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Two different analytical and numerical methods have been applied to solve the system describing the mixed convection boundary-
layer nanofluids flow along an inclined plate embedded in a porous medium, namely, homotopy perturbation method (HPM) and
Chebyshev pseudospectral differentiationmatrix (ChPDM), respectively. Further, ChPDM is used as a control method to check the
accuracy of the results obtained by HPM. The analytical method is applied using a new way for the deformed equations, and the
resulted solution was expressed in terms of a well-known entire error function. In addition, using only two terms of the homotopy
series, the approximate analytical solution is comparedwith the numerical solution obtained by the accurate ChPDMapproach.The
results reveal that good agreements have been achieved between the two approaches for various values of the investigated physical
parameters.

1. Introduction

The concept of nanofluids is put into practice particularly
after the tremendous development of nanotechnologies in
the last decade, as they are of great importance in many
industrial and engineering applications, especially in heat
transfer enhancement [1–4]. Nanofluids are produced by
dispersing nanometer-scale solid particles into base liquids
such as water, ethylene glycol, and oils. Normally, if the
particle sizes are in the 1–100 nm ranges, they are generally
called nanoparticles.

Recently, the boundary-layer flow of nanofluids has at-
tracted much attention [5–8].The flow field of such problems
is governed at first by a system of linear and nonlinear
partial differential equations which are then transformed into
a new system of linear and non-linear ordinary differential
equations with applying the appropriate transformations.
Due the difficulties that arise in obtaining the analytical

solutions for the resulted system, most of the authors resort
to numerical methods.

Although the numerical methods have the upper hand
over the analytical methods in solving the complex systems
of differential equations, the analytical solutions can be
viewed as an optimal choice when available. In addition,
the obtained solutions can be directly used for getting
the required plots without needing subprograms as in the
numerical methods. In conclusion, one can say that each
of the two approaches has its own advantage over the
other. Therefore, comparing the results obtained by two
different analytical and numerical approaches is generally
of great importance in the applied sciences. Two different
analytical methods (homotopy perturbation method, HPM)
[9–18] and numerical method (Chebyshev pseudospectral
differentiation matrix, ChPDM) [19–21] are proposed in this
paper for the mixed convection boundary-layer nanofluids
flow along an inclined plate embedded in a porous medium.
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More details about these techniques and their advantages are
introduced in the next two paragraphs.

The homotopy perturbation method (HPM) was pro-
posed by He [9–15] as an analytical technique to solve
nonlinear differential equations. This method has been
widely used by many authors to investigate various models
[16–18]. Unlike, the requirement for the regular perturbation
techniques [19], the homotopy perturbationmethod is always
valid nomatter whether there exists small physical parameter
or not. It combines the traditional perturbation method and
the homotopy technique to deform a nonlinear problem
into a simple solving one. The solution using this method
is expressed as the summation of an infinite series, which
usually converges rapidly to the exact solution in most
cases. Several terms of the series solution can be used for
approximating the exact solution with a high degree of
accuracy.

On the other hand, the ChPDM is a known highly
accurate numerical approach which was introduced and
successfully applied by Aly et al. [20] to analyze the two-
dimensional MHD boundary-layer flow over a permeable
surface with a power law stretching velocity in the presence
of a magnetic field applied normally to the surface. Under
certain circumstances, it is shown that the problem has
an infinite number of solutions which were examined by
this technique. Further, Guedda et al. [21] have applied
this method to validate and evidence the analysis of two-
dimensional mixed convection boundary-layer flow over a
vertical flat plate embedded in a porous medium saturated
with water at 4∘C (maximum density) and applied magnetic
field. Both cases of the assisting and opposing flows are
considered. Multiple similarity solutions are obtained and
investigated by ChPDM under the power law variable wall
temperature, or variable heat flux, or variable heat transfer
coefficient. Recently, Aly and Ebaid [22] have applied this
technique to solve the current problem in the absence of
the magnetic and permeability of parameters. They found
that the ChPDM results are very accurate in an excellent
manner compared to those published in the literature using
the homotopy analysis [23]. It is then successfully applied to
validate and evidence the resulted exact solutions for different
positive and negative values of the investigated parameters.

The motivation of presenting this paper is therefore to
extend the applicability of both HPM and ChPDM ap-
proaches.The suggested procedure is based first on obtaining
all the possible exact solutions. Then, the second step of the
suggested procedure is to validate these results numerically
to explore the effectiveness and efficiency of the proposed
numerical approach. Besides, comparisons with other pub-
lished results are also presented, where a full agreement is
observed. In addition, it is shown that the solution up to the
first order is sufficient to obtain accurate results.

