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Ran and Reurings (2004) established an interesting analogue of Banach Contraction Principle in a complete metric space equipped
with a partial ordering and also utilized the same oneto discuss the existence of solutions to matrix equations. Motivated by this
paper, we prove results on coincidence points for a pair of weakly increasing mappings satisfying a nonlinear contraction condition
described by a rational expression on an ordered complete metric space. The uniqueness of common fixed point is also discussed.
Some examples are furnished to demonstrate the validity of the hypotheses of our results. As an application, we derive an existence
theorem for the solution of an integral equation.

1. Introduction with Preliminaries

A variety of generalizations of the Classical Banach Contrac-
tion Principle [1] are available in the existing literature of
metric fixed point theory. The majority of these generaliza-
tions are obtained by improving the underlying contraction
condition (e.g., [2]). Presently, there is vigorous research
activity to prove existence results on complete metric spaces
equipped with a partial ordering. In fact, various existence
and uniqueness theorems on fixed and common fixed point
for monotone mappings are of paramount importance in the
study of nonlinear equations which generate natural interest
to establish usable fixed point theorems in partial metric
spaces (e.g., [1–24]).

Very recently,Harjani et al. [25] proved a fixed point theo-
rem in partially orderedmetric spaces satisfying a contractive
condition of rational type due to Jaggi [26]. The aim of this
paper is to prove some results of Harjani et al. [25] type for a
pair of self-mappings. We accomplish this using the concept
of weakly increasing property due to Nashine and Samet [14]
(also see [4, 27, 28]). Some examples are also furnished to
demonstrate the validity of the hypotheses of our results. As

an application, we establish the existence of solution to an
integral equation (also see [2, 23, 29, 30]).

Before presenting our results, we recall some notations,
definitions, and examples required in our subsequent discus-
sions.

Definition 1. LetX be a nonempty set.Then (X, 𝑑, ⪯) is called
an ordered (partial) metric space if

(i) (X, ⪯) is a partially ordered set and (ii) (X, 𝑑) is a
metric space.

Definition 2. Let (X, ⪯) be a partially ordered set. Then

(a) elements 𝑥, 𝑦 ∈ X are called comparable with respect
to “⪯” if either 𝑥 ⪯ 𝑦 or 𝑦 ⪯ 𝑥;

(b) a mappingT : X → X is called nondecreasing with
respect to “⪯” if 𝑥 ⪯ 𝑦 impliesT𝑥 ⪯ T𝑦.

Let X be a nonempty set and R : X → X be a given
mapping. For every 𝑥 ∈ X, we denote byR−1(𝑥), the subset
ofX defined by

R
−1

(𝑥) := {𝑢 ∈ X | R𝑢 = 𝑥} . (1)
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Definition 3. Let (X, ⪯) be a partially ordered set and let
T,R : X → X be two mappings such that TX ⊆ RX.
We say that T is weakly increasing with respect to R if and
only if for all 𝑥 ∈ X, one has:

T𝑥 ⪯ T𝑦, ∀𝑦 ∈ R
−1

(T𝑥) . (2)

Remark 4. If R : X → X is the identity mapping on X,
then T is weakly increasing with respect to R if and only if
T(𝑥) ⪯ TT(𝑥) for all 𝑥 ∈ X.

As mentioned earlier, the notion of weakly increasing
mappings was introduced in [4] which is presently in use (e.g.
[27, 28]). In what follows, we furnish a relatively new example
to demonstrate the preceding definition.

Example 5. Consider X = [0,∞) endowed with the natural
order ≤. Define two mappingsT,R : X → X as

T𝑥 = {
𝑥
2 + 1, 0 ≤ 𝑥 < 1

1, 1 ≤ 𝑥,

R𝑥 = {
𝑥
3

+ 1, 0 ≤ 𝑥 < 1

1, 1 ≤ 𝑥.

(3)

In order to show that the mappingT is weakly increasing
with respect to mappingR, we distinguish three cases.

Firstly, we consider the case 𝑥 = 0. Let 𝑦 ∈

R−1(T(0)), that is,R(𝑦) = T(0) = 1 so that R(𝑦) = 1 and
henceforth 𝑦 = 0 or 𝑦 ≥ 1. By the definitions ofT, we have

1 = T (0) ≤ T(𝑦) = 1. (4)

Secondly, we argue the case 𝑥 ≥ 1. Let 𝑦 ∈ R−1(T(𝑥)), that
is,R(𝑦) = T(𝑥) = 1, which amounts to say (in view of
definition 𝑅) that 𝑦 = 0 or 𝑦 ≥ 1, implying thereby

1 = T (𝑥) ≤ T(𝑦) = 1. (5)

Finally, we need to consider the case 0 < 𝑥 < 1. Let 𝑦 ∈

R−1(T(𝑥)), that is,R(𝑦) = T(𝑥). By the definition ofT, we
haveT(𝑥) = 𝑥2 + 1, so thatR(𝑦) = 𝑥2 + 1. Now, in view of
definition ofR, we haveR(𝑦) = 𝑦3+1, so that𝑦3+1 = 𝑥2+1,
yielding thereby 𝑦 = (𝑥)

2/3. Now, we have

𝑥
2

+ 1 = T(𝑥) ≤ T (𝑦) = T((𝑥)
2/3

) = (𝑥)
4/3

+ 1. (6)

Thus we have shown thatT is weakly increasing with respect
toR.

