3
), with 𝜎

𝑖
∈ Σ
𝑖

for 𝑖 = 1, 2, 3.
To define the payment function it is important to know

the agreement distribution over Δ = Δ × {0, 1}
2, that is,

to know what is the probability measure on B(Δ). For that
purpose, we will define a measure based on the behavioral
mixed strategy, 𝜎.

𝑘
𝜎
ℎ
defines the probability over the future

histories of dimension 𝑘 after ℎ; it is therefore defined on the
𝜎-algebraB(Δ

𝑘

).
𝑘
𝜎
ℎ
will be defined iteratively. We start by the probability

measure of the histories ending on the period next to ℎ. For
that, for each ℎ ∈ 𝐻

𝑡,2, define
1
𝜎
ℎ
(𝑂) = 𝜎

ℎ
(𝑂) = 𝜎(𝑂 | ℎ),

with 𝑂 ∈ B(Δ). If at ℎ the proposal was accepted and ℎ
𝑡,2

=

(1, 1), then no path was followed and in that case
1
𝜎
ℎ
(𝑂) =

0 for any 𝑂 ∈ B(Δ). Then, define the measure over future
histories of size 2, for 𝑂 ∈ B(Δ

2

), like

2
𝜎
ℎ
(𝑂) = ∫

ℎ∈Δ

𝜎
(ℎ,ℎ)

(𝑂
|ℎ
) 𝜕 (
1
𝜎
ℎ
) , (7)

in which𝑂
|ℎ
is the projection of𝑂 ⊆ Δ

2 on the last coordinate
𝑂
|ℎ

= {
̃
ℎ ∈ Δ : (ℎ,

̃
ℎ) ∈ 𝑂}. Using the same idea, it is

possible to define, recursively,
𝑘+1

𝜎
ℎ
as the measure among

the histories with duration 𝑘 + 1 superior to ℎ when 𝜎 is the
played strategy and 𝑂 ∈ B(Δ

𝑘

):

𝑘+1
𝜎
ℎ
(𝑂) = ∫

ℎ∈Δ
𝑘

𝜎
(ℎ,ℎ)

(𝑂
|ℎ
) 𝜕 (
𝑘
𝜎
ℎ
) . (8)

For ℎ ∈ 𝐻
𝑡̃,2, if 𝑖 is the proponent and 𝑗 and 𝑘 are the

repliers, the immediate payment at time 𝑡̃ is𝜋(ℎ) = ℎ
𝑡̃,1
ℎ
𝑡̃,2

𝑗
ℎ
𝑡̃,2

𝑘
;

if both repliers accept, 𝜋(ℎ) = ℎ
𝑡̃,1; if either rejects 𝜋(ℎ) = 0.

𝜋(ℎ) is clearly continuous in ℎ.The payment at 𝑡 = 𝑡(ℎ), under
the mixed strategy 𝜎, can be defined as

Π
𝑡

𝑖
(𝜎 | ℎ) = ∑

𝑘

𝛿
𝑘
∫

ℎ∈Δ
𝑘

𝜋 (ℎ, ℎ) 𝜕 (
𝑘
𝜎
ℎ
) . (9)

The expected payment is a discounted sum of a stream of
expected values received at each moment when 𝜎 is played;
at ℎ player 𝑖 expects to receive ∫

ℎ∈Δ
𝑘 𝜋(ℎ, ℎ)𝜕(

𝑘
𝜎
ℎ
) in the

moment 𝑡(ℎ) + 𝑘.
The questions raised by [5, page 250] justify the use of

an agent strategic form of the game in both Trembling Hand
definitions. The PER is almost a direct translation of Selten’s
perfect equilibrium for themultiplayer bargaining. Reference
[3] defines a sequence of approximating games, and to each of
these games, each action has a positive minimum probability
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of being played. For the game in appreciation that means for
each history ℎ ∈ 𝐻

𝑡,1, the minimum for each reply is 𝜖ℎ
0
> 0

and 𝜖
ℎ

1
> 0, in the approximating games. A strategy in the

approximating game 𝜎𝜖 must have at any history ℎ ∈ 𝐻
𝑡,1 a

positive probability attributed to both possibilities of reply,
𝜎
𝜖
(1 | ℎ) ≥ 𝜖

ℎ

1
and 𝜎

𝜖
(0 | ℎ) ≥ 𝜖

ℎ

0
. However, to impose

only this restriction, on the approximating game, destroys an
important characteristic of the game, namely, the symmetry
of it. For this reason, to keep the symmetric nature of the
game, we will assume equal restrictions at all moments. That
is, at replies, the minimum imposed in each approximating
game is always the same regardless of the moment or the
player, 𝜖ℎ

𝑘
= 𝜖
𝑘
, for 𝑘 = 0, 1. Therefore, we use approximation

games in which both actions at the moment of replies are
played with at least 𝜖

0
and 𝜖

1
probability, for the rejecting

and accepting action, respectively. For a strategy to be PER,
it must be an accumulation point of the equilibrium strategy
of one sequence of approximation games, when 𝜖 ↓ 0, with
𝜖 = (𝜖

0
, 𝜖
1
).

Definition 7. For a given 𝜖 ∈ [0, 1]
2, let Σ𝜖

𝑖
= {𝜎
𝑖
∈ Σ
𝑖
: 𝜎
𝑖
(𝑘 |

ℎ) ≥ 𝜖
𝑘
, ∀ℎ ∈ 𝐻

1
, 𝑘 ∈ {0, 1}} be the strategy space. 𝜎 is Perfect

Equilibria in Replies if there is one sequence of 𝜖 ↓ 0 and {𝜎𝜖}
𝜖

such that 𝜎𝜖
𝑖
∈ Σ
𝜖

𝑖
; 𝜎𝜖
𝑖(ℎ)

(𝑘 | ℎ) = 𝜎
𝑖(ℎ)

(𝑘 | ℎ), for all ℎ ∈

𝐻
𝑡,2 and all 𝑡; 𝜎 is an accumulation point of the sequence of

{𝜎
𝜖
}
{𝜖↓0}

; 𝜎𝜖 is a best reply at all histories ℎ in the set Σ𝜖
𝑖
; that

is

Π
𝑡

𝑖
(𝜎
𝜖
| ℎ) ≥ Π

𝑡

𝑖
(𝜎
󸀠𝜖

𝑖
, 𝜎
𝜖

−𝑖
| ℎ) , ∀𝜎

󸀠𝜖

𝑖
∈ Σ
𝜖

𝑖
∩OSD

𝑖
(𝜎
𝜖
, ℎ) .