2. The Physical Model

Rana et al. [24] considered the steady, incompressible, lami-
nar, boundary-layer flow of a nanofluid along a semi-infinite
inclined flat plate in a nanofluid-saturated porous medium

with an acute angle 𝛼 to the vertical.Themathematical model
is governed by the following system of nonlinear ordinary
differential equations:
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which has to be solved, subject to the boundary conditions:
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are the Lewis number, buoyancy

ratio parameter, Brownian motion parameter, thermophore-
sis parameter, local Darcy-Rayleigh number, and local Péclet
number, respectively. On integrating (1) with respect to 𝜂

from ∞ to 𝜂 and using the boundary conditions in (3)-(4),
we have
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3. Application of the HPM

In this section, the homotopy perturbationmethod (HPM) is
applied to search for the approximate analytical solutions for
the system of (6) and (2) with the boundary conditions (3)–
(5). In order to apply this method, we rewrite the investigated
system in terms of an embedding parameter 𝑝 as
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According to the HPM, the following assumptions are as-
sumed:
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Substituting (8) into (7) and by comparing the like powers of
the embedding parameter 𝑝0, we get the following systems:
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and for 𝑝𝑛, 𝑛 ≥ 0, we have
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The last systems are subjected to the boundary conditions:
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3.1. Solution of the Zeroth-Order System. The exact solutions
of the zeroth-order system are given as
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where erf is the error function; see Abramowitz and Stegun
[25]. These exact solutions can be verified by the direct
substitution.

3.2. Solution of the First-Order System. The system of first-
order is obtained by considering 𝑛 = 0 in (10) and given by
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where the appropriated boundary conditions are
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On using the initial condition (14), the exact solution of the
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-equation in system (13) is given as follows:
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Regarding the view of 𝜃
1
-equation in (13) and boundary

conditions (15), we obtain 𝜃
1
in the following closed form:
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The double integral in (19) can be expressed in terms of single
integrations by using the integral identity:
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In a similar way, we obtain the solution of the 𝜙
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in (13) with the boundary conditions (16) in closed form as
follows:
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where 𝐼
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Therefore, at 𝑝 = 1, the approximate solutions for the tem-
perature distribution 𝜃(𝜂) and the nanoparticle concentration
𝜙(𝜂) up to the first order are given by
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The current approximate solution obtained in this section is
checked via comparing with those obtained in the literature.

3.3. Special Case: Horizontal Plate. At 𝛼 = 𝜋/2, we have the
following simple expressions for the temperature distribution
𝜃(𝜂) and the nanoparticle concentration distribution 𝜙(𝜂):
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4. The ChPDM Technique

Chebyshev pseudospectral differentiation matrix (ChPDM)
technique is briefly introduced; see Guedda et al. [21], Aly
and Ebaid [22], and Van Gorder et al. [23]. On supposing
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Therefore, (1)–(5) become, respectively,
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∑
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)

𝑁

∑

𝑗=0

𝑑
(1)

𝑖,𝑗

𝜙 (𝑧
𝑗
)

+

𝑁
𝑡

𝑁
𝑏

𝑁

∑

𝑗=0

𝑑
(2)

𝑖,𝑗

𝜃 (𝑧
𝑗
) = 0,
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0
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𝑁
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0
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(35)

5. Results and Discussion

In Sections 3 and 4, mixed convection boundary-layer nano-
fluid flow along an inclined plate embedded in a porous
medium has been solved analytically using two terms of the
HPM and numerically by the ChPDM technique, respec-
tively. The solutions were obtained for the temperature dis-
tribution 𝜃 and nano-particle concentration distribution 𝜙.
In the current section, we aim to compare the results derived
from HPM by those obtained by the ChPDM, which may be
considered as a reference approach because it was successfully
compared before with homotopy analysis method in [22]. In
each forthcoming figure, it should be noted that solid and
dotted curves refer to the results obtained by ChPDM and
HPA, respectively.

Figure 1 shows the comparison between the HPM and
ChPDM solutions for the nanoparticle concentration distri-
bution 𝜙(𝜂) at different values of Brownianmotion parameter
𝑁
𝑏
, where 𝑁

𝑡
= 0.5, 𝑁

𝑟
= 0.5, Le = 10, Ra

𝑥
/Pe
𝑥
= 0.5, and

𝛼 = 𝜋/6. From this figure, it is clear that the profiles of 𝜙(𝜂)
are very close to each other and to those obtained in Figure 3
by Rana et al. [24].

The temperature distribution 𝜃 is depicted against 𝜂 at
different values of thermophoresis parameter𝑁

𝑡
for𝑁
𝑏
= 0.5,

𝑁
𝑟
= 0.5, Le = 10, Ra

𝑥
/Pe
𝑥
= 0.5, and 𝛼 = 𝜋/6 in Figure 2. It

is also observed from it that excellent agreement is achieved
on comparing with Figure 4 in [24]. These results may refer
to that two terms approximate solutions of the HPM are
sufficient to give accurate numerical results.

