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The effects of time-varying impulses on the synchronization of a class of general complex delayed dynamical networks are
investigated. Different from the existing works, the impulses discussed here are time-varying, and both synchronizing and
desynchronizing impulses are considered in the network model simultaneously. Moreover, the network topology is assumed to
be directed and weakly connected with a spanning tree. By using the comparison principle, some simple yet generic globally
exponential synchronization criteria are derived. It is shown that besides impulse strengths and impulsive interval, the obtained
criteria are also closely related with topology structure of the network. Finally, numerical examples are given to demonstrate the
effectiveness of the theoretical results.

1. Introduction

Recently, much efforts have been devoted to complex dynam-
ical networks due to the wide and potential applications in
many areas [1–3]. In general, a complex network is a large set
of interconnected nodes, inwhich each node is a fundamental
unit with specific dynamics and each edge represents the
interactions between them. As a matter of fact, the structure
of many real systems in nature including the Internet, food
webs, biomolecular networks, and social networks can be
described by complex networks [1, 2]. One significant and
interesting phenomenon in a complex dynamical network is
the synchronization of all its dynamical nodes. In the past few
decades, synchronization of complex dynamical networks has
been extensively studied from various fields of science and
engineering, and a wide variety of synchronization criteria
have been presented for various dynamical networks; see [2–
22] and the references therein.

From the literature, there exist two common phenomena
in many dynamical networks: delay effects and impulsive
effects [4, 5, 23–29]. Due to the finite switching speed of
amplifiers and finite signal propagation time, time delay is
inevitably encountered inmany dynamical networks andmay
cause undesirable dynamical behaviors such as oscillation

and instability [4, 5, 23, 24]. On the other hand, the states of
many complex systems and realistic networks are often sub-
ject to instantaneous perturbations and experience abrupt
changes at certain instants, whichmay be caused by switching
phenomenon, frequency change, or other sudden noise; that
is, they exhibit impulsive effects [25–29]. Since time delays
and impulses can heavily affect the dynamical behaviors of
the networks, it is imperative to investigate both effects of
time delays and impulses on the synchronization of dynami-
cal networks.

In general, there are two types of impulses in terms of syn-
chronization in dynamical networks. An impulsive sequence
is said to be synchronizing if it can enhance the synchro-
nization of dynamical networks. Conversely, an impulsive
sequence is said to be desynchronizing if the impulsive effects
can suppress the synchronization of dynamical networks. In
recent years, many interesting results on the synchronization
of complex dynamical networks with impulsive effects have
been reported in the literature [6–16]. For instance, Lu et al.
[11] established a unified synchronization criterion for impul-
sive dynamical networks subject to synchronizing impulses
or desynchronizing impulses. In addition, Lu et al. [12] also
investigated the exponential synchronization of coupled neu-
ral networks with impulsive disturbances. Zhang et al. [16]
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discussed the synchronization problem of coupled switched
neural networks with mode-dependent impulsive effects.
Unfortunately, in the most existing literature, it is implic-
itly assumed that the synchronizing and desynchronizing
impulses occur separately. In practice, however, many elec-
tronic or biological networks are often subject to instanta-
neous disturbance and then exposed to time-varying impul-
sive strengths, and both synchronizing and desynchronizing
impulses might exist in realistic networks simultaneously,
which was widely overlooked in most of the existing results
[30]. To the best of our knowledge, the effects of time-var-
ying impulses on the synchronization of delayed dynamical
networks are rarely addressed. Moreover, in much of the lit-
erature, time delays in the couplings are considered; however,
time delays in the dynamical nodes [5, 9, 17, 18], which are
more complex, are still relatively unexplored. In fact, numer-
ous examples can be found in the real world which are char-
acterized by delayed differential equations having time delays
in the dynamical nodes [5, 9, 17, 18].

This paper aims at exploring the effects of time-varying
impulses on the synchronization of general complex net-
works with time-varying delays dynamical nodes. Both syn-
chronizing and desynchronizing impulses are considered in
the network model simultaneously. The directed and weakly
connected topology of networks is focused on. Based on the
comparison principle, some simple yet generic globally expo-
nential synchronization criteria are derived. Numerical
examples are also provided to illustrate the effectiveness of
the theoretical analysis.

2. Model and Preliminaries

Consider a directed complex network consisting of𝑁 identi-
cal time-varying delays dynamical nodes:

�̇�
𝑖 (𝑡) = 𝑓 (𝑡, 𝑥𝑖 (𝑡) , 𝑥𝑖 (𝑡 − 𝜏 (𝑡))) + 𝑐

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
Γ𝑥
𝑗 (𝑡) ,

𝑖 = 1, . . . , 𝑁,

(1)

where 𝑥
𝑖
(𝑡) = (𝑥

𝑖1
(𝑡), 𝑥
𝑖2
(𝑡), . . . , 𝑥

𝑖𝑛
(𝑡))
⊤
∈ R𝑛 is the state

vector of node 𝑖; 𝑓 : R × R𝑛 × R𝑛 → R𝑛 is a continuously
vector-valued function governing the dynamics of isolated
nodes; 𝜏(𝑡) is a time-varying delay satisfying 0 ≤ 𝜏(𝑡) ≤ 𝜏;
𝑐 > 0 is the coupling strength; Γ > 0 is the inner connecting
matrix of nodes; 𝐵 = (𝑏

𝑖𝑗
)
𝑁×𝑁

is the coupling matrix rep-
resenting the topological structure of the network. Without
loss of generality, we assume that the matrix 𝐵 possesses the
following properties:∑𝑁

𝑗=1
𝑏
𝑖𝑗
= 0, 𝑏
𝑖𝑗
≥ 0, 𝑖 ̸= 𝑗, and rank(𝐵) =

𝑁− 1 [9, 18]. It is worth mentioning that the coupling matrix
𝐵 can be regarded as the Laplacian matrix of a weighted
graph with a spanning tree, and 𝐵 has an eigenvalue 0 with
multiplicity 1 [9, 19].

Remark 1. The coupling matrix 𝐵 represents the topological
structure of network (1). In this paper, the matrix 𝐵 is not
restricted to be symmetric or irreducible. A general structure
of the network is discussed; that is, the corresponding graph
generated by the matrix 𝐵 can be directed and weakly

connected with a spanning tree. Obviously, the network
model (1) is a generalization of that discussed in [11, 12].

Due to switching phenomenon, frequency change, or
other sudden noise, the states of nodes in many realistic net-
works are often subject to instantaneous perturbations and
experience abrupt changes at certain instants [25–29]. Sup-
pose at time instants 𝑡

𝑘
, there are “sudden changes” (or

“jumps”) in the state variable such that

Δ𝑥
𝑖

𝑡=𝑡𝑘
≜ 𝑥
𝑖
(𝑡
+

𝑘
) − 𝑥
𝑖
(𝑡
−

𝑘
) = 𝐷

𝑘
𝑥
𝑖
(𝑡
−

𝑘
) , 𝑖 = 1, 2, . . . , 𝑁,

(2)

where {𝑡
1
, 𝑡
2
, 𝑡
3
, . . .} is an impulsive sequence satisfying 𝑡

𝑘−1
<

𝑡
𝑘
and lim

𝑘→∞
𝑡
𝑘
= +∞, 𝑥

𝑖
(𝑡
+

𝑘
) = lim

𝑡→ 𝑡
+

𝑘

𝑥
𝑖
(𝑡), 𝑥
𝑖
(𝑡
−

𝑘
) =

lim
𝑡→ 𝑡
−

𝑘

𝑥
𝑖
(𝑡), and 𝐷

𝑘
∈ R𝑛×𝑛 is an impulsive gain matrix.