(10)

3. Results and Discussion

3.1. Perfect Equilibrium in Replies and Classical Strategies.
One property common to all equilibria strategies presented
in Section 2 is that replies do not play a role in the future of
the game. In case of rejection of a proposal, for what will be
the future path of the game, it does not matter who rejected
it. In this type of strategies, defined as Reply Independent,
when PER is in use, as there are no future consequences
of accepting or rejecting proposals, and there is always the
possibility that the other player accepts, when a player is
receiving zero, then those propositions that leave him better
off should be accepted.The next result will prove this, but first
we formally define a Reply Independent strategy as a strategy
where the same action is taken for two histories with the same
propositions (but possibly with different replies).

Definition 8. The strategy 𝜎 is Reply Independent if for any ℎ
and ̃

ℎ with 𝜏(ℎ) = 𝜏(
̃
ℎ) and ℎ

𝑡,1
=
̃
ℎ
𝑡,1, ∀𝑡 ≤ 𝑡(ℎ), 𝜎(ℎ) = 𝜎(

̃
ℎ).

Σ
𝑝
⊂ Σ is the set of all Reply Independent strategies.

If a strategy is Reply Independent, when a proposal is
rejected, the payment is always the same no matter what the
concrete reply vector 𝑟 ∈ 𝑅 is, with 𝑅 = {(0, 0), (0, 1), (1, 0)}

the set of responses, where a proposition is rejected. So,
Π
𝑡+1

𝑖
(𝜎 | ℎ, 𝑟) = Π

𝑡+1

𝑖
(𝜎 | ℎ, 𝑟

󸀠
), ∀𝑟, 𝑟󸀠 ∈ 𝑅. We can then

define, for a Reply Independent strategy, the future payment

after a proposal being refused 𝑝
𝜎

𝑖
(ℎ) = 𝛿Π

𝑡+1

𝑖
(𝜎 | ℎ, 𝑟),

∀𝑟 ∈ 𝑅, with 𝜏(ℎ) = (𝑡, 1). If a strategy is simple, it is possible
after a history ℎ0 ∈ 𝐻

𝑡,2 to determine the sequence of future
propositions. There is a 𝑝0 ∈ Δ such that 𝜎

𝑖(ℎ
0
)
(𝑝
0
| ℎ
0
) = 1.

If the proposition is rejected, whatever is the 𝑟 ∈ 𝑅, as 𝜎 is
Reply Independent, with, abusing slightly on notation, ℎ1 =

(ℎ, 𝑝
0
, 𝑟) there is a 𝑝

1
∈ Δ such that 𝜎

𝑖(ℎ
1
)
(𝑝
1

| ℎ
1
) = 1.

Following on this way it is possible to define the sequence of
propositions after ℎ0 as 𝑃𝜎(ℎ0) = {𝑝

0
, 𝑝
1
, . . .}. We can now

show that, under certain conditions, if a strategy is PER and
Reply Independent, then better proposals are always accepted.

Theorem 9. If a simple strategy 𝜎 is PER, Reply Independent
and for ℎ ∈ 𝐻

𝑡,1, 𝑃𝜎(ℎ, 𝑟) = {𝑝
0
, 𝑝
1
, . . .}, ∀𝑟 ∈ 𝑅. If, for the

replier 𝑖 ̸= 𝑖(ℎ), 𝑝𝑘
𝑖
= 0, ∀𝑘, then 𝜎

𝑖
(1 | ℎ) = 1, when ℎ

𝑡,1

𝑖
> 0 =

𝑝
𝜎

𝑖
(ℎ); for the other replier 𝑗 ̸= 𝑖(ℎ), 𝜎

𝑗
(1 | ℎ) = 0 if ℎ𝑡,1

𝑗
< 𝑝
𝜎

𝑗
(ℎ)

and 𝜎
𝑗
(1 | ℎ) = 1 if ℎ𝑡,1

𝑗
> 𝑝
𝜎

𝑗
(ℎ).

Proof. By definition of a PER strategy, 𝜎𝜖
𝑖(ℎ
𝑡
)
(𝑝
𝑡
| ℎ
𝑡
) = 1,

for any 𝑡. Therefore, the proposition after ℎ, when 𝜎
𝜖 is being

played, is the same as when it is 𝜎, by PER 𝜎
𝜖

𝑖(ℎ)
(ℎ) = 𝜎

𝑖(ℎ)
(ℎ).

As 𝑝𝑘
𝑖
= 0, whatever the moment the agreement is reached,

player 𝑖 gains zero. If 𝑞𝜎
𝜖

𝑡+𝑘
is the probability, an agrement is

reached at 𝑡 + 𝑘; when the strategy played is 𝜎𝜖, the payment
of 𝑖 is Π𝑡

𝑖
(𝜎
𝜖
| ℎ) = ∑

𝑘
𝛿
𝑘
𝑞
𝜎
𝜖

𝑡+𝑘
𝑝
𝑘

𝑖
= 0. If ℎ𝑡,1

𝑖
> 0, then the

payment of player 𝑖 in case of rejection is Π𝑡
𝑖
(𝜎
𝜖
| ℎ) = 0, if

he accepts, his payment is Π𝑡
𝑖
(𝜎
𝜖
| ℎ) ≥ ℎ

𝑡,1

𝑖
𝜎
𝜖

𝑗
(1 | ℎ) > 0.

The player is better accepting the proposition, and therefore
𝜎
𝜖

𝑖
(1 | ℎ) = 1 − 𝜖

0
.

The other replier 𝑗 has also two possibilities after ℎ,
consider the strategy in which at the moment ℎ he always
accepts 𝜎𝑎

𝑗
∈ OSD(𝜎

𝜖

𝑗
, ℎ) with 𝜎

𝑎

𝑗
(1 | ℎ) = 1 and the strategy

inwhich he always rejects𝜎𝑟
𝑗
∈ OSD(𝜎

𝜖

𝑗
, ℎ)with𝜎𝑟

𝑗
(0 | ℎ) = 1.