Definition 6. Let (X, ⪯) be an ordered metric space. We say
thatX is regular if and only if the following hypothesis holds:

if {𝑧
𝑛

} is a nondecreasing sequence inXwith respect to ⪯
such that lim

𝑛→∞

𝑧
𝑛

= 𝑧 ∈ X, then 𝑧
𝑛

⪯ 𝑧 for all 𝑛 ∈ N.

Definition 7. A pair (R,T) of self-mappings of a met-
ric space (X, 𝑑) is said to be compatible if and only if
lim
𝑛→+∞

𝑑(TR𝑥
𝑛

,RT𝑥
𝑛

) = 0,whenever {𝑥
𝑛

} is a sequence
inX such that lim

𝑛→+∞

R𝑥
𝑛

= lim
𝑛→+∞

T𝑥
𝑛

= 𝑧 ∈ X.

Definition 8 (see [18]). A pair (R,T) of self-mappings of a
metric space (X, 𝑑) is said to be reciprocally continuous if
and only if lim

𝑛→∞

RT𝑥
𝑛

= R𝑧 and lim
𝑛→∞

TR𝑥
𝑛

= T𝑧

for every sequence {𝑥
𝑛

} inX satisfying

lim
𝑛→∞

R𝑥
𝑛

= lim
𝑛→∞

T𝑥
𝑛

= 𝑧 (7)

for some 𝑧 ∈ X.
Notice that a pair of continuous mappings is always

reciprocally continuous but not conversely as substantiated
by examples in [18].

Definition 9 (see [19]). A pair (R,T) of self mappings
of a metric space (X, 𝑑) is said to be weakly reciprocally
continuous if and only if lim

𝑛→∞

RT𝑥
𝑛

= R𝑧, for every
sequence {𝑥

𝑛

} inX satisfying

lim
𝑛→∞

R𝑥
𝑛

= lim
𝑛→∞

T𝑥
𝑛

= 𝑧 (8)

for some 𝑧 ∈ X.
Evidently, every pair of reciprocally continuousmappings

is always weakly reciprocally but not conversely as demon-
strated in Pant et al. [19].

2. Results

Themain result of this paper runs as follows

Theorem 10. Let (X, ⪯) be a partially ordered set equipped
with a metric 𝑑 on X such that (X, 𝑑) is a complete metric
space. Let T,R : X → X be two mappings satisfying (for
pairs (𝑥, 𝑦) ∈ X ×X whereinR𝑥 andR𝑦 are comparable)

𝑑 (T𝑥,T𝑦) ≤ 𝛼
𝑑 (R𝑥,T𝑥) ⋅ 𝑑 (R𝑦,T𝑦)

1 + 𝑑 (R𝑥,R𝑦)

+ 𝛽𝑑 (R𝑥,R𝑦) ,

(9)

where 𝛼, 𝛽 are nonnegative real numbers with 𝛼 + 𝛽 < 1.
Suppose that

(a) X is regular andT is weakly increasing withR,

(b) the pair (R,T) is commuting as well as weakly
reciprocally continuous.

Then T and R have a coincidence point. That is, there exists
𝑢 ∈ X such thatR𝑢 = T𝑢.

Proof. Let 𝑥
0

be an arbitrary point in X. Since TX ⊆ RX,
one can inductively construct a sequence {𝑥

𝑛

} in X defined
by

R𝑥
𝑛

= T𝑥
𝑛−1

, ∀𝑛 ∈ N. (10)

As 𝑥
1

∈ R−1(T𝑥
0

) and 𝑥
2

∈ R−1(T𝑥
1

), using weakly in-
creasing property ofT with respect toR, we obtain

R𝑥
1

= T𝑥
0

⪯ T𝑥
1

= R𝑥
2

⪯ T𝑥
2

= R𝑥
3

. (11)
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Continuing this process indefinitely, we get

R𝑥
1

⪯ R𝑥
2

⪯ R𝑥
3

⪯ ⋅ ⋅ ⋅ ⪯ R𝑥
𝑛

⪯ R𝑥
𝑛+1

⪯ ⋅ ⋅ ⋅ . (12)

Now, we proceed to show that for 𝑛 ∈ N,

𝑑 (R (𝑥
𝑛+1

) ,R (𝑥
𝑛+2

)) ≤ (
𝛽

1 − 𝛼
)

𝑛

𝑑 (R (𝑥
1

) ,R (𝑥
2

)) .

(13)

AsR(𝑥
2

) ⪰ R(𝑥
1

), using (9), we have

𝑑 (R (𝑥
2

) ,R (𝑥
3

))

= 𝑑 (T (𝑥
1

) ,T (𝑥
2

))

≤ 𝛼
𝑑 (R (𝑥

1

) ,T (𝑥
1

)) ⋅ 𝑑 (R (𝑥
2

) ,T (𝑥
2

))

1 + 𝑑 (R (𝑥
1

) ,R (𝑥
2

))

+ 𝛽𝑑 (R (𝑥
1

) ,R (𝑥
2

)) ,

(owing to 𝑑 (R (𝑥
1

) ,R (𝑥
2

))

≤ 1 + 𝑑 (R (𝑥
1

) ,R (𝑥
2

)))

≤ 𝛼𝑑 (R (𝑥
2

) ,R (𝑥
3

)) + 𝛽𝑑 (R (𝑥
1

) ,R (𝑥
2

))

