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The authors give a definition of Morrey spaces for nonhomogeneous metric measure spaces and investigate the boundedness of
some classical operators including maximal operator, fractional integral operator, and Marcinkiewicz integral operators.

1. Introduction

During the past fifteen years, many results from real and
harmonic analysis on the classical Euclidean spaces have
been extended to the spaces with nondoubling measures
only satisfying the polynomial growth condition (see [1–
9]). The Radon measure 𝜇 on R𝑑 is said to only satisfy
the polynomial growth condition, if there exists a positive
constant 𝑐 such that for all 𝑥 ∈ R𝑑 and 𝑟 > 0, 𝜇(𝐵(𝑥, 𝑟)) ≤

𝑐𝑟
𝑛, where 𝑛 is some fixed number in (0, 𝑑] and 𝐵(𝑥, 𝑟) =

{𝑦 ∈ R𝑑
: |𝑥 − 𝑦| < 𝑟}. The analysis associated with

such nondoubling measures 𝜇 is proved to play a striking
role in solving the long-standing open Painlevé’s problem
by Tolsa [6]. Obviously, the nondoubling measure 𝜇 with
the polynomial growth condition may not satisfy the well-
known doubling condition, which is a key assumption in
harmonic analysis on spaces of homogeneous type. To unify
both spaces of homogeneous type and due to the fact that the
metric spaces endow with measures only satisfying the poly-
nomial growth condition, Hytönen [10] introduced a new
class of metric measure spaces satisfying both the so-called
geometrically doubling and the upper doubling conditions
(see Definition 3), which are called nonhomogeneous spaces.
Recently, many classical results have been proved still valid if
the underlying spaces are replaced by the nonhomogeneous
spaces of Hytönen (see [11–17]).

In this paper, we give a natural definition ofMorrey spaces
associated with the nonhomogeneous spaces of Hytönen
and investigate the boundedness of some classical operators
including maximal operator, fractional integral operator and

Marcinkiewicz integrals operator. To state the main results
of this paper, we first recall some necessary notion, and
notations. The following notions of geometrically doubling
and upper doubling metric measure spaces were originally
introduced by Hytönen [10].

Definition 1. Ametric space (X, 𝑑) is said to be geometrically
doubling if there exists some 𝑁0 ∈ N such that, for any ball
𝐵(𝑥, 𝑟) ⊂ X, there exists a finite ball covering {𝐵(𝑥𝑖, 𝑟/2)}𝑖 of
𝐵(𝑥, 𝑟) such that the cardinality of this covering is at most𝑁0.

Remark 2. Let (X, 𝑑) be a metric space. In [10], Hytönen
showed that the following statements aremutually equivalent.

(1) (X, 𝑑) is geometrically doubling.

(2) For any 𝜀 ∈ (0, 1) and any ball 𝐵(𝑥, 𝑟) ⊂ X, there
exists a finite ball covering {𝐵(𝑥𝑖, 𝜀𝑟)}𝑖 of 𝐵(𝑥, 𝑟) such
that the cardinality of this covering is at most 𝑁0𝜀

−𝑛,
where 𝑛 = log

2
𝑁0.

(3) For any 𝜀 ∈ (0, 1) and any ball 𝐵(𝑥, 𝑟) ⊂ X contains at
most𝑁0𝜀

−𝑛 centers {𝑥𝑖}𝑖 of disjoint balls {𝐵(𝑥𝑖, 𝜀𝑟)}𝑖.

(4) There exists 𝑀 ∈ N such that any ball 𝐵(𝑥, 𝑟) ⊂

X contains at most 𝑀 centers {𝑥𝑖}𝑖 of disjoint balls
{𝐵(𝑥𝑖, 𝑟/4)}

𝑀

𝑖=1
.

Definition 3. A metric measure space (X, 𝑑, 𝜇) is said to be
upper doubling if 𝜇 is a Borel measure on X and there exist
a dominating function 𝜆 : X × (0,∞) → (0,∞) and a
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positive constant 𝑐𝜆 such that, for each 𝑥 ∈ X, 𝑟 → 𝜆(𝑥, 𝑟) is
nondecreasing and

𝜇 (𝐵 (𝑥, 𝑟)) ≤ 𝜆 (𝑥, 𝑟) ≤ 𝑐𝜆𝜆 (𝑥,
𝑟

2
) ∀𝑥 ∈ X, 𝑟 > 0. (1)

It was proved in [14] that there exists a dominating
function �̃� related to 𝜆 satisfying the property that there exists
a positive constant 𝑐

𝜆
such that �̃� ≤ 𝜆, 𝑐

𝜆
≤ 𝑐𝜆, and, for all

𝑥, 𝑦 ∈ X, 𝑟 > 0 with 𝑑(𝑥, 𝑦) ≤ 𝑟, �̃�(𝑥, 𝑟) ≤ 𝑐
𝜆
�̃�(𝑦, 𝑟). Based

on this, in this paper, we always assume that the dominating
function 𝜆 also satisfies it.

The following coefficients 𝛿(𝐵, 𝑆) for all ball 𝐵 and 𝑆 were
introduced in [10] as analogues of Tolsa’s number𝐾𝑄,𝑅 in [5].

Definition 4. For all balls 𝐵 ⊂ 𝑆, let

𝛿 (𝐵, 𝑆) = ∫
(2𝑆−𝐵)

𝑑𝜇 (𝑥)

𝜆 (𝑐𝐵, 𝑑 (𝑥, 𝑐𝐵))
, (2)

where, as in the above mentioned, and in what follows, for a
ball 𝐵 = 𝐵(𝑐𝐵, 𝑟𝐵) and 𝜌 > 0, 𝜌𝐵 = 𝐵(𝑐𝐵, 𝜌𝑟𝐵).

Definition 5. Let 𝛼, 𝛽 ∈ (0,∞). A ball 𝐵 ⊂ X is called (𝛼, 𝛽)-
doubling if 𝜇(𝛼𝐵) ≤ 𝛽𝜇(𝐵).