For the sake of analytical simplification, we will choose𝐷
𝑘
=

𝑑
𝑘
𝐼
𝑛
, where 𝑑

𝑘
∈ R represents the strength of impulses and 𝐼

𝑛

is an 𝑛 × 𝑛 identity matrix. This simplification does not cause
any loss of generality in the sense of synchronization analysis.
In fact, when the constant matrix 𝐷

𝑘
is used to describe

the impulsive gain, the matrix product can be used to
describe synchronization criteria. Therefore, we can obtain
the following impulsive delayed dynamical network:

�̇�
𝑖 (𝑡) = 𝑓 (𝑡, 𝑥𝑖 (𝑡) , 𝑥𝑖 (𝑡 − 𝜏 (𝑡))) + 𝑐

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
Γ𝑥
𝑗 (𝑡) ,

𝑡 ̸= 𝑡
𝑘
, 𝑡 ≥ 𝑡

0
,

Δ𝑥
𝑖
= 𝑥
𝑖
(𝑡
+

𝑘
) − 𝑥
𝑖
(𝑡
−

𝑘
) = 𝑑
𝑘
𝑥
𝑖
(𝑡
−

𝑘
) ,

𝑡 = 𝑡
𝑘
, 𝑘 ∈ 𝑍

+
, 𝑖 = 1, 2, . . . , 𝑁,

(3)

where 𝑍+ = {1, 2, . . .} denotes the set of positive integers.
Without loss of generality, we assume that 𝑥

𝑖
(𝑡) is right con-

tinuous at 𝑡 = 𝑡
𝑘
; that is, 𝑥

𝑖
(𝑡
𝑘
) = 𝑥
𝑖
(𝑡
+

𝑘
).The initial conditions

of (3) are given by 𝑥
𝑖
(𝑡
0
+ 𝑠) = 𝜑

𝑖
(𝑠) ∈ 𝑃𝐶([−𝜏, 0],R𝑛), where

𝑃𝐶([−𝜏, 0],R𝑛) denotes the set of all functions of bounded
variation and right-continuous on any compact subinterval
of [−𝜏, 0]. We always assume that (3) has an unique solution
with respect to initial conditions.

Assumption 2 (see [18]). For the vector-valued function
𝑓(𝑡, 𝑥(𝑡), 𝑥(𝑡−𝜏(𝑡))), suppose that the uniform semi-Lipschitz
condition with respect to the time 𝑡 holds; that is, for any 𝑥(𝑡),
𝑦(𝑡) ∈ R𝑛, there exist positive constants 𝐿

1
> 0 and 𝐿

2
> 0

such that

(𝑥 (𝑡) − 𝑦 (𝑡))
⊤

× (𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) − 𝑓 (𝑡, 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏 (𝑡))))

≤ 𝐿
1
(𝑥 (𝑡) − 𝑦 (𝑡))

⊤
(𝑥 (𝑡) − 𝑦 (𝑡))

+ 𝐿
2
(𝑥 (𝑡 − 𝜏 (𝑡)) − 𝑦 (𝑡 − 𝜏 (𝑡)))

⊤

× (𝑥 (𝑡 − 𝜏 (𝑡)) − 𝑦 (𝑡 − 𝜏 (𝑡))) .

(4)
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Remark 3. Assumption 2 gives some requirements for the
dynamics of isolated node in network (1). If the function
𝑓(𝑡, 𝑥(𝑡), 𝑥(𝑡−𝜏(𝑡))) satisfies the uniform Lipschitz condition
[17], that is, ‖𝑓(𝑡, 𝑥(𝑡), 𝑥(𝑡 − 𝜏(𝑡))) − 𝑓(𝑡, 𝑦(𝑡), 𝑦(𝑡 − 𝜏(𝑡)))‖ ≤
𝐾
1
‖𝑥(𝑡)−𝑦(𝑡)‖+𝐾

2
‖𝑥(𝑡−𝜏(𝑡))−𝑦(𝑡−𝜏(𝑡))‖, one can choose

𝐿
1
= 𝐾
1
+ 𝜔𝐾
2
/2 and 𝐿

2
= 𝐾
2
/(2𝜔) to satisfy Assumption 2,

where 𝜔 is a positive constant. Moreover, it is easy to check
that almost all the well-known chaotic systems with delays
or without delays, such as the Lorenz system, Rössler system,
Chen system, and Chua’s circuit as well as delayed Hopfield
neural networks and delayed cellular neural networks (see
[9, 18], and the references therein) also satisfy Assumption 2.

Definition 4. The impulsive delayed dynamical network (3) is
said to be globally exponentially synchronized if there exist
constants 𝜆

0
> 0 and 𝑀

0
> 0 such that for any initial

conditions 𝜑
𝑖
(𝑠) ∈ 𝑃𝐶([−𝜏, 0],R𝑛) (𝑖 = 1, 2, . . . , 𝑁)


𝑥
𝑖 (𝑡) − 𝑥𝑗 (𝑡)


≤ 𝑀
0
exp−𝜆0(𝑡−𝑡0), ∀𝑡 ≥ 𝑡

0
. (5)

Define 𝑠(𝑡) = (1/𝑁)∑𝑁
𝑙=1
𝑥
𝑙
(𝑡) and error vectors as 𝑒

𝑖
(𝑡) =

𝑥
𝑖
(𝑡) − 𝑠(𝑡), 𝑖 = 1, 2, . . . , 𝑁, then we have

̇𝑒
𝑖 (𝑡) = �̇�𝑖 (𝑡) − ̇𝑠 (𝑡)

= 𝑓 (𝑡, 𝑒
𝑖 (𝑡) , 𝑒𝑖 (𝑡 − 𝜏 (𝑡))) + 𝑐

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
Γ𝑒
𝑗 (𝑡) + 𝐽,

𝑡 ̸= 𝑡
𝑘
,

Δ𝑒
𝑖
(𝑡
𝑘
) = 𝑒
𝑖
(𝑡
+

𝑘
) − 𝑒
𝑖
(𝑡
−

𝑘
)

= 𝑥
𝑖
(𝑡
+

𝑘
) − 𝑥
𝑖
(𝑡
−

𝑘
) − (𝑠 (𝑡

+

𝑘
) − 𝑠 (𝑡

−

𝑘
))

= 𝑥
𝑖
(𝑡
+

𝑘
) − 𝑥
𝑖
(𝑡
−

𝑘
) −

1

𝑁

𝑁

∑

𝑙=1

(𝑥
𝑙
(𝑡
+

𝑘
) − 𝑥
𝑙
(𝑡
−

𝑘
))