(14)

which implies that

(1 − 𝛼) 𝑑 (R (𝑥
2

) ,R (𝑥
3

)) ≤ 𝛽𝑑 (R (𝑥
1

) ,R (𝑥
2

)) (15)

so that

𝑑 (R (𝑥
2

) ,R (𝑥
3

)) ≤ (
𝛽

1 − 𝛼
)𝑑 (R (𝑥

1

) ,R (𝑥
2

)) . (16)

Let (13) holds for all 𝑛 > 0. As R(𝑥
𝑛+1

) ⪰ R(𝑥
𝑛

), using
(9), we have

𝑑 (R (𝑥
𝑛+2

) ,R (𝑥
𝑛+3

)) = 𝑑 (T (𝑥
𝑛+1

) ,T (𝑥
𝑛+2

))

≤ 𝛼
𝑑 (R (𝑥

𝑛+1

) ,T (𝑥
𝑛+1

)) 𝑑 (R (𝑥
𝑛+2

) ,T (𝑥
𝑛+2

))

1 + 𝑑 (R (𝑥
𝑛+1

) ,R (𝑥
𝑛+2

))

+ 𝛽𝑑 (R (𝑥
𝑛+1

) ,R (𝑥
𝑛+2

)) ,

(owing to 𝑑 (R (𝑥
𝑛+1

) ,R (𝑥
𝑛+2

)))

≤ 1 + 𝑑 (R (𝑥
𝑛+1

) ,R (𝑥
𝑛+2

))

≤ 𝛼𝑑 (R (𝑥
𝑛+2

) ,R (𝑥
𝑛+3

))

+ 𝛽𝑑 (R (𝑥
𝑛+1

) ,R (𝑥
𝑛+2

)) ,

(17)

so that

𝑑 (R (𝑥
𝑛+2

) ,R (𝑥
𝑛+3

))

≤ (
𝛽

1 − 𝛼
)𝑑 (R (𝑥

𝑛+1

) ,R (𝑥
𝑛+2

))

≤ (
𝛽

1 − 𝛼
)

𝑛+1

𝑑 (R𝑥
1

,R𝑥
2

) .

(18)

Now with ℎ = 𝛽/(1 − 𝛼), for any𝑚 > 𝑛, we have

𝑑 (R (𝑥
𝑛

) ,R (𝑥
𝑚

))

≤ 𝑑 (R (𝑥
𝑛

) ,R (𝑥
𝑛+1

))

+ 𝑑 (R (𝑥
𝑛+1

) ,R (𝑥
𝑛+2

))

+ ⋅ ⋅ ⋅ 𝑑 (R (𝑥
𝑚−1

) ,R (𝑥
𝑚

))

≤ [ℎ
𝑛

+ ℎ
𝑛+1

+ ⋅ ⋅ ⋅ ℎ
𝑚−1

] 𝑑 (R𝑥
1

,R𝑥
2

)

≤ [
ℎ𝑛

1 − ℎ
] 𝑑 (R𝑥

1

,R𝑥
2

) .

(19)

As 0 < ℎ = 𝛽/(1−𝛼)< 1, we have lim
𝑛→+∞

𝑑(R(𝑥
𝑛

),R(𝑥
𝑚

)) =

0, that is, {R𝑥
𝑛

} is Cauchy sequences in the complete metric
space (X, 𝑑) and hence there exists some 𝑥 ∈ X such that

lim
𝑛→+∞

T (𝑥
𝑛

) = lim
𝑛→+∞

R (𝑥
𝑛

) = 𝑥. (20)

Owing to commutativity ofT withR and by using (10) (for
each 𝑛 ≥ 1), we have

R (R𝑥
𝑛+1

) = R (T𝑥
𝑛

) = T (R𝑥
𝑛

) ,

that is R−1 (T (R𝑥
𝑛

)) = R𝑥
𝑛+1

.
(21)

SinceT is weakly increasing withR, we can write

R (R𝑥
𝑛+1

) = T (R𝑥
𝑛

) ⪯ T (R𝑥
𝑛+1

) = R (R𝑥
𝑛+2

) (22)

so that R(R𝑥
𝑛

) is nondecreasing. As the maps R and
T are weakly reciprocally continuous, lim

𝑛→∞

R(R𝑥
𝑛

) =

lim
𝑛→∞

R(T𝑥
𝑛−1

) = R𝑥, which together with regularity of
X gives rise toR(R𝑥

𝑛

) ⪯ R𝑥; that is,R(R𝑥
𝑛

) andR𝑥 are
comparable. On using condition (9), we have

𝑑 (R𝑥,T𝑥)

≤ 𝑑 (R𝑥,R (R𝑥
𝑛+1

)) + 𝑑 (R (R𝑥
𝑛+1

) ,T𝑥)

= 𝑑 (R𝑥,R (R𝑥
𝑛+1

)) + 𝑑 (R (T𝑥
𝑛

) ,T𝑥)

= 𝑑 (R𝑥,R (R𝑥
𝑛+1

)) + 𝑑 (T (R𝑥
𝑛

) ,T𝑥)

= 𝑑 (R𝑥,R (R𝑥
𝑛+1

)) + 𝑑 (T𝑥,T (R𝑥
𝑛

))

≤ 𝑑 (R𝑥,R (R𝑥
𝑛+1

))

+ 𝛼𝑑 (R𝑥,T𝑥)
𝑑 (R (R𝑥

𝑛

) ,T (R𝑥
𝑛

))

1 + 𝑑 (R𝑥,R (R𝑥
𝑛

))

+ 𝛽𝑑 (R𝑥,R (R𝑥
𝑛

)) .