It was proved in [10] that if a metric measure space
(X, 𝑑, 𝜇) is upper doubling and 𝛼, 𝛽 ∈ (0,∞) satisfying
𝛽 > 𝑐

log
2
𝛼

𝜆
= 𝛼

V, then, for any ball 𝐵, there exists some
𝑗 ∈ N ∪ {0} such that 𝛼𝑗

𝐵 is (𝛼, 𝛽)-doubling. Moreover, let
(X, 𝑑, 𝜇) be geometrically doubling, 𝛽 > 𝛼

𝑛 with 𝑛 = log
2
𝑁0

and 𝜇 a Borel measure onX which is finite on bounded sets.
Hytönen [10] also showed that, for 𝜇-almost every 𝑥 ∈ X,
there exist arbitrary small (𝛼, 𝛽)-doubling balls centered at
𝑥. Furthermore, the radii of these balls may be chosen to be
from 𝛼

−𝑗
𝐵 for 𝑗 ∈ N and any preassigned number 𝑟 > 0.

Throughout this paper, for any 𝛼 ∈ (1,∞) and ball 𝐵, the
smallest (𝛼, 𝛽𝛼)-doubling ball of the form 𝛼

𝑗
𝐵 with 𝑗 ∈ N is

denoted by 𝐵
𝛼, where

𝛽𝛼 = max{𝛼3𝑛
, 𝛼

3V
} + 30

𝑛
+ 30

V
. (3)

In what follows, by a doubling ball we mean a (6, 𝛽6)-
doubling ball and 𝐵

6 is simply denoted by 𝐵.
Let 𝑘 > 1 and 1 ≤ 𝑞 ≤ 𝑝 < ∞. We define the Morrey

space 𝑀
𝑝

𝑞
(𝑘, 𝜇) associated with the nonhomogeneous spaces

of Hytönen. This is an analogy of [18–20].

Definition 6. Let 𝑘 > 1 and 1 ≤ 𝑞 ≤ 𝑝 < ∞, as

𝑀
𝑝

𝑞
(𝑘, 𝜇) = {𝑓 ∈ 𝐿

𝑞

loc :
𝑓

𝑀
𝑝

𝑞 (𝑘,𝜇)
< ∞} , (4)

where

𝑓
𝑀
𝑝

𝑞 (𝑘,𝜇)
= sup

𝐵

𝜇(𝑘𝐵)
1/𝑝−1/𝑞

(∫
𝐵

𝑓

𝑞
𝑑𝜇)

1/𝑞

. (5)

Clearly we have 𝐿
𝑝
(𝜇) = 𝑀

𝑝

𝑝(𝑘, 𝜇) and 𝑀
𝑝

𝑞
1

⊂ 𝑀
𝑝

𝑞
2

,
1 ≤ 𝑞2 ≤ 𝑞1 ≤ 𝑝. If the underlying spaces are replaced by

the nonhomogeneous spaces of Tolsa or Euclidean spaces, the
definition of Morrey spaces can been seen in [18]. We will
prove in Section 2 that the Morrey space is independent of
choice of 𝑘.

In [21], Chiarenza and Frasca showed that the Hardy-
Littlewood maximal operator is bounded on the Morrey
space. By establishing a pointwise estimate of fractional
integrals in terms of the maximal function, they also showed
the boundedness of fractional integral operator on Morrey
space. If the underlying spaces are replaced by the nonhomo-
geneous spaces of Tolsa, Sawano and Tanaka also obtained
these results in [18]. When the underlying spaces are the
nonhomogeneous spaces of Hytönen, these operators have
been discussed in Lebesgue space and RBMO space (see
[22, 23]).

Main theorems of this paper are stated in each section.
The definition of Morrey space and its equivalent definition
are shown in Section 2. Section 3 is devoted to the study of
maximal operator and fractionalmaximal operator. Section 4
deals with the fractional integral operator for the nonhomo-
geneous spaces of Hytönen. In Section 5, we investigate the
behavior of the Marcinkiewicz integrals operator. In what
follows the letter 𝑐 will be used to denote constants that may
change from one occurrence to another.

2. Morrey Space and Its Equivalent Definition

We firstly prove that the definition of Morrey space is inde-
pendent of the choice of the parameter 𝑘 (see [18, Proposition
1.1]).

Theorem 7. Let 𝑘, 𝑠 > 1; then𝑀
𝑝

𝑞
(𝑘, 𝜇) ≈ 𝑀

𝑝

𝑞
(𝑠, 𝜇).

Proof. This result is a special case of the results in [24,
Theorem 1.2]. For the sake of convenience, we provide the
details. Let 𝑘 ≤ 𝑠. By the definition of Morrey space, we have

𝑓
𝑀
𝑝

𝑞 (𝑠,𝜇)
= sup

𝐵

𝜇(𝑠𝐵)
1/𝑝−1/𝑞

(∫
𝐵

𝑓
 𝑑𝜇)

1/𝑞

≤ sup
𝐵

𝜇(𝑘𝐵)
1/𝑝−1/𝑞

(∫
𝐵

𝑓
 𝑑𝜇)

1/𝑞

=
𝑓

𝑀
𝑝

𝑞 (𝑘,𝜇)
,

(6)

where 1/𝑝 − 1/𝑞 < 0. So the inclusion𝑀
𝑝

𝑞
(𝑘, 𝜇) ⊂ 𝑀

𝑝

𝑞
(𝑠, 𝜇) is

obvious.
Let 𝑓 ∈ 𝑀

𝑝

𝑞
(𝑠, 𝜇) and ball 𝐵 ⊂ X. Exploiting

Remark 2(2), where 𝜀 = (𝑘 − 1)/𝑠, we have that there exists
ball 𝐵1, 𝐵2, . . . , 𝐵𝑁 with the same radius 𝑟 = 𝜀𝑟𝐵 such that

𝐵 ⊂ ∪
𝑁

𝑖=1
𝐵𝑖, 𝑠𝐵𝑖 ⊂ 𝑘𝐵

(𝑖 = 1, 2, . . . , 𝑁) , 𝑁 ≤ 𝑁0(
𝑠

𝑘 − 1
)

𝑛

.