= 𝑑
𝑘
𝑥
𝑖
(𝑡
−

𝑘
) −

𝑑
𝑘

𝑁

𝑁

∑

𝑙=1

𝑥
𝑙
(𝑡
−

𝑘
) = 𝑑
𝑘
𝑒
𝑖
(𝑡
−

𝑘
) , 𝑡 = 𝑡

𝑘
,

(6)

where 𝑓(𝑡, 𝑒
𝑖
(𝑡), 𝑒
𝑖
(𝑡 − 𝜏(𝑡))) = 𝑓(𝑡, 𝑒

𝑖
(𝑡) + 𝑠(𝑡), 𝑒

𝑖
(𝑡 − 𝜏(𝑡)) +

𝑠(𝑡−𝜏(𝑡)))−𝑓(𝑡, 𝑠(𝑡), 𝑠(𝑡−𝜏(𝑡))), and 𝐽 = 𝑓(𝑡, 𝑠(𝑡), 𝑠(𝑡−𝜏(𝑡)))−
(1/𝑁)∑

𝑁

𝑙=1
𝑓(𝑡, 𝑥

𝑙
(𝑡), 𝑥
𝑙
(𝑡 − 𝜏(𝑡))) − (𝑐/𝑁)∑

𝑁

𝑙=1
∑
𝑁

𝑗=1
𝑏
𝑙𝑗
Γ𝑥
𝑗
(𝑡).

Thus, the error dynamical system can be written as
follows:

̇𝑒
𝑖 (𝑡) = 𝑓 (𝑡, 𝑒𝑖 (𝑡) , 𝑒𝑖 (𝑡 − 𝜏 (𝑡))) + 𝑐

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
Γ𝑒
𝑗 (𝑡) + 𝐽,

𝑡 ̸= 𝑡
𝑘
, 𝑡 ≥ 𝑡

0
,

𝑒
𝑖
(𝑡
𝑘
) = (1 + 𝑑

𝑘
) 𝑒
𝑖
(𝑡
−

𝑘
) , 𝑡 = 𝑡

𝑘
, 𝑘 ∈ 𝑍

+
, 𝑖 = 1, 2, . . . , 𝑁.

(7)

Clearly, the globally exponential synchronization of the
impulsive delayed dynamical network (3) is achieved if the
zero solution of the error dynamical system (7) is globally
exponentially stable.

Remark 5. When |(1 + 𝑑
𝑘
)| < 1, the impulses are beneficial

for the synchronization of the impulsive delayed dynamical
network (3) since the absolute values of the synchronization
errors are reduced. Thus, the impulses are synchronizing
impulses if −2 < 𝑑

𝑘
< 0. Conversely, when |(1 +𝑑

𝑘
)| > 1, that

is, the impulsive strengths 𝑑
𝑘
> 0 or 𝑑

𝑘
< −2, the impulses

are desynchronizing impulses since the absolute values of
the synchronization errors are enlarged. In addition, when
|(1+𝑑

𝑘
)| = 1, the impulses are neither beneficial nor harmful

for the synchronization since the absolute values of the
synchronization errors are unchanged. This type of impulses
are called inactive impulses [11].Wewill not consider inactive
impulses here because they have no effect on the synchroniza-
tion dynamics. In this paper, we focus on the synchronization
problem of the dynamical network (3) with both synchro-
nizing and desynchronizing impulses, which is different
from most existing literature where the synchronizing and
desynchronizing impulses are assumed to occur separately.

Lemma 6 (see [29]). Let 0 ≤ 𝜏(𝑡) ≤ 𝜏 and 𝐹(𝑡, 𝑥, 𝑦) :

[𝑡
0
,∞)×R×R → R be nondecreasing in𝑦 for fixed (𝑡, 𝑥), and

let 𝐼
𝑘
(𝑥) : R → R be nondecreasing in 𝑥. Suppose that

𝐷
+
𝑢 (𝑡) ≤ 𝐹 (𝑡, 𝑢 (𝑡) , 𝑢 (𝑡 − 𝜏 (𝑡))) , 𝑡 ≥ 𝑡

0
,

𝑢 (𝑡
𝑘
) ≤ 𝐼
𝑘
(𝑢 (𝑡
−

𝑘
)) , 𝑘 ∈ 𝑍

+
,

𝐷
+V (𝑡) > 𝐹 (𝑡, V (𝑡) , V (𝑡 − 𝜏 (𝑡))) , 𝑡 ≥ 𝑡

0
,

V (𝑡
𝑘
) ≥ 𝐼
𝑘
(V (𝑡−
𝑘
)) , 𝑘 ∈ 𝑍

+
.

(8)

If 𝑢(𝑡) ≤ V(𝑡), for 𝑡
0
− 𝜏 ≤ 𝑡 ≤ 𝑡

0
, then 𝑢(𝑡) ≤ V(𝑡), 𝑡 ≥ 𝑡

0
.

3. Main Results

In this section, globally exponential synchronization of
delayed dynamical networks with time-varying impulses
including both synchronizing and desynchronizing impulses
simultaneously will be studied. The relationship between the
strengths of synchronizing and desynchronizing impulses
and the frequency of their occurrence will be established.

Let the matrix 𝐵 be defined as 𝐵 ≜ (𝐵 + 𝐵⊤) − Δ, where
Δ = diag(𝛿

1
, 𝛿
2
, . . . , 𝛿

𝑁
) with 𝛿

𝑗
= ∑
𝑁

𝑘=1
𝑏
𝑘𝑗
. Then the matrix

𝐵 is a symmetrical irreducible matrix with zero-sum and
nonnegative off-diagonal elements [9, 20]. This implies that
zero is an eigenvalue of 𝐵withmultiplicity 1, and all the other
eigenvalues of 𝐵 are strictly negative [9, 19]. The eigenvalues
of 𝐵 can be ordered as 0 = �̃�

1
> �̃�
2
≥ ⋅ ⋅ ⋅ ≥ �̃�

𝑁
. Since both

synchronizing and desynchronizing impulses are taken into
the network model simultaneously, without loss of general-
ity, we assume that the strengths of synchronizing and desyn-
chronizing impulses take values from finite sets
{𝑑

sy
1
, 𝑑

sy
2
, . . . , 𝑑

sy
𝑁1
} and {𝑑

desy
1
, 𝑑

desy
2
, . . . , 𝑑

desy
𝑁2
}, respectively,

where −2 < 𝑑
sy
𝑖
< 0, 𝑑desy

𝑗
> 0 or 𝑑desy

𝑗
< −2 for 𝑖 =

1, 2, . . . , 𝑁
1
, 𝑗 = 1, 2, . . . , 𝑁

2
. In addition, we assume that

𝑡
↓

𝑖𝑘
and 𝑡↑
𝑗𝑘
represent the activation time of the synchroniz-

ing impulses and that of the desynchronizing impulses,
respectively. Let 𝑑sy

∗
= max

1≤𝑖≤𝑁1
𝑑
sy
𝑖
, 𝑑desy
∗

= max
1≤𝑗≤𝑁2

𝑑
desy
𝑗

,
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𝑇
↓

sup = sup{𝑡↓
𝑖𝑘
− 𝑡
↓

𝑖𝑘−1
} < ∞, and 𝑇↑inf = inf{𝑡↑

𝑗𝑘
− 𝑡
↑

𝑗𝑘−1
} > 0,

where 𝑡↓
𝑖𝑘
, 𝑡
↑

𝑗𝑘
∈ {𝑡
1
, 𝑡
2
, 𝑡
3
, . . .}; then we have the following

result.