(23)

On making 𝑛 → ∞ in the preceeding inequality, one gets

𝑑 (R𝑥,T𝑥) = 0, (24)

so thatT𝑥 = R𝑥. Thus, we have shown thatT andR have
a coincidence point. This completes the proof.

Setting 𝛼 = 0 in Theorem 10, we deduce the following.
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Corollary 11. Let (X, ⪯) be a partially ordered set on which
there is a metric 𝑑 on X such that (X, 𝑑) is a complete metric
space. Let T,R : X → X be given mappings satisfying (for
pairs (𝑥, 𝑦) ∈ X ×X whereinR𝑥 andR𝑦 are comparable)

𝑑 (T𝑥,T𝑦) ≤ 𝛽𝑑 (R𝑥,R𝑦) , (25)

where 𝛽 is a nonnegative real number with 𝛽 < 1. Suppose that

(a) X is regular andT is weakly increasing withR,
(b) the pair (R,T) is commuting as well as weakly

reciprocally continuous.

Then T and R have a coincidence point. That is, there exists
𝑢 ∈ X such thatR𝑢 = T𝑢.

Theorem 12. Let (X, ⪯) be a partially ordered set equipped
with a metric 𝑑 on X such that (X, 𝑑) is a complete metric
space. Let T,R : X → X be two mappings satisfying (for
pairs (𝑥, 𝑦) ∈ X ×X wherein R𝑥 and R𝑦 are comparable)

𝑑 (T𝑥,T𝑦) ≤ 𝛼
𝑑 (R𝑥,T𝑥) ⋅ 𝑑 (R𝑦,T𝑦)

1 + 𝑑 (R𝑥,R𝑦)

+ 𝛽𝑑 (R𝑥,R𝑦) ,

(26)

where 𝛼, 𝛽 are non-negative real numbers with 𝛼 + 𝛽 < 1.
Suppose that

(a) T is weakly increasing withR,
(b) the pair {T,R} is compatible and reciprocally contin-

uous.

Then T and R have a coincidence point. That is, there exists
𝑢 ∈ X such thatR𝑢 = T𝑢.

Proof. Proceeding on the lines of the proof of Theorem 10,
one can furnish a sequence {𝑥

𝑛

} such that

lim
𝑛→+∞

T (𝑥
𝑛

) = lim
𝑛→+∞

R (𝑥
𝑛

) = 𝑥. (27)

Now, it remains to show that 𝑥 is a coincidence point of T
and R. To accomplish this, as the pair {T,R} is compatible
as well as reciprocally continuous,

lim
𝑛→∞

𝑑 (R (T (𝑥
𝑛

)) ,T (R (𝑥
𝑛

))) = 0, (28)

R (𝑥) = lim
𝑛→∞

R (T (𝑥
𝑛

)) , T (𝑥) = lim
𝑛→∞

T (R (𝑥
𝑛

)) ,

(29)

whenever

lim
𝑛→+∞

T (𝑥
𝑛

) = lim
𝑛→+∞

R (𝑥
𝑛

) = 𝑥. (30)

By using (29) in (28), we have 𝑑(T𝑥,R𝑥) = 0, so thatT𝑥 =

R𝑥.

By appealing Theorems 10 and 12, one can also have the
following natural theorem.

Theorem 13. Let (X, ⪯) be a partially ordered set on which
there is a metric 𝑑 onX such that (X, 𝑑) is a complete metric
space. Let T : X → X be nondecreasing mapping satisfying
(for pairs (𝑥, 𝑦) ∈ X×XwhereinR𝑥 andR𝑦 are comparable)

𝑑 (T𝑥,T𝑦) ≤ 𝛼
𝑑 (𝑥,T𝑥) ⋅ 𝑑 (𝑦,T𝑦)

1 + 𝑑 (𝑥, 𝑦)
+ 𝛽𝑑 (𝑥, 𝑦) , (31)

where 𝛼, 𝛽 are non-negative real numbers such that 𝛼 + 𝛽 < 1.
Suppose that

(I) T𝑥 ⪯ T(T𝑥) for all 𝑥 ∈ X,
(II) eitherT is continuous orX is regular.

Then,T has a fixed point.

Proof. The proof of this theorem can be outlined on the lines
of the proof of Theorem 10 realizing R to be the identity
mapping onX.

Now, we introduce the following property which will be
utilized in our next theorem.

Property (A). IfR(𝑥
𝑛

) is a nondecreasing sequence in𝑋 such
that lim

𝑛→+∞

R(𝑥
𝑛

) = 𝑥, thenR(𝑥
𝑛

) is comparable toR(𝑥),
for all 𝑛 ∈ 𝑁.

Theorem 14. Let (X, ⪯) be a partially ordered set on which
there exists a metric 𝑑 on X such that (X, 𝑑) is a complete
metric space. Let T,R : X → X be given mappings
satisfying (for pairs (𝑥, 𝑦) ∈ X ×X whereinR𝑥 andR𝑦 are
comparable)

𝑑 (T𝑥,T𝑦) ≤ 𝛼
𝑑 (R𝑥,T𝑥) ⋅ 𝑑 (R𝑦,T𝑦)

1 + 𝑑 (R𝑥,R𝑦)

+ 𝛽𝑑 (R𝑥,R𝑦) ,

(32)

where 𝛼, 𝛽 are non-negative real numbers with 𝛼 + 𝛽 < 1.
Suppose that

(a) X is regular andT is weakly increasing withR,
(b) the pair (R,T) is commuting as well as weakly

reciprocally continuous,
(c) R satisfies Property (A).