(7)
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Using this covering, we obtain

𝜇(𝑘𝐵)
1/𝑝−1/𝑞

(∫
𝐵

𝑓

𝑞
𝑑𝜇)

1/𝑞

≤

𝑁

∑

𝑖=1

𝜇(𝑘𝐵)
1/𝑝−1/𝑞

(∫
𝐵
𝑖

𝑓

𝑞
𝑑𝜇)

1/𝑞

≤

𝑁

∑

𝑖=1

𝜇(𝑠𝐵𝑖)
1/𝑝−1/𝑞

(∫
𝐵
𝑖

𝑓

𝑞
𝑑𝜇)

1/𝑞

≤ 𝑁0(
𝑠

𝑘 − 1
)

𝑛
𝑓

𝑀
𝑝

𝑞 (𝑠,𝜇)
.

(8)

That is, ‖𝑓‖
𝑀
𝑝

𝑞 (𝑘,𝜇)
≤ 𝑐‖𝑓‖

𝑀
𝑝

𝑞 (𝑠,𝜇)
.We complete the proof of the

theorem.

With this theorem in mind, we sometimes omit parame-
ter 𝑘 in𝑀

𝑝

𝑞
(𝑘, 𝜇).

Let𝑄 = {𝐵 ⊂ X : 𝐵 is (6, 𝛽6)-doubling ball}. Now we give
an equivalent definition of Morrey space.

Definition 8. Let 1 ≤ 𝑞 ≤ 𝑝 < ∞; as

𝑀
𝑝

𝑞
(𝑑) = {𝑓 ∈ 𝐿

𝑞

loc :
𝑓

𝑀
𝑝

𝑞 (𝑑)
< ∞} , (9)

where

𝑓
𝑀
𝑝

𝑞 (𝑑)
= sup

𝐵∈𝑄

𝜇(𝐵)
1/𝑝−1/𝑞

(∫
𝐵

𝑓

𝑞
𝑑𝜇)

1/𝑞

. (10)

This definition andTheorem 9 are analogy of [20].

Theorem 9. Let 1 ≤ 𝑞 < 𝑝 < ∞ and 𝛽6 > (6
𝑛
)
𝑞𝑝/(𝑝−𝑞); then

𝑀
𝑝

𝑞
(𝑑) ≈ 𝑀

𝑝

𝑞
(𝜇).

Proof. We only need to prove that ‖𝑓‖
𝑀
𝑝

𝑞 (𝜇)
≤ 𝑐‖𝑓‖

𝑀
𝑝

𝑞 (𝑑)
.

For every ball 𝐵0 = 𝐵(𝑐𝐵, 𝑟0) and 𝑥 ∈ 𝐵0, let 𝐵(𝑥, 6
−𝑖
𝑥𝑟0)

be the largest doubling ball centered at 𝑥, having radius
6
−𝑖
𝑥𝑟0, 𝑖𝑥 ∈ N. So 𝐵(𝑐𝐵, 𝑟0) ⊂ ∪𝑥∈𝐵

0

𝐵(𝑥, 6
−𝑖
𝑥𝑟0). By

Besicovitch covering lemma, there is a subcollection 𝐴 =

{𝐵(𝑥𝑖, 6
−𝑗
𝑥𝑖 𝑟0)}

∞

𝑖=1
that covers𝐵(𝑐𝐵, 𝑟0) so that no point belongs

to more than 𝑐X of {𝐵(𝑥𝑖, 6
−𝑗
𝑥𝑖 𝑟0)}

∞

𝑖=1
, where 𝑐X only depends

on space X. We write 𝐴 𝑖 = {𝐵 ∈ 𝐴 : 𝑟𝐵 = 6
−𝑖
𝑟0}. Using

Remark 2(2), we know, cardinal number of set 𝐴 𝑖 ≤ 𝑁06
𝑖𝑛.

For all 𝐵(𝑥, 6−𝑖
𝑟0) ∈ 𝐴 𝑖, we have

𝜇 (6𝐵0) ≥ 𝜇 (𝐵 (𝑥, 𝑟0)) ≥ 𝛽
𝑖

6
𝜇 (𝐵 (𝑥, 6

−𝑖
𝑟0)) . (11)

So

𝜇(6𝐵0)
1/𝑝−1/𝑞

(∫
𝐵
0

𝑓

𝑞
𝑑𝜇)

1/𝑞

≤

∞

∑

𝑖=1

∑

𝐵∈𝐴
𝑖

𝜇(6𝐵0)
1/𝑝−1/𝑞

(∫
𝐵

𝑓

𝑞
𝑑𝜇)

1/𝑞

≤

∞

∑

𝑖=1

∑

𝐵∈𝐴
𝑖

(𝛽
𝑖

6
)
1/𝑝−1/𝑞

(𝜇 (𝐵 (𝑥, 6
−𝑖
𝑟0)))

1/𝑝−1/𝑞

× (∫
𝐵(𝑥,6−𝑖𝑟

0
)

𝑓

𝑞
𝑑𝜇)

1/𝑞

≤ 𝑐
𝑓

𝑀
𝑝

𝑞 (𝑑)

∞

∑

𝑖=1

𝑁06
𝑖𝑛
(𝛽

𝑖

6
)
1/𝑝−1/𝑞

≤ 𝑐
𝑓

𝑀
𝑝

𝑞 (𝑑)
.

(12)

3. Maximal Inequalities

In this section we will investigate some maximal inequalities.
Now we give the definitions of some maximal operators.

Definition 10. Let 𝜌 > 0, 𝑟 > 1, 𝛼 ∈ (0, 1), as

𝑀𝜌𝑓 (𝑥) = sup
𝑥∈𝐵

1

𝜇 (𝜌𝐵)
∫
𝐵

𝑓
 𝑑𝜇,

𝑀
𝛼

𝜌
𝑓 (𝑥) = sup

𝑥∈𝐵

1

𝜇(𝜌𝐵)
1−𝛼

∫
𝐵

𝑓
 𝑑𝜇,

𝑀𝑟,𝜌𝑓 (𝑥) = sup
𝑥∈𝐵

[
1

𝜇 (𝜌𝐵)
∫
𝐵

𝑓

𝑟
𝑑𝜇]

1/𝑟

,

𝑀
𝛼

𝑟,𝜌
𝑓 (𝑥) = sup

𝑥∈𝐵

[
1

𝜇(𝜌𝐵)
1−𝛼𝑟

∫
𝐵

𝑓

𝑟
𝑑𝜇]

1/𝑟

.