Theorem 7. Consider the impulsive delayed dynamical net-
work (3) with both synchronizing and desynchronizing
impulses simultaneously. Under Assumption 2, the impulsive
delayed dynamical network (3) is globally exponentially syn-
chronized if the following condition holds:

2 ln (1 + 𝑑
sy
∗
)


𝑇
↓

sup
+

2 ln (1 + 𝑑
desy
∗
)


𝑇
↑

inf

+ 2𝐿
1
+ 𝑟𝜆 (𝑟) + 2𝑑

∗
𝐿
2
< 0,

(9)

where

𝑑
∗
=



(1 + 𝑑
desy
∗
)

(1 + 𝑑
sy
∗ )



2

, 𝑟 = 𝑐 (�̃�
2
+ max
1≤𝑘≤𝑁

𝛿
𝑘
)

with 𝜆 (𝑟) =
{{

{{

{

𝜆max (Γ) , if 𝑟 > 0,
0, if 𝑟 = 0,
𝜆min (Γ) , if 𝑟 < 0.

(10)

Proof. Let 𝑒(𝑡) = (𝑒
⊤

1
(𝑡), 𝑒
⊤

2
(𝑡), . . . , 𝑒

⊤

𝑁
(𝑡))
⊤, construct a Lya-

punov function

𝑉 (𝑡) =
1

2
𝑒
⊤
(𝑡) (𝐼𝑁 ⊗ 𝐼𝑛) 𝑒 (𝑡) =

1

2

𝑁

∑

𝑖=1

𝑒
⊤

𝑖
(𝑡) 𝑒𝑖 (𝑡) . (11)

Calculating the upper Dini derivative of 𝑉(𝑡) along
the solution of (3), by using Assumption 2 and note that
∑
𝑁

𝑖=1
𝑒
𝑖
(𝑡) = 0, we get

𝐷
+
𝑉 (𝑡) =

𝑁

∑

𝑖=1

𝑒
⊤

𝑖
(𝑡)

× [

[

𝑓 (𝑡, 𝑒
𝑖 (𝑡) , 𝑒𝑖 (𝑡 − 𝜏 (𝑡))) + 𝑐

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
Γ𝑒
𝑗 (𝑡) + 𝐽

]

]

=

𝑁

∑

𝑖=1

𝑒
⊤

𝑖
(𝑡) 𝑓 (𝑡, 𝑒𝑖 (𝑡) , 𝑒𝑖 (𝑡 − 𝜏 (𝑡)))

+ 𝑐𝑒
⊤
(𝑡) (𝐵 ⊗ Γ) 𝑒 (𝑡)

≤

𝑁

∑

𝑖=1

𝐿
1
𝑒
⊤

𝑖
(𝑡) 𝑒𝑖 (𝑡)

+

𝑁

∑

𝑖=1

𝐿
2
𝑒
⊤

𝑖
(𝑡 − 𝜏 (𝑡)) 𝑒𝑖 (𝑡 − 𝜏 (𝑡))

+ 𝑐𝑒
⊤
(𝑡) (𝐵 ⊗ Γ) 𝑒 (𝑡)

≤ 2𝐿
1
𝑉 (𝑡) + 2𝐿2𝑉 (𝑡 − 𝜏 (𝑡)) + 𝑐𝑒

⊤
(𝑡) (𝐵 ⊗ Γ) 𝑒 (𝑡)

= 2𝐿
1
𝑉 (𝑡) + 2𝐿2𝑉 (𝑡 − 𝜏 (𝑡))

+
𝑐

2
𝑒
⊤
(𝑡) ((𝐵 + 𝐵

⊤
) ⊗ Γ) 𝑒 (𝑡)

= 2𝐿
1
𝑉 (𝑡) + 2𝐿2𝑉 (𝑡 − 𝜏 (𝑡))

+
𝑐

2
𝑒
⊤
(𝑡) ((𝐵 + Δ) ⊗ Γ) 𝑒 (𝑡) , 𝑡 ̸= 𝑡

𝑘
.

(12)

Since 𝐵 is a symmetrical matrix, there exists a unitary
matrix 𝑈 = (𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑁
) with 𝑈𝑈⊤ = 𝐼

𝑁
such that

𝐵 = 𝑈 diag(�̃�
1
, �̃�
2
, . . . , �̃�

𝑁
)𝑈
⊤. Introduce a transformation

𝑍(𝑡) = (𝑈
⊤
⊗ 𝐼
𝑛
)𝑒(𝑡), where 𝑍(𝑡) = (𝑧⊤

1
(𝑡), 𝑧
⊤

2
(𝑡), . . . , 𝑧

⊤

𝑁
(𝑡))
⊤,

𝑧
𝑘
∈ R𝑛, then one has

𝑍
⊤
(𝑡) 𝑍 (𝑡) =

𝑁

∑

𝑖=1

𝑒
⊤

𝑖
(𝑡) 𝑒𝑖 (𝑡) . (13)

Notice that �̃�
1
= 0 is an eigenvalue of the matrix 𝐵 and

its corresponding eigenvector is 𝑢
1
= (1/√𝑁, 1/√𝑁, . . . ,

1/√𝑁)
⊤, then we have

𝑧
1 (𝑡) = (𝑢

⊤

1
⊗ 𝐼
𝑛
) 𝑒 (𝑡) =

1

√𝑁

𝑁

∑

𝑖=1

𝑒
𝑖 (𝑡) = 0. (14)

According to (13)-(14) and the property of the Kronecker
product of the matrices, we obtain

𝑐𝑒
⊤
(𝑡) ((𝐵 + Δ) ⊗ Γ) 𝑒 (𝑡)

= 𝑐𝑒
⊤
(𝑡) (𝑈 ⊗ 𝐼𝑛)

× ((diag (�̃�
1
, �̃�
2
, . . . , �̃�

𝑁
) + 𝑈
⊤
Δ𝑈) ⊗ Γ)

× (𝑈
⊤
⊗ 𝐼
𝑛
) 𝑒 (𝑡)

≤ 𝑐𝑍
⊤
(𝑡)

× ((diag (�̃�
1
, �̃�
2
, . . . , �̃�

𝑁
) + 𝜆max (𝑈

⊤
Δ𝑈) 𝐼

𝑁
)

× ⊗ Γ)𝑍 (𝑡)

≤ 𝑐𝑍
⊤
(𝑡)

× ((diag (�̃�
1
, �̃�
2
, . . . , �̃�

𝑁
) + max
1≤𝑘≤𝑁

𝛿
𝑘
𝐼
𝑁
) ⊗ Γ)𝑍 (𝑡)

= 𝑐

𝑁

∑

𝑖=1

(�̃�
𝑖
+ max
1≤𝑘≤𝑁

𝛿
𝑘
)𝑧
⊤

𝑖
(𝑡) Γ𝑧𝑖 (𝑡)

≤

𝑁

∑

𝑖=1

𝑐 (�̃�
2
+ max
1≤𝑘≤𝑁

𝛿
𝑘
)𝑧
⊤

𝑖
(𝑡) Γ𝑧𝑖 (𝑡) ≤ 𝑟𝜆 (𝑟)

×

𝑁

∑

𝑖=1

𝑒
⊤

𝑖
(𝑡) 𝑒𝑖 (𝑡) = 2𝑟𝜆 (𝑟) 𝑉 (𝑡) .