ThenR andT have a common fixed point.

Proof. Proceeding on the lines of the proof of Theorem 10,
one can inductively construct nondecreasing sequence
{R𝑥
𝑛

}, such that lim
𝑛→∞

T𝑥
𝑛

= lim
𝑛→∞

R𝑥
𝑛+1

= 𝑥, and
R(𝑥) = T(𝑥). SinceR(𝑥

𝑛

) andR(𝑥) are comparable (for all
𝑛 ∈ 𝑁), by using condition (32) we have

𝑑 (R𝑥,R𝑥
𝑛+1

) = 𝑑 (T𝑥,T𝑥
𝑛

)

≤ 𝛼𝑑 (R𝑥,T𝑥)
𝑑 (R𝑥

𝑛

,T𝑥
𝑛

)

1 + 𝑑 (R𝑥,R𝑥
𝑛

)

+ 𝛽𝑑 (R𝑥,R𝑥
𝑛

) .

(33)
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Taking the limit as 𝑛 → ∞, one gets

𝑥 = R𝑥 = T𝑥. (34)

This completes the proof.

Theorem 15. Let (X, ⪯) be a partially ordered set on which
there exists a metric 𝑑 on X such that (X, 𝑑) is a complete
metric space. Let T,R : X → X be given mappings
satisfying (for pairs (𝑥, 𝑦) ∈ X ×X whereinR𝑥 andR𝑦 are
comparable)

𝑑 (T𝑥,T𝑦) ≤ 𝛼
𝑑 (R𝑥,T𝑥) ⋅ 𝑑 (R𝑦,T𝑦)

1 + 𝑑 (R𝑥,R𝑦)

+ 𝛽𝑑 (R𝑥,R𝑦) ,

(35)

where 𝛼, 𝛽 are non-negative real numbers with 𝛼 + 𝛽 < 1.
Suppose that

(a) T is weakly increasing withR,
(b) the pair {T,R} is compatible and reciprocally contin-

uous,
(c) R satisfies Property (A).

ThenR andT have a common fixed point.

Proof. Proof is obvious in view of Theorems 12 and 14.

3. Uniqueness Results

In what follows, we investigate the conditions under which
Theorem 10 ensures the uniqueness of common fixed point.

Theorem 16. If, in addition to the hypotheses of Theorem 10,
every (𝑥, 𝑥∗) ∈ X ×X, there exists a 𝑢 ∈ X such that T𝑢 is
upper bound of T𝑥 𝑎𝑛𝑑 T𝑥∗, then T and R have a unique
common fixed point.

Proof. In view of Theorem 10, the set of coincidence points
of the maps T and R is non-empty. If 𝑥 and 𝑥∗ are two
coincidence points of the maps T and R (i.e., R𝑥 =

T𝑥, R𝑥
∗ = T𝑥∗), then we proceed to show that

R𝑥 = R𝑥
∗

. (36)

In view of the additional hypothesis of this theorem, there
exists 𝑢 ∈ X such thatT𝑢 is upper bound ofT𝑥 and T𝑥∗.
Put 𝑢
0

= 𝑢, and choose 𝑢
1

∈ X such thatR𝑢
1

= T𝑢
0

. Now,
proceeding on the lines of the proof of Theorem 10, one can
inductively define sequence {R𝑢

𝑛

} such that

R𝑢
𝑛

= T𝑢
𝑛−1

∀𝑛, (37)

wherein

R𝑢
1

⪯ R𝑢
2

⪯ R𝑥
3

⪯ ⋅ ⋅ ⋅ ⪯ R𝑢
𝑛

⪯ R𝑢
𝑛+1

⪯ ⋅ ⋅ ⋅ . (38)

Further, setting 𝑥
0

= 𝑥, and 𝑥∗
0

= 𝑥∗, one can also define
the sequences {R𝑥

𝑛

} and {R𝑥∗
𝑛

} such that

R𝑥
𝑛

= T𝑥
𝑛−1

, R𝑥
∗

𝑛

= T𝑥
∗

𝑛−1

. (39)

For every 𝑛 ≥ 1, we have

R𝑥
𝑛

= T𝑥, R𝑥
∗

𝑛

= T𝑥
∗

∀𝑛 ≥ 1. (40)

SinceT𝑢 = R𝑢
1

is upper bound ofT𝑥 = R𝑥
1

andT𝑥∗ =

R𝑥∗
1

, then

R𝑥
1

= R𝑥 ⪯ R𝑢
1

, R𝑥
∗

1

= R𝑥
∗

⪯ R𝑢
1

. (41)

It is easy to show that R𝑥 ⪯ R𝑢
𝑛

and R𝑥∗ ⪯ R𝑢
𝑛

for all
𝑛 ≥ 1, thenR𝑥 andR𝑥∗ are comparable withR𝑢

𝑛

. On using
(9), we have

𝑑 (R𝑥,R𝑢
𝑛+1

) = 𝑑 (T𝑥,T𝑢
𝑛

)

≤ 𝛼𝑑 (R𝑥,T𝑥)
𝑑 (R𝑢

𝑛

,T𝑢
𝑛

)

1 + 𝑑 (R𝑥,R𝑢
𝑛

)

+ 𝛽𝑑 (R𝑥,R𝑢
𝑛

)

(42)

or

𝑑 (R𝑥,R𝑢
𝑛+1

) ≤ 𝛽𝑑 (R𝑥,R𝑢
𝑛

) . (43)

Owing to (43), we can write

𝑑 (R𝑥,R𝑢
𝑛+1

) ≤ 𝛽𝑑 (R𝑥,R𝑢
𝑛

)

≤ 𝛽
2

𝑑 (R𝑥,R𝑢
𝑛−1

) ≤ ⋅ ⋅ ⋅

≤ 𝛽
𝑛+1

𝑑 (R𝑥,R𝑢
0

) .