The payment at each of these possibilities is

Π
𝑡

𝑗
(𝜎
𝑎

𝑗
, 𝜎
𝜖

−𝑗
| ℎ)

= 𝜎
𝜖

𝑖
(1 | ℎ) ℎ

𝑡,1

𝑗
+ 𝛿𝜎
𝜖

𝑖
(0 | ℎ)Π

𝑡+1

𝑗
(𝜎
𝜖
| ℎ, 1, 0)

= (1 − 𝜖
0
) ℎ
𝑡,1

𝑗
+ 𝛿𝜖
0
Π
𝑡+1

𝑗
(𝜎
𝜖
| ℎ, 1, 0) ,

Π
𝑡

𝑗
(𝜎
𝑟

𝑗
, 𝜎
𝜖

−𝑗
| ℎ)

= 𝛿𝜎
𝜖

𝑖
(1 | ℎ)Π

𝑡+1

𝑗
(𝜎
𝜖
| ℎ, 0, 1) + 𝛿𝜎

𝜖

𝑖
(0 | ℎ)

× Π
𝑡+1

𝑗
(𝜎
𝜖
| ℎ, 0, 0)

= 𝛿 (1 − 𝜖
0
)Π
𝑡+1

𝑗
(𝜎
𝜖
| ℎ, 0, 1) + 𝛿𝜖

0
Π
𝑡+1

𝑗
(𝜎
𝜖
| ℎ, 0, 0) .

(11)

And the difference between the payments of the two
strategies, Π𝑡

𝑗
(𝜎
𝑎

𝑗
, 𝜎
𝜖

−𝑗
| ℎ) − Π

𝑡

𝑗
(𝜎
𝑟

𝑗
, 𝜎
𝜖

−𝑗
| ℎ), is equal to

(1 − 𝜖
0
) [ℎ
𝑡,1

𝑗
− 𝛿Π
𝑡+1

𝑗
(𝜎
𝜖
| ℎ, 0, 1)]

+𝜖
0
𝛿 [Π
𝑡+1

𝑗
(𝜎
𝜖
| ℎ, 1, 0) − Π

𝑡+1

𝑗
(𝜎
𝜖
| ℎ, 0, 0)] .

(12)
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Clearly, Π𝑡
𝑗
(𝜎
𝑎

𝑗
, 𝜎
𝜖

−𝑗
| ℎ) − Π

𝑡

𝑗
(𝜎
𝑟

𝑗
, 𝜎
𝜖

−𝑗
| ℎ) → ℎ

𝑡,1

𝑘
−

𝛿Π
𝑡+1

𝑘
(𝜎 | ℎ, 0, 1), when 𝜖 → 0. So, for small values of 𝜖,

Π
𝑡

𝑗
(𝜎
𝑎

𝑗
, 𝜎
𝜖

−𝑗
| ℎ,

̃
𝑑) > Π

𝑡

𝑗
(𝜎
𝑟

𝑗
, 𝜎
𝜖

−𝑗
| ℎ) if ℎ𝑡,1

𝑗
> 𝛿Π

𝑡+1

𝑗
(𝜎 |

ℎ, 0, 1) = 𝑝
𝜎

𝑗
(ℎ), and therefore 𝜎𝜖

𝑗
(1 | ℎ) = 1 − 𝜖

0
; if ℎ𝑡,1
𝑗

<

𝑝
𝜎

𝑗
(ℎ), then 𝜎

𝜖

𝑗
(1 | ℎ) = 𝜖

1
. Take limits to 𝜎

𝜖

𝑗
(1 | ℎ) and the

conclusions are immediate.

An immediate consequence of the previous result is that
Haller’s strategy is not PER equilibria since repliers only
accept a unique proposal and for that reason it cannot
sustain the hypothesis of small errors.Without penalizing the
answers it was relatively clear this would happen.

Corollary 10. Haller’s strategy is not PER strategy.

Herrero’s strategy is different; it respects the previous
result, but it still maintains a shortcoming; not all the played
strategies are nondominated; for instance when a player
proposes a division that attributes him zero, he is playing
a weakly dominated strategy. The next corollary shows that
Herrero’s, strategy is not a PER equilibrium.

Corollary 11. Herrero’s strategy is not a PER.

Proof. To prove that Herrero’s strategy is not a PER, we will
find a history moment ℎ ∈ 𝐻 at which the strategy is not
compatible with Definition 7. Take, for instance, a history ℎ ∈

𝐻
𝑡,2 with state 𝑟(ℎ) = 𝑒

2 and proponent 𝑖(ℎ) = 1. So, player 1
is the proponent at a history with state 𝑒2, receiving a payoff of
zero 𝑒

2

1
= 0 if accepted. By definition of Herrero’s strategy we

know it is simple, reply independent, and𝑃𝜎(ℎ) = {𝑒
2
, 𝑒
2
, . . .},

no matter what the replies are the future propositions will be
always 𝑒2. By an argument equal to the one at Theorem 9 we
know thatΠ𝑡

1
(𝜎
𝜖
ℎ, 𝑒
2
) = 0. However, if player 1 uses a strategy

𝜎
𝑝

1
∈ OSD(𝜎

𝜖

1
, ℎ), in which he proposes𝑝 ∈ Δwith𝑝

1
> 0, the

payment of player 1 is Π𝑡
1
(𝜎
𝜖
ℎ, 𝑝) ≥ 𝑝

1
𝜎
𝜖

2
(1ℎ, 𝑝)𝜎

𝜖

3
(1ℎ, 𝑝) ≥

𝑝
1
𝜖
2

1
> 0. At ℎ to propose 𝑒2 is not the best option and clearly

there is no approximating strategy 𝜎𝜖 with 𝜎
𝜖
(ℎ) = 𝜎(ℎ) that

is the best reply at ℎ.

3.2. New Equilibrium Strategy. The next strategy will use
an out of equilibrium incentive mechanism for players that
follows it, and establish that all possible divisions inΔ are PER
outcomes.