(13)

In [11, 22, 25–27], the boundedness of these maximal
operators has been proven in Lebesgue spaces.

Lemma 11. Let 𝑝 > 1, 𝜌 > 0. Then the maximal operators𝑀𝜌

and𝑀𝑟,𝜌 are bounded on 𝐿
𝑝
(𝜇) space.

Lemma 12. Let 𝛼 ∈ (0, 1), 1 < 𝑟 < 𝑝 < 1/𝛼, 𝜌 ≥ 5, and
1/𝑞 = 1/𝑝 − 𝛼. Then the maximal operator 𝑀

𝛼

𝑟,𝜌
is bounded

from 𝐿
𝑝
(𝜇) space to 𝐿

𝑞
(𝜇) space.

Remark 13. When 𝑟 = 1, Lemma 11 also is right.
Now we extend these results to the Morrey spaces.

Theorem 14. If 𝜌 > 1 and 1 < 𝑟 < 𝑞 ≤ 𝑝 < ∞, then the
maximal operators𝑀𝜌 and𝑀𝑟,𝜌 are bounded on𝑀

𝑝

𝑞
(𝜇) space.

Proof. Theproof of the boundedness of𝑀𝜌 has been obtained
in [24, 28]. We only prove the boundedness of 𝑀𝑟,𝜌. For
simplicity, we take 𝜌 = 2. Let 𝐵0 = 𝐵(𝑥0, 𝑟0) and 𝑓 = 𝑓1 + 𝑓2,
where 𝑓1(𝑥) = 𝑓(𝑥)𝜒9𝐵

0

(𝑥). Then for every 𝑦 ∈ 𝐵0 we have

𝑀𝑟,𝜌𝑓 (𝑦) ≤ 𝑀𝑟,𝜌𝑓1 (𝑦) + 𝑀𝑟,𝜌𝑓2 (𝑦) . (14)

From the definitions of𝑀𝑟,𝜌 and 𝑓2 it follows that

𝑀𝑟,𝜌𝑓2 (𝑦) ≤ sup
𝑦∈𝐵,𝑟

𝐵
≥8𝑟
0

[
1

𝜇 (2𝐵)
∫
𝐵

𝑓

𝑟
𝑑𝜇]

1/𝑟

. (15)
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For 𝑦 ∈ 𝐵0 ∩ 𝐵, 𝑟𝐵 ≥ 8𝑟0, the simple calculus yields 𝐵0 ⊂

(3/2)𝐵. Thus we have

𝑀𝑟,𝜌𝑓2 (𝑦) ≤ sup
𝑦∈𝐵
0
⊂𝐵

[
1

𝜇 ((4/3)𝐵)
∫
𝐵

𝑓

𝑟
𝑑𝜇]

1/𝑟

. (16)

It follows that

𝜇(12𝐵0)
1/𝑝−1/𝑞

(∫
𝐵
0

𝑀𝑟, 𝜌𝑓

𝑞
𝑑𝜇)

1/𝑞

≤ 𝜇(12𝐵0)
1/𝑝−1/𝑞

(∫
𝐵
0


𝑀𝑟,𝜌𝑓1



𝑞

𝑑𝜇)

1/𝑞

+ 𝜇(12𝐵0)
1/𝑝−1/𝑞

(∫
𝐵
0


𝑀𝑟,𝜌𝑓2



𝑞

𝑑𝜇)

1/𝑞

≤ 𝜇(12𝐵0)
1/𝑝−1/𝑞

(∫
X


𝑀𝑟,𝜌𝑓1



𝑞

𝑑𝜇)

1/𝑞

+ 𝜇(𝐵0)
1/𝑝−1/𝑞

(∫
𝐵
0


𝑀𝑟,𝜌𝑓2



𝑞

𝑑𝜇)

1/𝑞

≤ 𝑐𝜇(12𝐵0)
1/𝑝−1/𝑞

(∫
X

𝑓1


𝑞
𝑑𝜇)

1/𝑞

+ 𝜇(𝐵0)
1/𝑝 sup

𝑦∈𝐵
0
⊂𝐵

(
1

𝜇 ((4/3) 𝐵)
∫
𝐵

𝑓

𝑟
𝑑𝜇)

1/𝑟

≤ 𝑐𝜇(12𝐵0)
1/𝑝−1/𝑞

(∫
9𝐵
0

𝑓

𝑞
𝑑𝜇)

1/𝑞

+ 𝜇(𝐵0)
1/𝑝 sup

𝑦∈𝐵
0
⊂𝐵

𝜇(
4

3
𝐵)

−1/𝑟

𝜇(𝐵)
1/𝑟−1/𝑞

(∫
𝐵

𝑓

𝑞
𝑑𝜇)

1/𝑞

≤ 𝑐𝜇(
4

3
9𝐵0)

1/𝑝−1/𝑞

(∫
9𝐵
0

𝑓

𝑞
𝑑𝜇)

1/𝑞

+ 𝜇(𝐵0)
1/𝑝 sup

𝑦∈𝐵
0
⊂𝐵

𝜇(
4

3
𝐵)

−1/𝑟

𝜇(𝐵)
1/𝑟−1/𝑞

(∫
𝐵

𝑓

𝑞
𝑑𝜇)

1/𝑞

≤ 𝑐
𝑓

𝑀
𝑝

𝑞 (4/3,𝜇)

+
𝑓

𝑀
𝑝

𝑞 (4/3,𝜇)
sup

𝑦∈𝐵
0
⊂𝐵

𝜇(𝐵)
1/𝑝+1/𝑟−1/𝑞

𝜇(
4

3
𝐵)

1/𝑞−1/𝑝−1/𝑟

≤ 𝑐
𝑓

𝑀
𝑝

𝑞 (4/3,𝜇)
.

(17)

We obtain the conclusion of the theorem.