(44)

Taking the limit as 𝑛 → ∞ in (44), we get

lim
𝑛→∞

𝑑 (R𝑥,R𝑢
𝑛

) = 0, (45)

as 0 < 𝛽 < 1.
Similarly, one can also show that

lim
𝑛→∞

𝑑 (R𝑥
∗

,R𝑢
𝑛

) = 0. (46)

On using (45) and (46), we can have

𝑑 (R𝑥,R𝑥
∗

) ≤ 𝑑 (R𝑥,R𝑢
𝑛+1

) + 𝑑 (R𝑢
𝑛+1

,R𝑥
∗

) (47)

so that lim
𝑛→∞

𝑑(R𝑥,R𝑥∗)0, that is,R𝑥 = R𝑥∗. Thus, we
have proved (36).

Since R𝑥 = T𝑥, owing to commutativity of T and R,
one can write

R (R𝑥) = R (T𝑥) = T (R𝑥) (48)

which on insertingR𝑥 = 𝑧 gives rise to

R𝑧 = T𝑧. (49)

Thus, 𝑧 is another coincidence point of the pair. Now, due to
R𝑥 = R𝑥∗ (for every coincidence point𝑥 and𝑥∗) and owing
to the fact that 𝑧 is coincidence point of the pair {R,T}, it
follows thatR𝑧 = R𝑥, that is,

R𝑧 = 𝑧. (50)
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On making use of (49) and (50), we can have

𝑧 = R𝑧 = T𝑧 (51)

which shows that 𝑧 is a common fixed point ofT andR.
To prove the uniqueness, let 𝑝 be another common fixed

point of the pair {R,T}. Since𝑝 and 𝑧 are coincidence points,
thenR𝑝 = R𝑧.

Owing to that𝑝 and 𝑧 are commonfixed point of the pairs
{R,T}, one can have

𝑝 = R𝑝 = R𝑧 = 𝑧. (52)

This completes the proof.

The following simple example demonstrates Theorem 16.

Example 17. ConsiderX = {(1, 0), (0, 1)} ⊂ 𝑅2 equipped with
natural order (𝑥, 𝑦) ≤ (𝑧, 𝑡) ⇔ 𝑥 ≤ 𝑧 and 𝑦 ≤ 𝑡. Thus (X, ≤),
is a partially ordered set wherein the two elements are not
comparable to each other. Also, (X, ≤) is a complete metric
space under Euclideanmetric. DefinedmappingsT and R :

X → X as

T (𝑥, 𝑦) = {
(1, 0) , (𝑥, 𝑦) = (1, 0)

(1, 0) , (𝑥, 𝑦) = (0, 1) ,
(53)

R (𝑥, 𝑦) = {
(1, 0) , (𝑥, 𝑦) = (1, 0)

(0, 1) , (𝑥, 𝑦) = (0, 1) .
(54)

As R(𝑥, 𝑦) and R(𝑧, 𝑡) in X are merely comparable to
themselves, inequality (9) is vacuously satisfied for every 𝛼, 𝛽.

Notice that T(X) = (1, 0) ⊂ R(X) = X. Also, for
(𝑥, 𝑦) = (1, 0),

R (𝑧, 𝑡) = T (𝑥, 𝑦) = T (1, 0) = (1, 0) 󳨐⇒ (𝑧, 𝑡) = (1, 0)

(55)

so that

T (1, 0) = T (𝑥, 𝑦) ≤ T (𝑧, 𝑡) = T (1, 0) . (56)

Otherwise, for (𝑧, 𝑡) = (0, 1),

R (𝑧, 𝑡) = T (𝑥, 𝑦) = T (0, 1) = (1, 0) 󳨐⇒ (𝑧, 𝑡) = (1, 0)

(57)

so that

(1, 0) = T (0, 1) = T (𝑥, 𝑦) ≤ T (𝑧, 𝑡) = T (1, 0) = (1, 0) .

(58)

ThusT is weakly increasing with respect toR.
If {(𝑥
𝑛

, 𝑦
𝑛

)} ⊂ X is a nondecreasing sequence converging
to (𝑥, 𝑦) ∈ X, then necessarily {(𝑥

𝑛

, 𝑦
𝑛

)} must be constant
sequence, that is, (𝑥

𝑛

, 𝑦
𝑛

) = (𝑥, 𝑦), for all 𝑛 ∈ 𝑁, so that limit
(𝑥, 𝑦) is an upper bond for all the terms in the sequencewhich
shows thatX is regular.

By using definitions of the mapsT andR, we have

(𝑥, 𝑦) = R (𝑥, 𝑦) = lim
𝑛→∞

T (𝑥
𝑛

, 𝑦
𝑛

) = lim
𝑛→∞

RT (𝑥
𝑛

, 𝑦
𝑛

)

(59)

wherein lim
𝑛→∞

R(𝑥
𝑛

, 𝑦
𝑛

) = lim
𝑛→∞

T(𝑥
𝑛

, 𝑦
𝑛

) = (𝑥, 𝑦) so
that

R (𝑥, 𝑦) = lim
𝑛→∞

RT (𝑥
𝑛

, 𝑦
𝑛

) , (60)

which shows that the pair {R,T} is weakly reciprocally
continuous. Also, the pair {R,T} is clearly commuting.