For that strategy, consider the set of states 𝐸 =

⋃
3

𝑖 ̸= 𝑗
{𝑒
𝑖
, 𝑒
𝑖𝑗
}, where 𝑒𝑖 ∈ Δ are as previously defined and the

new states 𝑒𝑖𝑗 ∈ Δ are such that 𝑒𝑖𝑗
𝑖
= 𝛾
1
, 𝑒𝑖𝑗
𝑗
= 𝛾
2
, and 𝑒

𝑖𝑗

𝑘
= 0,

for 𝑘 ∉ {𝑖, 𝑗}; for example, 𝑒31 = (𝛾
2
, 0, 𝛾
1
). For each history

ℎ, there is a state 𝑟(ℎ) ∈ 𝐸. The strategy for ℎ ∈ 𝐻
𝑡−1,2 is for

the proponent to always propose a division equal to the state
𝑠
𝑖(ℎ)

(ℎ) = 𝑟(ℎ); for ℎ ∈ 𝐻
𝑡,1 and for 𝑗 ̸= 𝑖(ℎ) the player accepts

if the proposal was equal to the state and rejects otherwise.
Consider

𝑠
𝑗
(ℎ) = {

1, if ℎ𝑡,1 = 𝑟 (ℎ
−
)

0, if ℎ𝑡,1 ̸= 𝑟 (ℎ
−
) .

(13)

To define the state transition, we need to use a function
from history to the subsets of players 𝑔(ℎ) : 𝐻

2
→ 2
𝐼 that

tracks which players moved as defined in 𝑠 at the last moment
ℎ
𝑡
= (ℎ
𝑡,1
, ℎ
𝑡,2
).

Consider

𝑔 (ℎ) = {𝑖 ∈ 𝐼 : (𝑖 ̸= 𝑖 (ℎ) and 𝑠
𝑖
(ℎ
|𝑡,1

) = ℎ
𝑡,2

𝑖
)

or (𝑖 = 𝑖 (ℎ) and 𝑠
𝑖
(ℎ
|𝑡−1,2

) = ℎ
𝑡,1
)} .

(14)

When all players follow 𝑠, the agreement is immediate;
the proponent plays 𝑟(ℎ) and both repliers accept it; so, if ℎ
was not an ending history, some of the players did not play
according to the strategy and either the proponent or at least
one replier deviated. Therefore, there is an impossibility of
𝑔(ℎ) = 𝐼 in a nonending history ℎ. That is, a history with
ℎ
𝑡,2

̸= (1, 1)must have 𝑔(ℎ) ̸= 𝐼.
At each history, it is possible to define an order of the

players determined by the next moment each player will
propose. Define for each moment 𝑡 and for each player 𝑖,
𝑡
𝑖
= min{𝑡̃ : 𝑡̃ > 𝑡 and 𝑡̃ ∈ 𝑡(𝑖)}, and we say 𝑖 proposes

before 𝑗 at 𝑡, 𝑖 ≺
𝑡
𝑗, if 𝑡
𝑖
< 𝑡
𝑗
. Take 𝑔(ℎ) to be a vector with

the same elements of 𝑔(ℎ) ordered by ≺
𝑡(ℎ)

. One example, if
𝑔(ℎ) = {1, 3} and 𝑡(ℎ) = 4 the next proponent is player 2, and
then player 3 followed by 1, so 3 ≺

4
1 and 𝑔(ℎ) = (3, 1).

Transition occurs only after the voting stage; so, if 𝜏(ℎ) =
(𝑡, 1), 𝑟(ℎ) = 𝑟(ℎ

−
). For ℎ = (𝑡, 2),

𝑟 (ℎ) = {

𝑟 (ℎ
−
) , if 𝑔 (ℎ) = 0

𝑒
𝑔(ℎ)

, if 𝑔 (ℎ) ̸= 0.

(15)

Players that did not follow the strategy are punished by
receiving zero in the next state. A player’s willing to accept (or
propose) 0 is based on the possibility of other players making
a mistake, and in that case, the well-behaved player receives a
premium.

For 𝑠 to be a PER, there must exist a sequence of

approximating strategies 𝑠𝜖, with 𝑠
𝜖
𝜖↓0

󳨀󳨀→ 𝑠. This strategy is
a mixed strategy in replies, with both possibilities assuming
a positive and equal probability; that is, we are assuming a
sequence where 𝜖 = {𝜖

0
, 𝜖
1
} with 𝜖

0
= 𝜖
1
. So, to ease the

notation, from now on we will consider that 𝜖 ∈ [0, 1] is the
minimum at the approximation game for both options at the
reply moment.

The strategy 𝑠
𝜖 is similar to 𝑠; the action that coincides

with 𝑠 is playedwith probability 1−𝜖 and the one that does not
is played only with 𝜖 probability; so, for 𝑗 ̸= 𝑖(ℎ) and ℎ ∈ 𝐻

𝑡,1,

𝑠
𝜖

𝑗
(1 | ℎ) = {

1 − 𝜖, if ℎ𝑡,1 = 𝑟 (ℎ
−
)

𝜖, if ℎ𝑡,1 ̸= 𝑟 (ℎ
−
) .

(16)

For ℎ ∈ 𝐻
𝑡−1,2, we assume, according to the definition of

PER, that 𝑠𝜖
𝑖(ℎ)

(𝑟(ℎ) | ℎ) = 𝑠
𝑖(ℎ)

(𝑟(ℎ) | ℎ) = 1, so 𝑖(ℎ) plays
𝑟(ℎ) with probability 1. It is clear that 𝑠𝜖 → 𝑠, and for 𝑠 to be
a PER, it only needs to be proved that 𝑠𝜖 is a best reply at all
histories ℎ ∈ 𝐻.

Before calculating the payment under 𝑠𝜖, some facts about
this strategy, which facilitate this job, should be noted. The
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Table 3: Π1
𝑒
parcels.