Lemma 15. If 𝛼 ∈ (0, 1), 1 ≤ 𝑟 < V ≤ 𝑢 < ∞, 𝑟 < 1/𝛼, and
1 < 𝑢 < 1/𝛼, then


𝑀

𝛼

𝑟,𝜌
𝑓 (𝑥)


≤ 𝑐

𝑓

𝑢𝛼

𝑀𝑢V (𝜇)


𝑀𝑟,𝜌𝑓 (𝑥)



1−𝑢𝛼

. (18)

Proof. This Proof is an analogy of [18, 29]. For every 𝑥 ∈ X,
we write 𝑙1/𝑢

𝑥
= ‖𝑓‖

𝑀𝑢V (𝜇)
/𝑀𝑟,𝜌𝑓(𝑥). So


𝑀

𝛼

𝑟,𝜌
𝑓 (𝑥)


≤ sup

𝑥∈𝐵,𝜇(𝜌𝐵)≤𝑙
𝑥

[
1

𝜇(𝜌𝐵)
1−𝛼𝑟

∫
𝐵

𝑓

𝑟
𝑑𝜇]

1/𝑟

+ sup
𝑥∈𝐵,𝜇(𝜌𝐵)>𝑖

𝑥

[
1

𝜇(𝜌𝐵)
1−𝛼𝑟

∫
𝐵

𝑓

𝑟
𝑑𝜇]

1/𝑟

= 𝐼 + 𝐼𝐼.

(19)

For 𝐼, we have

𝐼 ≤ sup
𝑥∈𝐵,𝜇(𝜌𝐵)≤𝑙

𝑥

𝜇(𝜌𝐵)
𝛼
𝜇(𝜌𝐵)

−1/𝑟
[∫

𝐵

𝑓

𝑟
𝑑𝜇]

1/𝑟

≤ 𝑙
𝛼

𝑥
𝑀𝑟,𝜌𝑓 (𝑥)

=
𝑓


𝑢𝛼

𝑀𝑢V (𝜇)


𝑀𝑟,𝜌𝑓 (𝑥)



1−𝑢𝛼

.

(20)

If 𝜇(𝜌𝐵) > 𝑙𝑥, there exists a 𝑖 ∈ N such that 2𝑖−1
𝑙𝑥 ≤ 𝜇(𝜌𝐵) ≤

2
𝑖
𝑙𝑥. It follows that

𝐼𝐼 ≤ sup
𝑥∈𝐵,𝜇(𝜌𝐵)≥𝑙

𝑥

(2
𝑖−1

𝑙𝑥)
𝛼−1/𝑟

(∫
𝐵

𝑓

𝑟
𝑑𝜇)

1/𝑟

≤ sup
𝑥∈𝐵,𝜇(𝜌𝐵)≥𝑙

𝑥

(2
𝑖−1

𝑙𝑥)
𝛼−1/𝑟

𝜇(𝐵)
1/𝑟−1/V

(∫
𝐵

𝑓

V
𝑑𝜇)

1/V

≤ 𝑐
𝑓

𝑀𝑢V (𝜇)
sup

𝑥∈𝐵,𝜇(𝜌𝐵)≥𝑙
𝑥

(2
𝑖−1

𝑙𝑥)
𝛼−1/𝑟

𝜇(𝜌𝐵)
1/𝑟−1/𝑢

≤ 𝑐
𝑓

𝑀𝑢V (𝜇)
sup
𝑖∈N

(2
𝑖−1

𝑙𝑥)
𝛼−1/𝑟

(2
𝑖
𝑙𝑥)

1/𝑟−1/𝑢

≤ 𝑐
𝑓

𝑀𝑢V (𝜇)
sup
𝑖∈N

(2
𝑖
)
𝛼−1/𝑢

𝑙
𝛼−1/𝑢

𝑥

≤ 𝑐
𝑓


𝑢𝛼

𝑀𝑢V (𝜇)


𝑀𝑟,𝜌𝑓 (𝑥)



1−𝑢𝛼

.

(21)

We complete the proof of Lemma 15.

Using Lemma 15 and Theorem 14, we have the following
theorem.

Theorem 16. If 1 < 𝑠 ≤ 𝑡 < ∞, 1 < 𝑟 < 𝑢 ≤ V < 1/𝛼 < ∞,
𝛼 = 1/𝑢 − 1/𝑠, and 𝑠/𝑡 = 𝑢/V, then operator 𝑀𝛼

𝑟,𝜌
is bounded

from𝑀
𝑢

V (𝜇) to𝑀
𝑠

𝑡
(𝜇).

4. Fractional Integral Operator

In this section, we prove the boundedness of fractional inte-
gral operator on Morrey space. The definition of fractional
integral operator can be seen in [22]. The investigation of
fractional integrals on quasimetric measure spaces with non-
doubling measure (nonhomogeneous spaces) in Lebesgue
spaces was researched in [30, chapter 6].
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Definition 17. Let 0 < 𝛼 < 1, for all 𝑓 ∈ 𝐿
∞
(𝜇) with bounded

support, as

𝐼𝛼𝑓 (𝑥) = ∫
X

𝑓 (𝑦)

𝜆(𝑦, 𝑑 (𝑥, 𝑦))
1−𝛼

𝑑𝜇 (𝑦) . (22)

In what follows, we assume that the dominating function
𝜆 satisfies

𝜆 (𝑥, 𝑎𝑟) = 𝑎
𝑚
𝜆 (𝑥, 𝑟) ∀𝑥 ∈ X, 𝑎, 𝑟 ∈ (0,∞) , (23)

where 𝜆 is the dominating function of the measure of 𝜇

in Definition 3. The condition about 𝜆 was first introduced
by Bui and Duong in [11] to study the boundedness of
commutators of Calderón-Zygmund operators. In [22], the
authors obtain the boundedness of 𝐼𝛼. The boundedness of
fractional integral operators of other type can be seen in
[31, 32].

Lemma 18. Let 𝛼 ∈ (0, 1), 1 < 𝑝 < 1/𝛼, and 1/𝑞 = 1/𝑝 − 𝛼.
Then 𝐼𝛼 is bounded from 𝐿

𝑝
(𝜇) space to 𝐿

𝑞
(𝜇) space.