Now, we show that for every 𝑥 and 𝑥∗ in X, there exists
a 𝑢 ∈ X such that T𝑢 is upper bound of T𝑥 and T𝑥∗. If
𝑥 = 𝑥∗, then choice of 𝑢 is obvious. Otherwise, if 𝑥 = (1, 0)

and 𝑥∗ = (0, 1), we can choose 𝑢 = (0, 1) such that T𝑢 =

T(0, 1) = (1, 0) is upper bound of T𝑥 = (1, 0) and T𝑥∗ =

(1, 0).
Thus, we have shown that all the conditions ofTheorem 16

are satisfied and (𝑥, 𝑦) = (1, 0) is the unique common fixed
point ofT andR.

Theorem 18. If, in addition to the hypotheses of Theorem 12,
for pairs (𝑥, 𝑥∗) ∈ X×X, there exists a 𝑢 ∈ X such thatT𝑢 is
upper bound of T𝑥 𝑎𝑛𝑑 T𝑥∗, then T and R have a unique
common fixed point.

Proof. Proof is obvious in view of Theorems 12 and 16.

Corollary 19. In addition to the hypotheses of Theorem 16 (or
Theorem 18), suppose that for every (𝑥, 𝑥∗) ∈ X×X there exists
a 𝑢 ∈ X such thatT𝑢 is upper bound ofT𝑥 𝑎𝑛𝑑 T𝑥∗. Then
T has a unique fixed point; that is, there exists a unique 𝑥 ∈ X
such that 𝑥 = T𝑥.

Proof. In Theorem 16, ifR = 𝐼 (the identity mapping on 𝑋),
we have the result.

The following example demonstrates Theorem 18.

Example 20. Consider X = [0,∞) equipped with the usual
metric and natural order ≤. Define two mappings T,R :

X → X by

T𝑥 = {
𝑥
3 + 2, 0 ≤ 𝑥 < 1

3, 1 ≤ 𝑥,

R𝑥 = {
2𝑥3 + 1, 0 ≤ 𝑥 < 1

3, 1 ≤ 𝑥.

(61)

Then, evidently (X, ≤) is a partially ordered set and the maps
T andR satisfy inequality (9) with 𝛽 = 1/2 and 𝛼 = 1/3, for
𝑥, 𝑦 ∈ [0,∞).

To show that T is weakly increasing with respect to R,
notice thatT(X) = [2, 3] ⊂ [1, 3] = R(X). Firstly, we argue
the case 𝑥 = 0. Let 𝑦 ∈ R−1(𝑇0), that is,R(𝑦) = T(0) = 2

so that 2𝑦3 + 1 = 2 or 𝑦 = 1/21/3. Using definitions ofT and
R, we have

2 = T (0) ≤ T (𝑦) = T(
1

21/3
) =

1

2
+ 2. (62)

Secondly, if 𝑥 ≥ 1, then we haveR(𝑦) = T(𝑥) = 3. By using
definition ofR, we have 𝑦 ≥ 1, so that

3 = T (𝑥) ≤ T (𝑦) = 3. (63)
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Finally, we consider the case 0 < 𝑥 < 1. Let 𝑦 ∈

R−1(T(𝑥)), that is,R(𝑦) = T(𝑥). In view of definition of
T, we have T(𝑥) = 𝑥3 + 2, so that R(𝑦) = 𝑥3 + 2. By
using the definition of R, we have R(𝑦) = 2𝑦3 + 1, so that
2𝑦3 + 1 = 𝑥3 + 2 or 𝑦 = ((𝑥

3

+ 1)/2)
1/3. Thus, we have

𝑥
3

+ 2 = T (𝑥) ≤ T (𝑦) = T((
𝑥3 + 1

2
)

1/3

) =
𝑥3 + 1

2
+ 2.

(64)

ThereforeT is weakly increasing with respect toR.
Since T and R, are continuous, therefore this pair of

maps is reciprocally continuous.
Now, we show that maps T and R, are compatible.

If lim
𝑛→∞

𝑥
𝑛

= 𝑘, and 𝑘 ≥ 1, then lim
𝑛→∞

T𝑥
𝑛

=

lim
𝑛→∞

R𝑥
𝑛

= 3 and henceforth

lim
𝑛→∞

TR𝑥
𝑛

= lim
𝑛→∞

RT𝑥
𝑛

= 3 (65)

implying thereby lim
𝑛→∞

𝑑(RT𝑥
𝑛

,TR𝑥
𝑛

) = 0 so that
T and R, are compatible.

Thus, we have shown that all the conditions ofTheorem 18
are satisfied and 𝑥 = 3 is the unique fixed point ofT and R.

4. An Application

In this section, we present an application of Theorem 13 and
used the idea of Ćirić et al. [29] to define a partial order and
prove an existence theorem for the solution of an integral
equation.