Player 2
Accept Reject

Player 3 Accept 𝑒
1

Π
2

𝑒
31

Reject Π
2

𝑒
21 Π

2

𝑒
1

strategy, as function of ℎ, only depends on the state of history
𝑒 = 𝑟(ℎ), so the action taken at ℎ is solely determined by the
state 𝑒, and the strategy could be defined as 𝑠𝜖(𝑎 | 𝑒) = 𝑠

𝜖
(𝑎 |

ℎ) for 𝑎 ∈ 𝐴
ℎ
. The state 𝑟(ℎ) is determined by the previous

state 𝑟(ℎ−), the action taken 𝑠
𝜖
(𝑎ℎ), and the proponent at ℎ,

𝑖(ℎ). So, for two different histories ℎ and ̃
ℎ, if they share the

proponent 𝑖(ℎ) = 𝑖(
̃
ℎ) and the state 𝑟(ℎ) = 𝑟(

̃
ℎ), then the

future play will have the same distribution, that is,
𝑘
𝑠
𝜖

ℎ
=
𝑘
𝑠
𝜖

ℎ̃

for all 𝑘 ∈ N. For this reason the future payment is the same
at ℎ and at ̃ℎ, Π𝑡(ℎ)

𝑖
(𝑠
𝜖
| ℎ) = Π

𝑡(ℎ̃)

𝑖
(𝑠
𝜖
|
̃
ℎ). Therefore, we

can define classes of histories where the future payment is the
same if the 𝑠𝜖 is played. For 𝑒 ∈ 𝐸 and 𝑖 ∈ 𝐼, define the classes
[𝑒, 𝑖] = {ℎ ∈ 𝐻 : 𝑟(ℎ) = 𝑒 and 𝑖(ℎ) = 𝑖}.

Without loss of generality, we will focus on player 1 and
for notation simplicity, define Π𝑡(ℎ)

1
(𝑠
𝜖
| ℎ) = Π

𝑖

𝑒
if ℎ ∈ [𝑒, 𝑖].

When all players follow 𝑠
𝜖, 1 is the proponent and 𝑒 is the state;

1’s payment, Π1
𝑒
, is composed of several parcels presented in

Table 3.
The content in the table will be explained through the

example of one cell. After player 1 proposes 𝑒, suppose player
2 accepts, as it should, and player 3 rejects; the proposition is
rejected and agreement is delayed. The players that followed
the strategy 𝑠 were 1 and 2, and then 𝑔(ℎ) = (1, 2); as 1 was
the proposer, next round proposer’s is 2 so 𝑔(ℎ) = (2, 1),
and the new state will be 𝑒21. 1’s payment, which comes from
future agreement, is 𝛿Π2

𝑒
21 . All the possibilities are covered in

the table. To obtain 1’s expected payoff, we multiply by the
respective probabilities:

Π
1

𝑒
= 𝑒
1
𝑠
𝜖

−1
(1, 1 | ℎ

𝑡,1
= 𝑒) + 𝛿𝑠

𝜖

−1
(0, 1 | ℎ

𝑡,1
= 𝑒)Π

2

𝑒
31

+ 𝛿𝑠
𝜖

−1
(1, 0 | ℎ

𝑡,1
= 𝑒)Π

2

𝑒
21 + 𝛿𝑠

𝜖

−1
(0, 0 | ℎ

𝑡,1
= 𝑒)Π

2

𝑒
1

= 𝑒
1
(1 − 𝜖)

2
+ 𝛿𝜖 (1 − 𝜖)Π

2

𝑒
31 + 𝛿𝜖 (1 − 𝜖)Π

2

𝑒
21 + 𝛿𝜖

2
Π
2

𝑒
1 .

(17)

For two different states 𝑒 and 𝑒, all but the first term on
(17) are equal, so Π

1

𝑒
− Π
1

𝑒
= (𝑒
1
− 𝑒
1
)(1 − 𝜖)

2. This equality
simplifies extremely Π

𝑘

𝑒
, for example, we use the fact that

player 1 receives nothing in the states 𝑒2, 𝑒3, and 𝑒
23 to state

that Π1
𝑒
2 = Π
1

𝑒
3 = Π
1

𝑒
23 . For now we will focus on the payment

of player 1 when the state is 𝑒2; later, based on this case, we
prove that 𝑠𝜖 is a best reply for the remaining histories and
players. Replacing 𝑒 by 𝑒2 and using relations likeΠ𝑘

𝑒
12 = Π

𝑘

𝑒
13 ,

Π
𝑘

𝑒
13 = Π

𝑘

𝑒
2 + 𝛾
1
(1 − 𝜖)

2 andΠ
𝑘

𝑒
1 = Π
𝑘

𝑒
2 + (1 − 𝜖)

2. The payoff of
player 1, when 1, 2, and 3 are the proponents, is

Π
1

𝑒
2 = 𝛿𝜖 (1 − 𝜖)Π

2

𝑒
31 + 𝛿𝜖 (1 − 𝜖)Π

2

𝑒
21 + 𝛿𝜖

2
Π
2

𝑒
1

= 𝛿𝜖 [2 (1 − 𝜖)Π
2

𝑒
31 + 𝜖Π

2

𝑒
1]

= 𝛿𝜖 [2 (1 − 𝜖) (Π
2

𝑒
2 + (1 − 𝜖)

2
𝛾
2
) + 𝜖 (Π

2

𝑒
2 + (1 − 𝜖)

2
)]

= 𝛿𝜖 [(2 − 𝜖)Π
2

𝑒
2 + 2(1 − 𝜖)

3
𝛾
2
+ 𝜖 (1 − 𝜖)] ,

Π
2

𝑒
2 = 𝑒
2

1
(1 − 𝜖)

2
+ 𝛿𝜖 (1 − 𝜖)Π

3

𝑒
12

+ 𝛿𝜖 (1 − 𝜖)Π
3

𝑒
32 + 𝛿𝜖

2
Π
3

𝑒
2

= 𝛿𝜖 (1 − 𝜖)Π
3

𝑒
12 + 𝛿𝜖 (1 − 𝜖)Π

3

𝑒
32 + 𝛿𝜖

2
Π
3

𝑒
2

= 𝛿𝜖 [(1 − 𝜖)Π
3

𝑒
12 + (1 − 𝜖)Π

3

𝑒
32 + 𝜖Π

3

𝑒
2]

= 𝛿𝜖 [(1 − 𝜖) (Π
3

𝑒
2 + 𝛾
1
(1 − 𝜖)

2
) + (1 − 𝜖)Π

3

𝑒
2 + 𝜖Π

3

𝑒
2]

= 𝛿𝜖 [(2 − 𝜖)Π
3

𝑒
2 + 𝛾
1
(1 − 𝜖)

3
] ,

Π
3

𝑒
2 = 𝛿𝜖 (1 − 𝜖)Π

1

𝑒
13 + 𝛿𝜖 (1 − 𝜖)Π

1

𝑒
23 + 𝛿𝜖

2
Π
1

𝑒
3

= 𝛿𝜖 [(1 − 𝜖) (Π
1

𝑒
2 + 𝛾
1
(1 − 𝜖)

2
) + Π
1

𝑒
2]

= 𝛿𝜖 [(2 − 𝜖)Π
1

𝑒
2 + (1 − 𝜖)

3
𝛾
1
] .