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.5 1.5 2.0 2.5 3.0

𝜂

Nb = 0.5, 1.0, 2.5

ChPDM
HPM

𝜙
(𝜂
)

1.0

Figure 1: Comparison of ChPDM (solid) and HPM (dotted) for the
effect of the Brownian motion parameter (𝑁

𝑏

) on the nanoparticle
concentration distribution 𝜙(𝜂) at 𝑁

𝑡

= 0.5, 𝑁
𝑟

= 0.5, Le = 10,
Ra
𝑥

/Pe
𝑥

= 0.5, and 𝛼 = 𝜋/6.
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Figure 2: Comparison of ChPDM (solid) and HPM (dotted) for
the effect of the thermophoretic parameter (𝑁

𝑡

) on the temperature
distribution 𝜃(𝜂) at𝑁

𝑏

= 0.5,𝑁
𝑟

= 0.5, Le = 10, Ra
𝑥

/Pe
𝑥

= 0.5, and
𝛼 = 𝜋/6.

The last conclusion is also detected in Figure 3 for the
effect of the buoyancy ratio parameter𝑁

𝑟
and themixed con-

vection parameter Ra
𝑥
/Pe
𝑥
on the temperature distribution

𝜃(𝜂) at𝑁
𝑏
= 0.5,𝑁

𝑡
= 0.5, Le = 10, and 𝛼 = 𝜋/6. From this

figure, we can notice excellent agreements between the two
approaches and further of those plotted in Figure 6 by Rana
et al. [24].

Figure 4 indicates the effect of the inclination angle 𝛼 on
the nanoparticle concentration distribution 𝜙 at 𝑁

𝑏
= 0.5,

𝑁
𝑡
= 0.5, 𝑁

𝑟
= 0.5, Le = 10, and Ra

𝑥
/Pe
𝑥
= 0.5. It can

be easily observed from this figure that the slight difference
between the curves obtained via the two approaches increases
with increasing𝛼, especially at𝛼 = 𝜋/2. A similar observation
is detected from Figure 5 for the effect of Lewis number (Le)
on 𝜙 at 𝑁

𝑏
= 0.5, 𝑁

𝑡
= 0.5, 𝑁

𝑟
= 0.5, Ra

𝑥
/Pe
𝑥
= 0.5, and
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Figure 3: Comparison of ChPDM (solid) and HPM (dotted) for
the effect of the buoyancy ratio parameter (𝑁

𝑟

) and the mixed
convection parameter (Ra

𝑥

/Pe
𝑥

) on the temperature distribution
𝜃(𝜂) at𝑁

𝑏

= 0.5,𝑁
𝑡

= 0.5, Le = 10, and 𝛼 = 𝜋/6.
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Figure 4: Comparison of ChPDM (solid) and HPM (dotted)
for the effect of the angle of inclination (𝛼) on the nanoparticle
concentration distribution 𝜙(𝜂) at 𝑁

𝑏

= 0.5, 𝑁
𝑡

= 0.5, 𝑁
𝑟

= 0.5,
Le = 10, and Ra

𝑥

/Pe
𝑥

= 0.5.

𝛼 = 𝜋/6, where the slight difference between the curves
increases as Lewis number Le decreases.

From the above comparisons, one can conclude that
although slight differences are observed between the two
approaches in some cases, two terms approximate solutions
for 𝜃(𝜂) and 𝜙(𝜂) are still effective and of course can be
enhanced via adding more terms for the homotopy series
solutions. Accordingly, the HPM can be used as a method
of solution with highly trust for investigating several similar
models by following the proposed analysis of the current
paper.
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Figure 5: Comparison of ChPDM (solid) and HPM (dotted) for the
effect of the Lewis number (Le) on the nanoparticle concentration
distribution 𝜙(𝜂) at 𝑁

𝑏

= 0.5, 𝑁
𝑡

= 0.5, 𝑁
𝑟

= 0.5, Ra
𝑥

/Pe
𝑥

= 0.5,
and 𝛼 = 𝜋/6.

6. Conclusion

In the present paper, the system of differential equations,
describing the mixed convection boundary-layer nanofluids
flow along an inclined plate embedded in a porous medium,
has been successfully solved by applying two methods, ana-
lytically by the homotopy perturbation and numerically by
Chebyshev pseudospectral differentiation matrix, which was
used as a control technique. In order to obtain meaningful
physical solution, a new way was deduced to formulate
the deformed system of differential equations. Accordingly,
the approximate solution was expressed in terms of an
entire error function. This proposed way of applying HPM
may be of interest for investigating similar models in the
future. On applying HPM, it was found that two terms
of the homotopy series are enough to achieve very good
solutions when compared with the accurate results obtained
numerically via ChPDM. This was investigated for various
values of the appropriated physical parameters: temperature
distribution 𝜃(𝜂) and nanoparticle concentration distribution
𝜙(𝜂) at variation of the thermophoretic parameter (𝑁

𝑡
),

Brownian motion parameter (𝑁
𝑏
), buoyancy ratio parameter

(𝑁
𝑟
), angle of inclination (𝛼), Lewis number (Le), and mixed

convection parameter (Ra
𝑥
/Pe
𝑥
).
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