Lemma 19. Let 𝛼 ∈ (0, 1), 1 < 𝑞 ≤ 𝑝 < 1/𝛼, and 1/𝑡 =

1/𝑝 − 𝛼. Then

𝐼𝛼𝑓 (𝑥)
 ≤ 𝑐

𝑓

1−𝑝/𝑡

𝑀
𝑝

𝑞 (𝜇)
(𝑀6𝑓 (𝑥))

𝑝/𝑡
. (24)

Proof. Let 𝑠 ∈ (0,∞). We write

𝐼𝛼𝑓 (𝑥)
 ≤ ∫

𝐵(𝑥,𝑠)

𝑓 (𝑦)


𝜆(𝑦, 𝑑 (𝑥, 𝑦))
1−𝛼

𝑑𝜇 (𝑦)

+ ∫
X−𝐵(𝑥,𝑠)

𝑓 (𝑦)


𝜆(𝑦, 𝑑 (𝑥, 𝑦))
1−𝛼

𝑑𝜇 (𝑦)

= 𝐼 + 𝐼𝐼.

(25)

For 𝐼, we have

𝐼 ≤

∞

∑

𝑗=0

∫
𝐵(𝑥,6−𝑗𝑠)−𝐵(𝑥,6−𝑗−1𝑠)

𝑓 (𝑦)


𝜆(𝑦, 𝑑 (𝑥, 𝑦))
1−𝛼

𝑑𝜇 (𝑦)

≤

∞

∑

𝑗=0

1

𝜆(𝑥, 6−𝑗−1𝑠)
1−𝛼

∫
𝐵(𝑥,6−𝑗𝑠)

𝑓 (𝑦)
 𝑑𝜇 (𝑦)

≤

∞

∑

𝑗=0

𝜇 (𝐵 (𝑥, 6
−𝑗+1

𝑠))

𝜆(𝑥, 6−𝑗−1𝑠)
1−𝛼

1

𝜇 (𝐵 (𝑥, 6−𝑗+1𝑠))

× ∫
𝐵(𝑥,6−𝑗𝑠)

𝑓 (𝑦)
 𝑑𝜇 (𝑦)

≤ 𝑀6𝑓 (𝑥)

∞

∑

𝑗=0

𝜆 (𝑥, 6
−𝑗+1

𝑠)

𝜆(𝑥, 6−𝑗−1𝑠)
1−𝛼

≤ 𝑀6𝑓 (𝑥)

∞

∑

𝑗=0

(6
−𝑗+1

𝑠)
𝑚

𝜆 (𝑥, 1)

(6−𝑗−1𝑠)
𝑚(1−𝛼)

𝜆(𝑥, 1)
1−𝛼

≤ 𝑐𝑀6𝑓 (𝑥)

∞

∑

𝑗=0

(6
𝑚𝛼

)
−𝑗
𝜆(𝑥, 1)

𝛼
𝑠
𝑚𝛼

≤ 𝑐𝑀6𝑓 (𝑥) 𝜆(𝑥, 1)
𝛼
𝑠
𝑚𝛼

.

(26)

Similarly, we have

𝐼𝐼 ≤

∞

∑

𝑗=1

∫
𝐵(𝑥,6𝑗𝑠)−𝐵(𝑥,6𝑗−1𝑠)

𝑓 (𝑦)


𝜆(𝑦, 𝑑 (𝑥, 𝑦))
1−𝛼

𝑑𝜇 (𝑦)

≤

∞

∑

𝑗=1

1

𝜆(𝑥, 6𝑗−1𝑠)
1−𝛼

∫
𝐵(𝑥,6𝑗𝑠)

𝑓 (𝑦)
 𝑑𝜇 (𝑦)

≤

∞

∑

𝑗=1

𝜇(𝐵 (𝑥, 6
𝑗
𝑠))

1−1/𝑞

𝜆(𝑥, 6𝑗−1𝑠)
1−𝛼

𝜇(𝐵 (𝑥, 6
𝑗+1

𝑠))
1/𝑝−1/𝑞

𝜇(𝐵 (𝑥, 6𝑗+1𝑠))
1/𝑝−1/𝑞

× (∫
𝐵(𝑥,6𝑗𝑠)

𝑓 (𝑦)

𝑞
𝑑𝜇 (𝑦))

1/𝑞

≤
𝑓

𝑀
𝑝

𝑞 (𝜇)

∞

∑

𝑗=1

𝜆(𝑥, 6
𝑗+1

𝑠)
1−1/𝑝

𝜆(𝑥, 6𝑗−1𝑠)
1−𝛼

≤ 𝑐
𝑓

𝑀
𝑝

𝑞 (𝜇)
𝜆(𝑥, 1)

𝛼−1/𝑝
(𝑠

𝑚
)
𝛼−1/𝑝

.

(27)

For every 𝑥 ∈ X, we take 𝑠 that satisfies 𝜆(𝑥, 1)𝑠
𝑚

=

(‖𝑓‖
𝑀
𝑝

𝑞 (𝜇)
/𝑀6𝑓(𝑥))

𝑝. Then

𝐼 ≤ 𝑐
𝑓


𝑝𝛼

𝑀
𝑝

𝑞 (𝜇)
𝑀6𝑓(𝑥)

1−𝑝𝛼

≤ 𝑐
𝑓


1−𝑝/𝑡

𝑀
𝑝

𝑞 (𝜇)
𝑀6𝑓(𝑥)

𝑝/𝑡
,

𝐼𝐼 ≤ 𝑐
𝑓


1−𝑝/𝑡

𝑀
𝑝

𝑞 (𝜇)
𝑀6𝑓(𝑥)

𝑝/𝑡
.

(28)

So we have

𝐼𝛼𝑓 (𝑥)
 ≤ 𝑐

𝑓

1−𝑝/𝑡

𝑀
𝑝

𝑞 (𝜇)
(𝑀6𝑓 (𝑥))

𝑝/𝑡
. (29)

Using this lemma and the boundedness of maximal
operator, we obtain the following result.

The following proof of Theorem 20 is similar to that of
[33].