(18)

We get the following system of equations:

Π
1

𝑒
2 = 𝛿𝜖 (2 − 𝜖)Π

2

𝑒
2 + 𝛿𝜖 (1 − 𝜖) [2(1 − 𝜖)

2
𝛾
2
+ 𝜖]

= 𝜉
1
𝛽
1
+ 𝜉
0
Π
2

𝑒
2 ,

Π
2

𝑒
2 = 𝛿𝜖 (2 − 𝜖)Π

3

𝑒
2 + 𝛿𝜖(1 − 𝜖)

3
𝛾
1

= 𝜉
1
𝛽
2
+ 𝜉
0
Π
3

𝑒
2 ,

Π
3

𝑒
2 = 𝛿𝜖 (2 − 𝜖)Π

1

𝑒
2 + 𝛿𝜖(1 − 𝜖)

3
𝛾
1

= 𝜉
1
𝛽
2
+ 𝜉
0
Π
1

𝑒
1 ,

(19)

with 𝜉
0
= 𝛿𝜖(2 − 𝜖), 𝜉

1
= 𝛿𝜖(1 − 𝜖) and 𝛽

1
= 2(1 − 𝜖)

2
𝛾
2
+ 𝜖,

𝛽
2
= (1 − 𝜖)

2
𝛾
1
.

Solving the system, we get the values ofΠ𝑘
𝑒
2 , for 𝑘 = 1, 2, 3,

and calculate the following limits for later use:

Π
1

𝑒
2 =

𝜉
1

1 − 𝜉
3

0

(𝛽
1
+ 𝜉
0
𝛽
2
+ 𝜉
2

0
𝛽
2
) lim

𝜖↓0

Π
1

𝑒
2

𝜖

= 2𝛿𝛾
2
,

Π
2

𝑒
2 =

𝜉
1

1 − 𝜉
3

0

(𝛽
2
+ 𝜉
0
𝛽
2
+ 𝜉
2

0
𝛽
1
) lim

𝜖↓0

Π
2

𝑒
2

𝜖

= 𝛿𝛾
1
,

Π
3

𝑒
2 =

𝜉
1

1 − 𝜉
3

0

(𝛽
2
+ 𝜉
0
𝛽
1
+ 𝜉
2

0
𝛽
2
) lim

𝜖↓0

Π
3

𝑒
2

𝜖

= 𝛿𝛾
1
.

(20)

To analyse the best reply of player 1, in state 𝑒2, when 𝑠
𝜖

is being played, we consider the strategies 𝑠𝑎
1
, 𝑠
𝑟

1
∈ OSD(𝑠

𝜖

1
, ℎ)
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in which 𝑠
𝑎

1
(1 | ℎ) = 1, 𝑠𝑟

1
(0 | ℎ) = 1. Now, we will consider

all the possibilities and prove that in the approximating game
the actions defined in 𝑠

𝜖 are in fact the best.
Player 3 was the proponent and proposed 𝑟(ℎ

−
) = 𝑒
2; the

payment for player 1 in each of his actions isΠ𝑡
1
(𝑠
𝑎

1
, 𝑠
𝜖

−1
| ℎ) =

0⋅(1−𝜖)+𝛿𝜖Π
1

𝑒
13 = 𝛿𝜖Π

1

𝑒
13 andΠ𝑡

1
(𝑠
𝑟

1
, 𝑠
𝜖

−1
| ℎ) = (1−𝜖)𝛿Π

1

𝑒
23 +

𝜖𝛿Π
1

𝑒
3 . And the difference between the two payoffs is

Π
𝑡

1
(𝑠
𝑎

1
, 𝑠
𝜖

−1
| ℎ) − Π

𝑡

1
(𝑠
𝑟

1
, 𝑠
𝜖

−1
| ℎ)

= 𝛿𝜖Π
1

𝑒
13 − [(1 − 𝜖) 𝛿Π

1

𝑒
23 + 𝜖𝛿Π

1

𝑒
31]

= 𝛿𝜖 [Π
1

𝑒
3 + 𝛾
1
(1 − 𝜖)

2
] − (1 − 𝜖) 𝛿Π

1

𝑒
3 − 𝜖𝛿Π

1

𝑒
3

= (1 − 𝜖) 𝜖𝛿(𝛾
1
(1 − 𝜖) −

Π
1

𝑒
2

𝜖

) .

(21)

AsΠ1
𝑒
2/𝜖 → 2𝛿𝛾

2
, if 𝛾
1
> 2𝛿𝛾

2
, the inequalityΠ𝑡

1
(𝑠
𝑎

1
, 𝑠
𝜖

−1
|

ℎ) ≥ Π
𝑡

1
(𝑠
𝑟

1
, 𝑠
𝜖

−1
| ℎ) is verified for small values of 𝜖. And

the acceptance of the proposition should happen with the
maximum probability; that is, 𝑠𝜖

1
(1 | ℎ) = 1 − 𝜖.

If in the state 𝑒2 player 3made a proposition 𝑒 ̸= 𝑒
2, player

1 payment in case of acceptance is Π𝑡
1
(𝑠
𝑎

1
, 𝑠
𝜖

−1
| ℎ) = 𝑒

1
𝑠
𝜖

2
(1 |

ℎ) + 𝛿𝑠
𝜖

2
(0 | ℎ)Π

1

𝑒
2 ≤ 𝜖 + 𝛿(1 − 𝜖)Π

1

𝑒
2 or in case of rejection

is Π𝑡
1
(𝑠
𝑟

1
, 𝑠
𝜖

−1
| ℎ) = 𝛿𝑠

𝜖

2
(1 | ℎ)Π

1

𝑒
1 + 𝛿𝑠

𝜖

2
(0 | ℎ)Π

1

𝑒
12 . As 𝑠𝜖

2
(1 |

ℎ) → 0,Π1
𝑒
2 → 0 andΠ1

𝑒
12 → 𝛾

1
,Π𝑡
1
(𝑠
𝑟

1
, 𝑠
𝜖

−1
ℎ)− Π

𝑡

1
(𝑠
𝑎

1
, 𝑠
𝜖

−1
|

ℎ) → 𝛿𝛾
1
> 0, for small 𝜖, the best option for player 1 is to

reject the proposal, and 𝑠
𝜖

1
(0 | ℎ) = 1 − 𝜖.