(15)
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Substituting (15) into (12) gives

𝐷
+
𝑉 (𝑡) ≤ (2𝐿1 + 𝑟𝜆 (𝑟)) 𝑉 (𝑡) + 2𝐿2𝑉 (𝑡 − 𝜏 (𝑡)) , 𝑡 ̸= 𝑡

𝑘
.

(16)

When 𝑡 = 𝑡
𝑘
, we have

𝑉 (𝑡
𝑘
) =

1

2

𝑁

∑

𝑖=1

𝑒
⊤

𝑖
(𝑡
𝑘
) 𝑒
𝑖
(𝑡
𝑘
) =

1

2

𝑁

∑

𝑖=1

(1 + 𝑑
𝑘
)
2
𝑒
⊤

𝑖
(𝑡
−

𝑘
) 𝑒
𝑖
(𝑡
−

𝑘
)

= (1 + 𝑑
𝑘
)
2
𝑉 (𝑡
−

𝑘
) .

(17)

Denote 𝑝 = 2𝐿
1
+ 𝑟𝜆(𝑟) and 𝑞 = 2𝐿

2
. For any 𝜖 > 0, let

𝜇
𝜖
(𝑡) be unique solution of the following impulsive delayed

dynamical system:

�̇�
𝜖 (𝑡) = 𝑝𝜇𝜖 (𝑡) + 𝑞𝜇𝜖 (𝑡 − 𝜏 (𝑡)) + 𝜖, 𝑡 ̸= 𝑡

𝑘
, 𝑡 ≥ 𝑡

0
,

𝜇
𝜖
(𝑡
𝑘
) = (1 + 𝑑

𝑘
)
2
𝜇
𝜖
(𝑡
−

𝑘
) , 𝑡 = 𝑡

𝑘
, 𝑘 ∈ 𝑍

+
,

𝜇
𝜖 (𝑡) = sup

𝑡0−𝜏≤𝑠≤𝑡0

‖𝑉 (𝑠)‖ , 𝑡
0
− 𝜏 ≤ 𝑡 ≤ 𝑡

0
.

(18)

Let𝑀
0
= 𝑑
∗sup
𝑡0−𝜏≤𝑠≤𝑡0

‖𝑉(𝑠)‖ and 𝜂 = −(2 ln |(1+𝑑sy
∗
)|/𝑇
↓

sup+

2 ln |(1 + 𝑑desy
∗
)|/𝑇
↑

inf +𝑝). In the following, we will prove that
condition (9) implies

𝜇
𝜖 (𝑡) < 𝑀0 exp

−𝜆(𝑡−𝑡0) +
𝜖

(𝜂 − 𝑑∗𝑞) 𝑑∗
−1
, 𝑡 ≥ 𝑡

0
, (19)

where 𝜆 > 0 is unique positive solution of the equation

𝜆 − 𝜂 + 𝑑
∗
𝑞 exp𝜆𝜏 = 0. (20)

Define𝐻(𝜆) = 𝜆−𝜂+𝑑∗𝑞 exp𝜆𝜏. From condition (9), one
has 𝐻(0) < 0. Since 𝐻(+∞) > 0 and 𝑑𝐻(𝜆)/𝑑𝜆 > 0, (20)
must have unique positive solution 𝜆 > 0. By the formula for
the variation of parameters [29], it follows from (18) that

𝜇
𝜖 (𝑡) = 𝑊 (𝑡, 𝑡

0
) 𝜇
𝜖
(𝑡
0
)

+ ∫

𝑡

𝑡0

𝑊(𝑡, 𝑠) [𝑞𝜇𝜖 (𝑠 − 𝜏 (𝑠)) + 𝜖] 𝑑𝑠, 𝑡 ≥ 𝑡
0
,

(21)

where𝑊(𝑡, 𝑠), 𝑡, 𝑠 ≥ 𝑡
0
is the Cauchy matrix of linear system

[29]

�̇� (𝑡) = 𝑝𝜓 (𝑡) , 𝑡 ̸= 𝑡
𝑘
, 𝑡 ≥ 𝑡

0
,

𝜓 (𝑡
𝑘
) = (1 + 𝑑

𝑘
)
2
𝜓 (𝑡
−

𝑘
) , 𝑡 = 𝑡

𝑘
, 𝑘 ∈ 𝑍

+
.

(22)

According to the representation of the Cauchy matrix [29],
we have

𝑊(𝑡, 𝑠) = ( ∏

𝑠<𝑡𝑘≤𝑡

(1 + 𝑑
𝑘
)
2
) exp𝑝(𝑡−𝑠), 𝑡 > 𝑠 ≥ 𝑡

0
. (23)

Suppose that there exist 𝜅
𝑖
> 0 synchronization impulses

with the impulsive strength 𝑑sy
𝑖
and 𝜅
𝑗
> 0 desynchronization

impulses with the impulsive strength 𝑑desy
𝑗

in the interval
(𝑠, 𝑡), then one can easily get that (𝜅

𝑖
+ 1)𝑇

↓

sup ≥ 𝑡 − 𝑠 and
(𝜅
𝑗
− 1)𝑇

↑

inf ≤ 𝑡 − 𝑠. Thus, it follows from (23) that

𝑊(𝑡, 𝑠) = ( ∏

𝑠<𝑡𝑘≤𝑡

(1 + 𝑑
𝑘
)
2
) exp𝑝(𝑡−𝑠)

= (

𝜅𝑖

∏

𝑖=1

(1 + 𝑑
sy
𝑖
)
2

𝜅𝑗

∏

𝑗=1

(1 + 𝑑
desy
𝑗
)
2

) exp𝑝(𝑡−𝑠)

≤
(1 + 𝑑

sy
∗
)


2((𝑡−𝑠)/𝑇
↓

sup−1)

×

(1 + 𝑑

desy
∗
)


2((𝑡−𝑠)/𝑇
↑

inf+1)

=
(1 + 𝑑

sy
∗
)


−2
(1 + 𝑑

desy
∗
)


2

× exp(𝑝+2 ln |(1+𝑑
sy
∗ )|/𝑇

↓

sup+2 ln |(1+𝑑
desy
∗ )|/𝑇

↑

inf )(𝑡−𝑠)

= 𝑑
∗exp−𝜂(𝑡−𝑠).

(24)

Substituting (24) into (21) gives

𝜇
𝜖 (𝑡) ≤ 𝑑

∗exp−𝜂(𝑡−𝑡0)𝜇
𝜖
(𝑡
0
)

+ ∫

𝑡

𝑡0

𝑑
∗exp−𝜂(𝑡−𝑠) [𝑞𝜇

𝜖 (𝑠 − 𝜏 (𝑠)) + 𝜖] 𝑑𝑠

= 𝑀
0
exp−𝜂(𝑡−𝑡0)

+ ∫

𝑡

𝑡0

exp−𝜂(𝑡−𝑠) [𝑑∗𝑞𝜇
𝜖 (𝑠 − 𝜏 (𝑠)) + 𝑑

∗
𝜖] 𝑑𝑠, 𝑡 ≥ 𝑡

0
.