Theorem 20. Let 1 < 𝑞 ≤ 𝑝 < ∞, 1 < 𝑡 ≤ 𝑠 < ∞, 𝛼 ∈ (0, 1),
and 1/𝑠 = 1/𝑝−𝛼, 𝑠/𝑡 = 𝑝/𝑞. Then 𝐼𝛼 is bounded from𝑀

𝑝

𝑞
(𝜇)

space to𝑀
𝑠

𝑡
(𝜇) space.
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Proof. For all ball 𝐵(𝑥, 𝑟), we have

𝜇(2𝐵)
𝑡/𝑠−1

∫
𝐵

𝐼𝛼𝑓

𝑡
𝑑𝜇

≤ 𝑐𝜇(2𝐵)
𝑡/𝑠−1

∫
𝐵

𝑓

𝑡−𝑡𝑝/𝑠

𝑀
𝑝

𝑞 (𝜇)
(𝑀6𝑓 (𝑥))

𝑡𝑝/𝑠
𝑑𝜇

≤ 𝑐𝜇(2𝐵)
𝑡/𝑠−1𝑓


𝑡−𝑞

𝑀
𝑝

𝑞 (𝜇)
∫
𝐵

(𝑀6𝑓 (𝑥))
𝑞
𝑑𝜇

≤ 𝑐
𝑓


𝑡

𝑀
𝑝

𝑞 (𝜇)
.

(30)

Thus we have proved the theorem.

5. Marcinkiewicz Integral Operator

Firstly, we introduce the definition of Marcinkiewicz integral
operator (see [23]).

Definition 21. Let 𝐾 be a locally integrable function on (X ×

X − {(𝑥, 𝑥) : 𝑥 ∈ X}). Assume that there exists a positive
constant 𝑐 such that, for all 𝑥, 𝑦, 𝑧 ∈ X with 𝑥 ̸= 𝑦,

𝐾 (𝑥, 𝑦)
 ≤ 𝑐

𝑑 (𝑥, 𝑦)

𝜆 (𝑥, 𝑑 (𝑥, 𝑦))
,

∫
𝑑(𝑥,𝑦)≥2𝑑(𝑦,𝑧)

[
𝐾 (𝑥, 𝑦) − 𝐾 (𝑥, 𝑧)

 +
𝐾 (𝑦, 𝑥) − 𝐾 (𝑧, 𝑥)

]

×
1

𝑑 (𝑥, 𝑦)
𝑑𝜇 (𝑥) ≤ 𝑐.

(31)

The Marcinkiewicz integral M(𝑓) associated with the above
kernel𝐾 is defined by setting

M (𝑓) (𝑥)

= [∫

∞

0



∫
𝑑(𝑥,𝑦)<𝑡

𝐾(𝑥, 𝑦) 𝑓 (𝑦) 𝑑𝜇 (𝑦)



2
𝑑𝑡

𝑡3
]

1/2

∀𝑥 ∈ X.

(32)

The boundedness on 𝐿
𝑝
(𝜇) has been proved in [23].

Lemma 22. Suppose that M is bounded on 𝐿
𝑝
0(𝜇) space for

some 𝑝0 ∈ (1,∞). ThenM is bounded on 𝐿
𝑝
(𝜇) spaces for all

𝑝 ∈ (1,∞).

Now we extend this result to the Morrey spaces𝑀𝑝

𝑞
(𝜇).

Theorem 23. Let 1 < 𝑝 ≤ 𝑞 < ∞. IfM is bounded on 𝐿
𝑝
0(𝜇)

space for some 𝑝0 ∈ (1,∞), then M is bounded on 𝑀
𝑝

𝑞
(𝜇)

space.

Proof. For every ball 𝐵 = 𝐵(𝑥0, 𝑟), 𝑓 ∈ 𝑀
𝑝

𝑞
(𝜇), let 𝑓(𝑥) =

𝑓1(𝑥) + 𝑓2(𝑥), where 𝑓1(𝑥) = 𝑓(𝑥)𝜒2𝐵(𝑥).

We can estimate

𝜇(4𝐵)
1/𝑝−1/𝑞

(∫
𝐵

M (𝑓)

𝑞
𝑑𝜇)

1/𝑞

≤ 𝜇(4𝐵)
1/𝑝−1/𝑞

(∫
𝐵

M (𝑓1)

𝑞
𝑑𝜇)

1/𝑞

+ 𝜇(4𝐵)
1/𝑝−1/𝑞

(∫
𝐵

M (𝑓2)

𝑞
𝑑𝜇)

1/𝑞

≤ 𝐼 + 𝐼𝐼.

(33)

For the first term 𝐼, we have

𝐼 ≤ 𝜇(4𝐵)
1/𝑝−1/𝑞

(∫
X

𝑓1


𝑞
𝑑𝜇)

1/𝑞

≤ 𝜇(4𝐵)
1/𝑝−1/𝑞

(∫
2𝐵

𝑓

𝑞
𝑑𝜇)

1/𝑞

≤
𝑓

𝑀
𝑝

𝑞 (𝜇)
.

(34)

For 𝐼𝐼, we firstly estimateM(𝑓2)(𝑥), as

M (𝑓2) (𝑥)

= [∫

∞

0



∫
𝑑(𝑥,𝑦)<𝑡

𝐾(𝑥, 𝑦) 𝑓2 (𝑦) 𝑑𝜇 (𝑦)



2
𝑑𝑡

𝑡3
]

1/2

≤ [∫

𝑑(𝑥
0
,𝑦)+2𝑟

0



∫
𝑑(𝑥,𝑦)<𝑡

𝐾(𝑥, 𝑦) 𝑓2 (𝑦) 𝑑𝜇 (𝑦)



2
𝑑𝑡

𝑡3
]

1/2

+ [∫

∞

𝑑(𝑥0 ,𝑦)+2𝑟



∫
𝑑(𝑥,𝑦)<𝑡

𝐾(𝑥, 𝑦) 𝑓2 (𝑦) 𝑑𝜇 (𝑦)



2
𝑑𝑡

𝑡3
]

1/2

≤ 𝐼𝐼1 + 𝐼𝐼2.