When 2 was the proponent and proposed 𝑟(ℎ
−
) = 𝑒
2, the

payment for player 1 in each of his actions isΠ𝑡
1
(𝑠
𝑎

1
, 𝑠
𝜖

−1
| ℎ) =

0⋅(1−𝜖)+𝛿𝜖Π
3

𝑒
12 = 𝛿𝜖Π

1

𝑒
13 andΠ𝑡

1
(𝑠
𝑟

1
, 𝑠
𝜖

−1
| ℎ) = (1−𝜖)𝛿Π

3

𝑒
32 +

𝜖𝛿Π
3

𝑒
2 . The difference between the two payoffs is

Π
𝑡

1
(𝑠
𝑎

1
, 𝑠
𝜖

−1
| ℎ) − Π

𝑡

1
(𝑠
𝑟

1
, 𝑠
𝜖

−1
| ℎ)

= 𝛿𝜖Π
3

𝑒
12 − [(1 − 𝜖) 𝛿Π

3

𝑒
32 + 𝜖𝛿Π

3

𝑒
2]

= 𝛿𝜖 [Π
3

𝑒
2 + 𝛾
1
(1 − 𝜖)

2
] − 𝛿Π

3

𝑒
2

= 𝛿𝜖 (1 − 𝜖) (𝛾
1
(1 − 𝜖) −

Π
3

𝑒
2

𝜖

) .

(22)

As seen in (20), Π3
𝑒
2/𝜖 → 𝛿𝛾

1
, and [Π

𝑡

1
(𝑠
𝑎

1
, 𝑠
𝜖

−1
| ℎ) −

Π
𝑡

1
(𝑠
𝑟

1
, 𝑠
𝜖

−1
| ℎ)]/𝜖 → (1 − 𝛿)𝛾

1
> 0; the necessary inequality

is verified, for small values of 𝜖.
In the case player 2made a proposition different from the

state, it can be proved that player 1 is better off by rejecting the
proposition; in the same way, we did when player 3 proposed
a division different from the state. Nothing changes in the
proof.

When player 1 is proposing, and state is 𝑒2, consider two
strategies 𝑠

𝑛𝑑

1
(𝑒
2

| ℎ) = 1, the “nondeviating” strategy in
which 1 always proposes 𝑒2 afterℎ and the “deviating” strategy
with player always proposing 𝑒, 𝑠𝑑

1
(𝑒 | ℎ) = 1, different from

𝑒
2. For 𝑠 to be PER, Π

𝑡

1
(𝑠
𝑛𝑑

1
, 𝑠
𝜖

−1
| ℎ) ≥ Π

𝑡

1
(𝑠
𝑑

1
, 𝑠
𝜖

−1
| ℎ) for small

values of 𝜖:

Π
𝑡

1
(𝑠
𝑑

1
, 𝑠
𝜖

−1
| ℎ)

≤ 1 ⋅ 𝜖
2
+ 𝛿𝜖 (1 − 𝜖)Π

2

𝑒
3 + 𝛿𝜖 (1 − 𝜖)Π

2

𝑒
2

+ 𝛿(1 − 𝜖)
2
Π
2

𝑒
23

= 𝜖
2
+ 𝛿 (1 − 𝜖

2
)Π
2

𝑒
2 ,

Π
𝑡

1
(𝑠
𝑛𝑑

1
, 𝑠
𝜖

−1
| ℎ)

= 𝛿𝜖 (1 − 𝜖)Π
2

𝑒
31 + 𝛿𝜖 (1 − 𝜖)Π

2

𝑒
21 + 𝛿𝜖

2
Π
2

𝑒
1

= 2𝛿𝜖 (1 − 𝜖)Π
2

𝑒
31 + 𝛿𝜖

2
Π
2

𝑒
1

= 𝛿 (2 − 𝜖) 𝜖Π
2

𝑒
2 + 2𝛿𝜖(1 − 𝜖)

3
𝛾
2
+ 𝛿𝜖
2
(1 − 𝜖)

2

= 𝛿 (2 − 𝜖) 𝜖Π
2

𝑒
2 + 𝛿𝜖(1 − 𝜖)

2
[2𝛾
2
(1 − 𝜖) + 𝜖] .

(23)

And the difference is

Π
𝑡

1
(𝑠
𝑛𝑑

1
, 𝑠
𝜖

−1
| ℎ) − Π

𝑡

1
(𝑠
𝑑

1
, 𝑠
𝜖

−1
| ℎ)

≥ 𝛿𝜖{(2𝜖 − 1)

Π
2

𝑒
2

𝜖

+ (1 − 𝜖)
2
[2𝛾
2
(1 − 𝜖) + 𝜖] −

𝜖

𝛿

} .

(24)

The expression inside the curly brackets, using again (20),
converges to −𝛿𝛾

1
+ 2𝛾
2
, and if 2𝛾

2
> 𝛿𝛾
1
, the necessary

inequality is assured.
If 𝛾
1
= 2/3 and 𝛾

2
= 1/3, all the inequalities are verified.

Andwe conclude that, for the player 1, when the other players
follow 𝑠

𝜖, the best option at all the possible histories with the
state 𝑒2 is to follow it as well.

We will now see that for the other states 𝑒 ∈ 𝐸, player
1 never improves his payment by deviating from strategy 𝑠𝜖.
First, when 1 is the proponent, notice that for the proponent
the expected payment of a deviation does not depend on the
state; it is always equal no matter what the initial state was,
Π
𝑡

1
(𝑠
󸀠

1
, 𝑠
𝜖

−1
| 𝑒) = Π

𝑡

1
(𝑠
󸀠

1
, 𝑠
𝜖

−1
| 𝑒
2
). Hence, if the proposition

is equal to the state, as Π𝑡
1
(𝑠
𝜖
| 𝑒) ≥ Π

𝑡

1
(𝑠
𝜖
| 𝑒
2
), and if in 𝑒

2

deviating was not profitable in 𝑒, it is not as well, Π𝑡
1
(𝑠
𝜖
| 𝑒) ≥

Π
𝑡

1
(𝑠
𝜖
| 𝑒
2
) ≥ Π
𝑡

1
(𝑠
󸀠

1
, 𝑠
𝜖

−1
| 𝑒
2
) = Π
𝑡

1
(𝑠
󸀠

1
, 𝑠
𝜖

−1
| 𝑒).