(25)

Since 𝜖, 𝜆, 𝜂 − 𝑑∗𝑞 > 0, and 𝑑∗ > 1, one has

𝜇
𝜖 (𝑡) ≤ 𝑑

∗ sup
𝑡0−𝜏≤𝑠≤𝑡0

‖𝑉 (𝑠)‖ < 𝑀0 exp
−𝜆(𝑡−𝑡0)

+
𝜖

(𝜂 − 𝑑∗𝑞) 𝑑∗
−1
, 𝑡
0
− 𝜏 ≤ 𝑡 ≤ 𝑡

0
.

(26)

Now, we claim (19) holds; that is,

𝜇
𝜖 (𝑡) < 𝑀0 exp

−𝜆(𝑡−𝑡0) +
𝜖

(𝜂 − 𝑑∗𝑞) 𝑑∗
−1
, 𝑡 ≥ 𝑡

0
. (27)

If this is not true, from (26), then there must exists a 𝑡∗ > 𝑡
0

such that

𝜇
𝜖
(𝑡
∗
) ≥ 𝑀

0
exp−𝜆(𝑡

∗
−𝑡0) +

𝜖

(𝜂 − 𝑑∗𝑞) 𝑑∗
−1
, (28)

𝜇
𝜖 (𝑡) < 𝑀0 exp

−𝜆(𝑡−𝑡0) +
𝜖

(𝜂 − 𝑑∗𝑞) 𝑑∗
−1
, 𝑡
0
− 𝜏 ≤ 𝑡 < 𝑡

∗
.

(29)
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By (20), (25), and (29), we have

𝜇
𝜖
(𝑡
∗
) ≤ 𝑀

0
exp−𝜂(𝑡

∗
−𝑡0)

+ ∫

𝑡
∗

𝑡0

exp−𝜂(𝑡
∗
−𝑠)
[𝑑
∗
𝑞𝜇
𝜖 (𝑠 − 𝜏 (𝑠)) + 𝑑

∗
𝜖] 𝑑𝑠

≤ exp−𝜂(𝑡
∗
−𝑡0)

× {𝑀
0
+ ∫

𝑡
∗

𝑡0

exp𝜂(𝑠−𝑡0)

× [𝑑
∗
𝑞𝑀
0
exp−𝜆(𝑠−𝜏(𝑠)−𝑡0)

+
𝜖𝑑
∗
𝑞

(𝜂 − 𝑑∗𝑞) 𝑑∗
−1
+ 𝑑
∗
𝜖] 𝑑𝑠}

≤ exp−𝜂(𝑡
∗
−𝑡0) {𝑀

0
+ 𝑑
∗
𝑞𝑀
0

× exp𝜆𝜏 ∫
𝑡
∗

𝑡0

exp(𝜂−𝜆)(𝑠−𝑡0)𝑑𝑠

+
𝜖𝜂

(𝜂 − 𝑑∗𝑞) 𝑑∗
−1

×∫

𝑡
∗

𝑡0

exp𝜂(𝑠−𝑡0)𝑑𝑠}

< 𝑀
0
exp−𝜆(𝑡

∗
−𝑡0) +

𝜖

(𝜂 − 𝑑∗𝑞) 𝑑∗
−1
.

(30)

Since 𝑉(𝑡) ≤ sup
𝑡0−𝜏≤𝑠≤𝑡0

‖𝑉(𝑠)‖ = 𝜇
𝜖
(𝑡), for 𝑡

0
− 𝜏 ≤ 𝑡 ≤ 𝑡

0
, it

follows from (16)−(18) and Lemma 6 that

𝑉 (𝑡) ≤ 𝜇𝜖 (𝑡) < 𝑀0 exp
−𝜆(𝑡−𝑡0) +

𝜖

(𝜂 − 𝑑∗𝑞) 𝑑∗
−1
, 𝑡 ≥ 𝑡

0
.

(31)

Letting 𝜖 → 0
+, then we have

𝑉 (𝑡) ≤ 𝑀0 exp
−𝜆(𝑡−𝑡0), 𝑡 ≥ 𝑡

0
. (32)

Thismeans the zero solution of the error system (7) is globally
exponentially stable. The proof of Theorem 7 is thus com-
pleted.

Remark 8. Theorem 7 provides a simple yet generic globally
exponential synchronization criterion for directed impulsive
delayed dynamical network (3) with time-varying impulses.
It should be stressed that here both synchronizing and
desynchronizing impulses are considered in themodel simul-
taneously.This is different fromprevious studies on impulsive
dynamical networks in [6–15], where the two kinds of
impulses are assumed to occur separately. Thus, the impulses
discussed in [6–15] can be viewed as a special case of our
proposed time-varying impulses.

Remark 9. It can be seen from Theorem 7 that the derived
criterion depends mainly on the synchronization and desyn-
chronizing impulsive strengths 𝑑sy

𝑖
and 𝑑desy

𝑗
, the upper and

lower bounds of the synchronization and desynchronizing
impulsive intervals 𝑇↓sup and 𝑇

↑

inf , and the eigenvalue �̃�
2
. Just

as stated in [21, 22], the synchronizability of the dynamical
network can also be characterized by the second largest eigen-
value �̃�

2
of the specific matrix 𝐵. Therefore, the result shows

that the network topology also has a great impact on syn-
chronization dynamics of the impulsive delayed dynamical
network, which is different from the results presented in [6–
8, 14–16].

Remark 10. Condition (9) in Theorem 7 indicates that the
sum ((2 ln |(1+𝑑sy

∗
)|/𝑇
↓

sup)+(2 ln |(1+𝑑
desy
∗
)|/𝑇
↑

inf )) = 2 ln(|(1+
𝑑
sy
∗
)|
1/𝑇
↓

sup |(1 + 𝑑
desy
∗
)|
1/𝑇
↑

inf ) plays an important role in the syn-
chronization criterion. For convenience, let 𝑑 = |(1 +

𝑑
sy
∗
)|
1/𝑇
↓

sup |(1+𝑑
desy
∗
)|
1/𝑇
↑

inf ; then condition (9) can be rewritten
as

ln 𝑑 + 𝐿
1
+
𝑟𝜆 (𝑟)

2
+ 𝑑
∗
𝐿
2
< 0. (33)

Since |(1 + 𝑑sy
∗
)| < 1 and |(1 + 𝑑desy

∗
)| > 1, the following two

cases will appear.

(i) If 0 < 𝑑 < 1, that is, |(1+𝑑desy
∗
)|
1/𝑇
↑

inf < |(1+𝑑
sy
∗
)|
−1/𝑇
↓

sup ,
then ln 𝑑 < 0. In this case, the restriction condition
𝐿
1
+ 𝑟𝜆(𝑟)/2 < −𝐿

2
, that is, −𝑝 > 𝑞 ≥ 0, is not

required in inequality (33). According to the Halanay
differential inequality on delayed dynamical systems
[13, 27] and (16), this implies that the underlying
delayed dynamical network (1) without impulses
might be asynchronous. Therefore, the result shows
that even if desynchronization impulses occur fre-
quently, the underlying delayed dynamical networks
without impulses which may be asynchronous itself
can also be globally exponentially synchronized if
synchronization impulses can prevail over the influ-
ence of desynchronization impulsive effects. Such
statement will be further verified through numerical
examples.