(35)

For any ball 𝐵(𝑥0, 𝑟), 𝑦 ∈ (𝑘𝐵)
𝑐, 𝑘 ≥ 2, and 𝑥 ∈ 𝐵, we have

𝜆 (𝑥0, 𝑑 (𝑦, 𝑥0)) ∼ 𝜆 (𝑦, 𝑑 (𝑦, 𝑥0)) ∼ 𝜆 (𝑥, 𝑑 (𝑥, 𝑦)) ,

𝐼𝐼
1
≤ ∫

X

𝐾(𝑥, 𝑦)
𝑓2 (𝑦)

 [∫

𝑑(𝑥0,𝑦)+2𝑟

𝑑(𝑥,𝑦)

1

𝑡3
𝑑𝑡]

1/2

𝑑𝜇 (𝑦)

≤ ∫
X

𝐾(𝑥, 𝑦)
𝑓2 (𝑦)

 [
1

(𝑑 (𝑥
0
, 𝑦) + 2𝑟)

2
−

1

𝑑(𝑥, 𝑦)
2
]

1/2

𝑑𝜇 (𝑦)

≤ 𝑐∫
X

𝐾(𝑥, 𝑦)
𝑓2 (𝑦)

 [
𝑟

(𝑑 (𝑥
0
, 𝑦))
3
]

1/2

𝑑𝜇 (𝑦)

≤ 𝑐∫
X

𝑑 (𝑥, 𝑦)

𝜆 (𝑥, 𝑑 (𝑥, 𝑦))

𝑓2 (𝑦)
 [

𝑟

(𝑑 (𝑥
0
, 𝑦))
3
]

1/2

𝑑𝜇 (𝑦)

≤ 𝑐∫
X−2𝐵

𝑟
1/2

𝑑(𝑥
0
, 𝑦)
1/2

𝜆 (𝑥
0
, 𝑑 (𝑥
0
, 𝑦))

𝑓2 (𝑦)
 𝑑𝜇 (𝑦)
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≤ 𝑐𝑟
1/2

∞

∑

𝑖=2

∫
𝐵(𝑥0,2

𝑖
𝑟)−𝐵(𝑥0,2

𝑖−1
𝑟)

𝑓 (𝑦)


𝑑(𝑥
0
, 𝑦)
1/2

𝜆 (𝑥
0
, 𝑑 (𝑥
0
, 𝑦))

𝑑𝜇 (𝑦)

≤ 𝑐𝑟
1/2

∞

∑

𝑖=2

1

𝜆 (𝑥
0
, 2𝑖−1𝑟) (2𝑖−1𝑟)

1/2
∫
𝐵(𝑥0,2

𝑖
𝑟)

𝑓 (𝑦)
 𝑑𝜇 (𝑦)

≤ 𝑐
𝑓

𝑀
𝑝

𝑞 (𝜇)

∞

∑

𝑖=2

𝜇(𝐵 (𝑥
0
, 2
𝑖+1

𝑟))
1−1/𝑝

𝜆 (𝑥
0
, 2𝑖−1𝑟)

≤ 𝑐
𝑓

𝑀
𝑝

𝑞 (𝜇)

∞

∑

𝑖=2

(2
𝑖+1

𝑟)
𝑚−𝑚/𝑝

𝜆(𝑥
0
, 1)
1−1/𝑝

(2𝑖−1𝑟)
𝑚

𝜆 (𝑥
0
, 1)

≤ 𝑐
𝑓

𝑀
𝑝

𝑞 (𝜇)
𝑟
𝑚(−1/𝑝)

𝜆(𝑥, 1)
−1/𝑝

≤ 𝑐
𝑓

𝑀
𝑝

𝑞 (𝜇)
𝜆(𝑥
0
, 𝑟)
−1/𝑝

.

(36)

Similarly, we obtain

𝐼𝐼2 ≤ 𝑐∫
X−2𝐵

1

𝜆 (𝑥0, 𝑑 (𝑥0, 𝑦))

𝑓 (𝑦)
 𝑑𝜇 (𝑦)

≤ 𝑐

∞

∑

𝑖=2

∫
𝐵(𝑥
0
,2𝑖𝑟)−𝐵(𝑥

0
,2𝑖−1𝑟)

𝑓 (𝑦)


𝜆 (𝑥0, 𝑑 (𝑥0, 𝑦))
𝑑𝜇 (𝑦)

≤ 𝑐

∞

∑

𝑖=2

1

𝜆 (𝑥0, 2
𝑖−1𝑟)

∫
𝐵(𝑥
0
,2𝑖𝑟)

𝑓 (𝑦)
 𝑑𝜇 (𝑦)

≤ 𝑐
𝑓

𝑀
𝑝

𝑞 (𝜇)

∞

∑

𝑖=2

𝜇(𝐵 (𝑥0, 2
𝑖+1

𝑟))
1−1/𝑝

𝜆 (𝑥0, 2
𝑖−1𝑟)

≤ 𝑐
𝑓

𝑀
𝑝

𝑞 (𝜇)
𝜆(𝑥0, 𝑟)

−1/𝑝
.

(37)

That is to say, M(𝑓2)(𝑥) ≤ 𝑐𝜆(𝑥0, 𝑟)
−1/𝑝

‖𝑓‖
𝑀
𝑝

𝑞 (𝜇)
for all

ball 𝐵(𝑥0, 𝑟) and 𝑥 ∈ 𝐵(𝑥0, 𝑟).
Using it we have

𝐼𝐼 ≤ 𝜇(4𝐵)
1/𝑝−1/𝑞

(∫
𝐵

M (𝑓2)

𝑞
𝑑𝜇)

1/𝑞

≤ 𝑐𝜇(4𝐵)
1/𝑝−1/𝑞

(∫
𝐵


𝜆(𝑥0, 𝑟)

−1/𝑝𝑓
𝑀
𝑝

𝑞 (𝜇)



𝑞

𝑑𝜇)

1/𝑞

≤ 𝑐
𝑓

𝑀
𝑝

𝑞 (𝜇)
𝜇(4𝐵)

1/𝑝−1/𝑞
𝜆(𝑥0, 𝑟)

−1/𝑝
𝜇(𝐵)

1/𝑞

≤ 𝑐
𝑓

𝑀
𝑝

𝑞 (𝜇)
𝜇(𝐵)

1/𝑝
𝜆(𝑥0, 𝑟)

−1/𝑝
≤ 𝑐

𝑓
𝑀
𝑝

𝑞 (𝜇)
.

(38)

The proof of Theorem 23 is completed.
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