Theorem 21. Consider the integral equation

𝑥 (𝑡) = ∫
𝑇

0

𝐾 (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠 + 𝑔 (𝑡) , 𝑡 ∈ [0, 𝑇] (66)

with 𝑇 > 0 wherein

(i) the functions 𝐾 : [0, 𝑇] × [0, 𝑇] × R𝑛 → R𝑛 and 𝑔 :

R𝑛 → R𝑛 are continuous,
(ii) for each 𝑡, 𝑠 ∈ [0, 𝑇],

𝐾 (𝑡, 𝑠, 𝑥 (𝑠)) ≪ 𝐾(𝑡, 𝑠, ∫
𝑇

0

𝐾 (𝑠, 𝜏, 𝑥 (𝜏)) 𝑑𝜏 + 𝑔 (𝑠)) , (67)

where≪ denotes a partial order relation on R𝑛,
(iii) there exists a continuous function 𝑝 : [0, 𝑇]×[0, 𝑇] →

R
+

such that

|𝐾 (𝑡, 𝑠, 𝑢) − 𝐾 (𝑡, 𝑠, V)| ≤ 𝑝 (𝑡, 𝑠) |𝑢 − V| (68)

for each 𝑡, 𝑠 ∈ [0, 𝑇] and is also comparable 𝑢, V ∈ R𝑛,

(iv) sup
𝑡∈[0,𝑇]

∫
𝑇

0

𝑝(𝑡, 𝑠)𝑑𝑠 ≤ 𝛽 < 1.

Then the integral equation (66) has a unique solution 𝑥∗ in
𝐶([0, 𝑇],R𝑛).

Proof. ConsiderX := 𝐶([0, 𝑇],R𝑛)with the usual supremum
norm, that is,

‖𝑥‖ = max
𝑡∈[0,𝑇]

|𝑥 (𝑡)| , (69)

for 𝑥, 𝑦 ∈ 𝐶([0, 𝑇]R𝑛). Define onX a partial order as follows
(𝑥, 𝑦 ∈ 𝐶([0, 𝑇],R𝑛)):

𝑥 ⪯ 𝑦 iff 𝑥 (𝑡) ≪ 𝑦 (𝑡) for any 𝑡 ∈ [0, 𝑇] . (70)

Then (X, ⪯) is a partially ordered set and (X, ‖ ⋅ ‖) is a
complete metric space.

Moreover for any increasing sequence {𝑥
𝑛

} inX converg-
ing to 𝑥∗ ∈ X, we have 𝑥

𝑛

(𝑡) ≪ 𝑥∗(𝑡) for any 𝑡 ∈ [0, 𝑇]. Also
for every 𝑥, 𝑦 ∈ X there exists 𝑐 ∈ X which depends on 𝑥

and 𝑦 and is also comparable to 𝑥 and 𝑦 (cf. [21]).
DefineT : 𝐶([0, 𝑇]) → 𝐶([0, 𝑇]) by

T𝑢 (𝑡) = ∫
𝑇

0

𝐾 (𝑡, 𝑠, 𝑢 (𝑠)) 𝑑𝑠 + 𝑔 (𝑡) ,

𝑡 ∈ [0, 𝑇] , 𝑢 ∈ 𝐶 ([0, 𝑇]) .

(71)

Let us prove that

T𝑢 ⪯ T (T𝑢) ∀𝑢 ∈ 𝐶 ([0, 𝑇]) . (72)

Let 𝑢 ∈ 𝐶([0, 𝑇]). From (ii), for all 𝑡 ∈ [0, 𝑇], we have

T𝑢 (𝑡)

= ∫
𝑇

0

𝐾 (𝑡, 𝑠, 𝑢 (𝑠)) 𝑑𝑠 + 𝑔 (𝑡)

≪ ∫
𝑇

0

𝐾(𝑡, 𝑠, ∫
𝑇

0

𝐾 (𝑠, 𝜏, 𝑢 (𝜏)) 𝑑𝜏 + 𝑔 (𝑠)) 𝑑𝑠 + 𝑔 (𝑡)

= ∫
𝑇

0

𝐾 (𝑡, 𝑠,T𝑢 (𝑠)) 𝑑𝑠 + 𝑔 (𝑡)

= T (T𝑢) (𝑡) .

(73)

Then (72) holds.
Now, for all 𝑥, 𝑦 ∈ 𝐶([0, 𝑇]) with 𝑦 ⪯ 𝑥, we have (by (iii))

󵄨󵄨󵄨󵄨T𝑥 (𝑡) −T𝑦 (𝑡)
󵄨󵄨󵄨󵄨

≤ ∫
𝑇

0

󵄨󵄨󵄨󵄨𝐾 (𝑡, 𝑠, 𝑥 (𝑠)) − 𝐾 (𝑡, 𝑠, 𝑦 (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

≤ ∫
𝑇

0

𝑝 (𝑡, 𝑠) (
󵄨󵄨󵄨󵄨𝑥 (𝑠) − 𝑦 (𝑠)

󵄨󵄨󵄨󵄨) 𝑑𝑠

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 ∫
𝑇

0

𝑝 (𝑡, 𝑠) 𝑑𝑠.

(74)

Hence
󵄩󵄩󵄩󵄩T𝑥 (𝑡) −T𝑦 (𝑡)

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 sup
𝑡∈[0,𝑇]

∫
𝑇

0

𝑝 (𝑡, 𝑠) 𝑑𝑠

≤ 𝛽
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 .

(75)
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On the other hand, it is demonstrated in [16] that
condition of regularity is satisfied forX = 𝐶([0, 𝑇];R𝑛).

Thus, all the hypotheses of Theorem 13 are satisfied for
𝛼 = 0, and then T has a fixed point 𝑢∗ ∈ 𝐶([0, 𝑇];R𝑛); that
is, 𝑢∗ is a solution of the integral equation (66).
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