(ii) If 𝑑 ≥ 1, that is, |(1 + 𝑑desy
∗
)|
1/𝑇
↑

inf ≥ |(1 + 𝑑
sy
∗
)|
−1/𝑇
↓

sup ,
then 𝑝+𝑑∗𝑞 < 0 since ln𝑑 ≥ 0. Note that 𝑑∗ > 1, one
has −𝑝 > 𝑞 > 0, which means the underlying delayed
dynamical network (1) without impulses in fact is
globally exponential synchronization itself in this case
[13, 27]. Thus, inequality (33) provides a criterion
under which globally exponential synchronization
of the original delayed dynamical network (1) can
be preserved when desynchronization impulses pre-
vail over the influence of synchronization impulsive
effects.

In the following, for simplicity, we consider that both
the strengths of the synchronization and desynchronization
impulses are time-invariant; that is, 𝑑sy

𝑖
≡ 𝑑

sy, 𝑑desy
𝑗

≡ 𝑑
desy for

𝑖 = 1, 2, . . . , 𝑁
1
, 𝑗 = 1, 2, . . . , 𝑁

2
.Then, the following result

can be obtained readily fromTheorem 7.
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Corollary 11. Consider the impulsive delayed dynamical net-
work (3)with time-varying impulses. Under Assumption 2, the
impulsive delayed dynamical network (3) is globally exponen-
tially synchronized if the following condition holds:

ln((1 + 𝑑
sy
)


1/𝑇
↓

sup 
(1 + 𝑑

desy
)


1/𝑇
↑

inf
)

+ 𝐿
1
+
𝑟𝜆 (𝑟)

2
+ 𝑑
∗

𝐿
2
< 0,

(34)

where 𝑑
∗

= (1+𝑑
desy
)
2
/(1+𝑑

sy
)
2 and the other parameters are

given in Theorem 7.

Furthermore, if we assume the impulsive intervals of the
synchronization and desynchronization impulses are equi-
distant and equal to each other, that is, 𝑡↓

𝑖𝑘
− 𝑡
↓

𝑖𝑘−1
≡ Δ𝑡
↓, 𝑡↑
𝑗 𝑘
−

𝑡
↑

𝑗 𝑘−1
≡ Δ𝑡
↑, and Δ𝑡↓ = Δ𝑡↑ = Δ𝑡, then Corollary 11 is reduced

to the following.

Corollary 12. Consider the impulsive delayed dynamical net-
work (3)with time-varying impulses. Under Assumption 2, the
impulsive delayed dynamical network (3) is globally exponen-
tially synchronized if the following condition holds:

ln ((1 + 𝑑
sy
) (1 + 𝑑

desy
)

)

Δ𝑡
+ 𝐿
1
+
𝑟𝜆 (𝑟)

2
+ 𝑑
∗

𝐿
2
< 0. (35)

Remark 13. Corollary 12 shows that if the impulsive intervals
of the synchronization and desynchronization impulses are
equidistant and equal to each other, when |(1 + 𝑑sy)(1 +
𝑑
desy
)| < 1, that is, when the absolute value of product of (1 +

𝑑
sy
) and (1 + 𝑑desy) is less than 1, the whole impulsive effects

are synchronizing; when the absolute value is equal to 1, the
whole impulsive effects are inactive; and when the absolute
value is more than 1, the whole impulsive effects are desyn-
chronizing.

4. Numerical Examples

In this section, two numerical examples are given to illustrate
the results derived in this work. The delayed Hopfield neural
network is chosen as the isolated node of network (1), which
can be described by the following [9]:

�̇� (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) = 𝐴1𝑥 (𝑡)

+ 𝐸
1
𝑔
1 (𝑥 (𝑡)) + 𝐹1𝑔2 (𝑥 (𝑡 − 𝜏 (𝑡))) ,

(36)

where 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡))
⊤
∈ R2, 𝑔

1
(𝑥(𝑡)) = 𝑔

2
(𝑥(𝑡)) =

(tanh(𝑥
1
), tanh(𝑥

2
))
⊤, 𝜏(𝑡) = 1, and

𝐴
1
= [

−1.0 0

0 −1.0
] , 𝐸

1
= [

2.0 −0.1

−5.0 3.0
] ,

𝐹
1
= [

−1.5 −0.1

−0.2 −2.5
] .

(37)
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Figure 1: Chaotic attractor of the isolate delayed Hopfield neural
network (36) with initial conditions 𝑥

1
(0) = 0.2 and 𝑥

2
(0) = 0.5.

The single delayed Hopfield neural network (36) has a
chaotic attractor as shown in Figure 1. By using the inequality
|𝑎𝑏| ≤ (1/2)𝑎

2
+ (1/2)𝑏

2, it is easy to check that

(𝑥 (𝑡) − 𝑦 (𝑡))
⊤

× (𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) − 𝑓 (𝑡, 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏 (𝑡))))

≤ (𝑥 (𝑡) − 𝑦 (𝑡))
⊤
𝐴
1
(𝑥 (𝑡) − 𝑦 (𝑡))

+ (4.55 + 0.8𝜔) (𝑥1 (𝑡) − 𝑦1 (𝑡))
2

+ (5.55 + 1.35𝜔) (𝑥2 (𝑡) − 𝑦2 (𝑡))
2

+ (
0.85

𝜔
) (𝑥
1 (𝑡 − 𝜏 (𝑡)) − 𝑦1 (𝑡 − 𝜏 (𝑡)))

2

+ (
1.3

𝜔
) (𝑥
2 (𝑡 − 𝜏 (𝑡)) − 𝑦2 (𝑡 − 𝜏 (𝑡)))

2

≤ 𝜆max (𝐴1) (𝑥 (𝑡) − 𝑦 (𝑡))
⊤
(𝑥 (𝑡) − 𝑦 (𝑡))

+ 𝜆max (𝐴2) (𝑥 (𝑡 − 𝜏 (𝑡)) − 𝑦 (𝑡 − 𝜏 (𝑡)))
⊤

× (𝑥 (𝑡 − 𝜏 (𝑡)) − 𝑦 (𝑡 − 𝜏 (𝑡)))

= 𝐿
1
(𝑥 (𝑡) − 𝑦 (𝑡))

⊤
(𝑥 (𝑡) − 𝑦 (𝑡))

+ 𝐿
2
(𝑥 (𝑡 − 𝜏 (𝑡)) − 𝑦 (𝑡 − 𝜏 (𝑡)))

⊤

× (𝑥 (𝑡 − 𝜏 (𝑡)) − 𝑦 (𝑡 − 𝜏 (𝑡))) , (38)

where 𝐴
1
= diag((3.55 + 0.8𝜔), (5.55 + 1.35𝜔)), 𝐴

2
=

diag((0.85/𝜔), (1.3/𝜔)), 𝐿
1
= 𝜆max(𝐴1), 𝐿2 = 𝜆max(𝐴2), and

𝜔 is a positive constant. Thus, the condition of Assumption 2
is satisfied.