When 1 is the replier and the proposition is not equal to
the state 𝑒, 1’s expected payment by rejecting the proposal is
the same aswhen rejecting a proposition not equal to the state
and the state was 𝑒2. So if 𝑟(ℎ−) = 𝑒 and ℎ

𝑡,1
̸= 𝑒 and 𝑟(

̃
ℎ
−
) =

𝑒
2 and ̃

ℎ
𝑡,1

̸= 𝑒
2, with 𝑠

𝑟

1
∈ OSD(𝑠

𝜖

1
, ℎ) and 𝑠

𝑟

1
∈ OSD(𝑠

𝜖

1
,
̃
ℎ),

are the OSD strategies that reject the deviating proposition at
ℎ and ̃

ℎ, respectively, Π𝑡
1
(𝑠
𝑟

1
, 𝑠
𝜖

−1
| ℎ) = Π

𝑡

1
(𝑠
𝑟

1
, 𝑠
𝜖

−1
|
̃
ℎ). The

same is valid if the player accepts the deviating proposition;
his payment is exactly the same in state 𝑒 to what it was in
state 𝑒2. Defining 𝑠𝑎

1
∈ OSD(𝑠

𝜖

1
, ℎ) and 𝑠

𝑎

1
∈ OSD(𝑠

𝜖

1
,
̃
ℎ) as the

OSD strategies that accept the deviating proposition at ℎ and
̃
ℎ, respectively, Π𝑡

1
(𝑠
𝑎

1
, 𝑠
𝜖

−1
| ℎ) = Π

𝑡

1
(𝑠
𝑎

1
, 𝑠
𝜖

−1
|
̃
ℎ). Accordingly,

if in 𝑟(̃ℎ) = 𝑒
2 there was no advantage in accepting a deviating

proposal, Π𝑡
1
(𝑠
𝑎

1
, 𝑠
𝜖

−1
|
̃
ℎ) ≥ Π

𝑡

1
(𝑠
𝑟

1
, 𝑠
𝜖

−1
|
̃
ℎ), in 𝑟(ℎ) = 𝑒 there
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is no advantage also because the payments are equal in both
states, Π𝑡

1
(𝑠
𝑎

1
, 𝑠
𝜖

−1
| ℎ) ≥ Π

𝑡

1
(𝑠
𝑟

1
, 𝑠
𝜖

−1
| ℎ).

The same reasoning can be applied to the histories in
which the last proposition was equal to the state 𝑟(ℎ) = ℎ

𝑡,1
=

𝑒. The player’s payoff by rejecting the proposition is equal to
the payoff when he rejects 𝑟(̃ℎ) = ̃

ℎ
𝑡,1

= 𝑒
2. That is, the OSD

strategies that reject the propositions, 𝑠𝑟
1
∈ OSD(𝑠

𝜖

1
, ℎ) and

𝑠
𝑟

1
∈ OSD(𝑠

𝜖

1
,
̃
ℎ), have the same payment Π𝑡

1
(𝑠
𝑟

1
, 𝑠
𝜖

−1
| ℎ) =

Π
𝑡

1
(𝑠
𝑟

1
, 𝑠
𝜖

−1
|
̃
ℎ), as Π𝑡

1
(𝑠
𝜖
| ℎ) − Π

𝑡

1
(𝑠
𝜖
|
̃
ℎ) = (𝑒

1
− 𝑒
2

1
)(1 − 𝜖)

2.
Due to the state’s definition, for any 𝑒 ∈ 𝐸, 𝑒

1
≥ 𝑒
2

1
; therefore,

Π
𝑡

1
(𝑠
𝜖
| ℎ) ≥ Π

𝑡

1
(𝑠
𝜖
|
̃
ℎ), and we conclude that Π𝑡

1
(𝑠
𝜖
| ℎ) ≥

Π
𝑡

1
(𝑠
𝜖
|
̃
ℎ) ≥ Π

𝑡

1
(𝑠
𝑟

1
, 𝑠
𝜖

−1
|
̃
ℎ) = Π

𝑡

1
(𝑠
𝑟

1
, 𝑠
𝜖

−1
| ℎ). Not to deviate

is the best for player 1 when the proposition coincides with
the state. This way 1 has no advantage in choosing a different
strategy for any of the states in 𝐸.

Due to the symmetry of the strategies used in 𝑠
𝜖 for a

state to exist in which any player 𝑖 had something to gain by
deviating then there must also exist a state where 1 would
gain by playing the same deviating strategy. As there is no
such case, there is no player and no state in which there is a
profitable deviation; for this reason, 𝑠𝜖 is a best reply to itself,
and 𝑠 is a PER.

4. Conclusion

This paper proposed a new equilibrium concept based on
Selten’s [3] perfect equilibrium but customized to the mul-
tiplayer bargaining game, the PER. It shows that none of
the classical equilibria strategies fulfills the requirements
to be PER. Builds a new strategy that, using an incentive
mechanism to players that follow it, is PER. And in which all
divisions in Δ are equilibrium outcomes of game.

It must be noted that in the multiplayer bargaining,
strategies should be interpreted as the way to impose a
division that was previously established, not as the way to
reach the said bargaining division. So, what matters here is to
find a strategy that makes the bargaining division (somehow
agreed) binding for all players, that is, to find a strategy which
does not allow players to diverge from the established path.

However, as all theoretical abstractions, this one is not
without application potential. Therefore, although we might
find numerous economic situations where multiplayer bar-
gaining takes place, the agreement is obtained in the first
period of time, so we do not witness the unroll of equilibrium
strategies (besides that firstmoment).Those strategies are just
the warranty the agreed on division is implementable.

While part of the economic theory focus on the first part
of the bargaining process, obtaining the best bargain, this
specific field of enquiry acts as a reminder that securing the
outcome of the bargaining game as it enters its next stage is at
least as important as part of the negotiation process.
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