For the reason of convenient explanation, we here con-
sider 𝑑sy

𝑖
≡ 𝑑

sy, 𝑑desy
𝑗

≡ 𝑑
desy, 𝑖 = 1, 2, . . . , 𝑁

1
, 𝑗 = 1, 2, . . . ,

𝑁
2
, 𝑡↓
𝑖𝑘
− 𝑡
↓

𝑖𝑘−1
= 𝑡
↑

𝑗𝑘
− 𝑡
↑

𝑗𝑘−1
= Δ𝑡, and the impulsive strength 𝑑

𝑘

(𝑘 ∈ 𝑍+) satisfies

𝑑
𝑘
= {

𝑑
sy
, if mod (𝑘, 2) ̸= 0,

𝑑
desy
, if mod (𝑘, 2) = 0.

(39)
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Figure 2: Time-varying impulsive sequence with 𝑑sy = −0.5, 𝑑desy =
0.2, and Δ𝑡 = 0.05 in time interval [0 2].

Example 1. In this example, a nearest-neighbor unidirec-
tional coupled impulsive delayed dynamical network (3) with
time-varying impulses is considered. It is well known that the
synchronization of the nearest-neighbor coupled dynamical
network is difficult to achieve if the number of network nodes
is large enough [21]. The coupling matrix 𝐵 of this network is
of the form

𝐵 =(

−1 1 0 ⋅ ⋅ ⋅ 0

0 −1 1 ⋅ ⋅ ⋅ 0

...
... d d

...
0 ⋅ ⋅ ⋅ 0 −1 1

1 0 ⋅ ⋅ ⋅ 0 −1

)

𝑁×𝑁

. (40)

Clearly, the coupling matrix 𝐵 is a asymmetrical Laplacian
matrix of a weighted graph with a spanning tree [9]. In this
simulation, choosing 𝑁 = 100, then one has �̃�

2
= −0.0039

and max
1≤𝑘≤𝑁

𝛿
𝑘
= 0. Let the coupling strength 𝑐 = 1 and the

inner coupling matrix Γ = 𝐼
2
; then 𝑟𝜆(𝑟) = −0.0039.

Select 𝜔 = 2; one has 𝐿
1
= 8.25 and 𝐿

2
= 0.65. Let 𝑑sy =

−0.5 and𝑑desy = 0.2, by Corollary 12, then it can be concluded
that the nearest-neighbor unidirectional coupled impulsive
delayed dynamical network can be globally exponentially
synchronized if

Δ𝑡 <

− ln ((1 + 𝑑
sy
) (1 + 𝑑

desy
)

)

𝐿
1
+ 𝑟𝜆 (𝑟) /2 + 𝑑

∗

𝐿
2

= 0.0525. (41)

Let the equidistant impulsive interval be taken as
Δ𝑡 = 0.05. Figure 2 shows the time-varying impulses
sequence. Figure 3 visualizes the change process of the
state variables of the nearest-neighbor unidirectional cou-
pled delayed dynamical network without impulses, which
clearly indicates desynchronization of the underlying delayed
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Figure 3: Change process of the state variables of the nearest-
neighbor unidirectional coupled delayed dynamical network with-
out impulses in time interval [0 20].
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Figure 4: Error trajectories of the nearest-neighbor unidirectional
coupled delayed dynamical network with the time-varying impulses
in time interval [0 2].

dynamical network without impulses. Error trajectories
of the nearest-neighbor unidirectional coupled impulsive
delayed dynamical network are plotted in Figure 4. It can
be seen that the network achieves quickly synchronization
under the time-varying impulses. Since here |(1 + 𝑑sy)(1 +
𝑑
desy
)| = 0.6 < 1, the whole impulsive effects are

synchronizing. This example verifies the above statement
that even if desynchronization impulses occur frequently,
an unsynchronized delayed dynamical network (1) can also
be globally exponentially synchronized under time-varying
impulses if synchronization impulses can prevail over the
influence of desynchronization impulsive effects.
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Figure 5: Change process of the state variables of the scale-
free coupled delayed dynamical network without impulses in time
interval [0 50].

Example 2. A BA scale-free [31] coupled impulsive delayed
dynamical network (3) is taken as the second example. The
parameters of the BA model are given by 𝑚

0
= 𝑚 = 4 and

𝑁 = 100. We generate 100 BA scale-free networks randomly,
and the network with �̃�

2
= −4.3532 is selected for simulation

in this example. The remaining 99 scale-free networks can
be analyzed similarly [10]. By simple calculation, we get that
max
1≤𝑘≤𝑁

𝛿
𝑘
= 0. Let the coupling strength 𝑐 = 5 and the

inner coupling matrix Γ = 𝐼
2
. Select 𝜔 = 1.5; one has 𝐿

1
=

7.575 and𝐿
2
= 0.8667.Then, 2𝐿

1
+𝑟𝜆(𝑟)+2𝐿

2
= −4.8827 < 0;

that is, −𝑝 > 𝑞 > 0. Thus, the underlying delayed dynamical
network without impulses is globally exponentially synchro-
nized itself in this example, as shown in Figure 5.

Let 𝑑sy = −0.1 and 𝑑desy = 0.4. By Corollary 12, we can
derive the following condition ensuring globally exponential
synchronization of the scale-free coupled delayed dynamical
network with time-varying impulses will be maintained

Δ𝑡 > −

ln ((1 + 𝑑
sy
) (1 + 𝑑

desy
)

)

𝐿
1
+ 𝑟𝜆 (𝑟) /2 + 𝑑

∗

𝐿
2

= 0.1909. (42)

Select Δ𝑡 = 0.2; Figure 6 represents the time-varying
impulses sequence, and the synchronization process of the
scale-free coupled impulsive delayed dynamical network is
plotted in Figure 7. In this example, the whole impulsive
effects are desynchronizing because |(1 + 𝑑sy)(1 + 𝑑desy)| =
1.26 > 1. We can see that globally exponential synchroniza-
tion of the underlying delayed dynamical network without
impulses is preserved under such time-varying impulses.

5. Conclusion

In this paper, a detailed analysis has been carried out for
the synchronization of directed complex networks with time-
varying delays dynamical nodes and time-varying impulsive
effects. Both synchronizing and desynchronizing impulses
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Figure 6: Time-varying impulsive sequence with 𝑑sy = −0.1, 𝑑desy =
0.4, and Δ𝑡 = 0.2 in time interval [0 5].
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Figure 7: Synchronization of the scale-free coupled delayed dynam-
ical network with the time-varying impulses in time interval [0 5].

were considered in the networkmodel simultaneously.With-
out assuming symmetry and irreducibility of coupling struc-
ture, some globally exponential synchronization criteria for
the proposed impulsive delayed dynamical networks with
weakly connected topology have been established by using
the comparison principle. The obtained results showed that
even if desynchronization impulses occur frequently, the
underlying delayed dynamical networks without impulses
which may be asynchronous itself can also be globally expo-
nentially synchronized if synchronization impulses can pre-
vail over the influence of desynchronization impulsive effects.
Two numerical examples and their simulations have been
given to verify the effectiveness of the theoretical results.
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