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We investigate global dynamics for a system of delay differential equations which describes a virus-immune interaction in vivo.
The model has two time delays describing time needed for infection of cell and CTLs generation. Our model admits three possible
equilibria: infection-free equilibrium, CTL-absent infection equilibrium, and CTL-present infection equilibrium.The effect of time
delay on stability of the equilibria of the CTL immune response model has been studied.

1. Introduction

As well known, in recent years the population dynamics
of infectious diseases have been extensively studied [1–20].
Particularly, the HIV (human immunodeficiency virus) has
been extensively studied in [1–5, 7–11, 14, 15, 20] and became
a global problem. The HIV infection is characterized by
three different phases, namely, the primary infection, clini-
cally asymptomatic stage (chronic infection), and acquired
immunodeficiency syndrome (AIDS) or drug therapy. Dur-
ing primary infection, viral load in the peripheral blood
experiences a substantial increase to the peak level, followed
by decline to the steady state, which is referred to as the
viral set point. Extremely high viral load during primary
infection leads to the activation of CD4+ T cells, which
are recognized as cytotoxic T cells (CTL) capable of sup-
pressing viral replication. Viral decline from the peak is
due to the control by these immune cells and/or limited
target cell availability. The viral set point has been shown
to be predictive for the pace of disease development [8].
Clinical research combined with mathematical modeling has
enhanced progress in the understanding of HIV-1 infection
[4]. This is because mathematical models can offer a way to
study the dynamics of viral load in vivo and can be very useful
in understanding the interaction between virus and host cell.

On the other hand, in the real situation, there may be a
lag between the time target cells are contacted by the virus
particles and the time the contacted cells become actively
affected meaning that the contacting virions enter cells. This

can be explained by the initial (or eclipse) phase of the virus
life cycle, which include all stages from viral attachment
until the time that the host cell contains the infectious viral
particles in its cytoplasm [3]. Research [8] has shown that
models of HIV-1 infection that include intracellular delays
are more accurate representations of the biology and change
the estimated values of kinetic parameters when compared
to models without delays. Therefore, we should introduce
time delays into model foundation, which will have more
resemblance to the real ecosystem. In the last decade, the
HIV-infection models with time delay have been studied
by many authors, and time delays of one type or another
have been incorporated into biological models by many
authors (e.g., [1–5, 8–11, 14, 15, 20] and the references cited
therein). Here we include an intracellular delay as well as
immune delay. There are some models which include an
intracellular delay [1–5]; some authors believe that time
delays can not be ignored in models for immune response
[6, 7].

The salient features of the mechanism of the immune
response during viral infection are as follows. First, the free
virus enters its target, a susceptible cell. Inside this cell it
replicates itself. And this susceptible cell becomes an infected
cell.Then the infected cell dies and releases new viruses; these
viruses begin to infect other susceptible cells. During the
process of viral infection, the host is inducedwhich is initially
rapid and nonspecific (natural killer cells, macrophage cell,
etc.) and then delayed and specific (cytotoxic T lymphocyte
cells, antibody cell). But in most virus infections cytotoxic T
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lymphocyte (CTL) cells which attack infected cells, and anti-
body cell which attack viruses, play a critical part in antiviral
defense. In order to investigate the role of the population
dynamics of viral infection with CTL response, Pawelek et al.
[8] constructed a mathematical model describing the basic
dynamics of the interaction between the uninfected target
cells, productively infected cells, free virus, and the CTL
response cells, which is described by the following differential
equation:

𝑑𝑥

𝑑𝑡
= 𝑠 − 𝑑𝑥 (𝑡) − 𝛽𝑥 (𝑡) V (𝑡) ,

𝑑𝑦

𝑑𝑡
= 𝛽𝑒
−𝑚𝜏
1
𝑥 (𝑡 − 𝜏

1
) V (𝑡 − 𝜏

1
) − 𝑎𝑦 (𝑡) − 𝑝𝑦 (𝑡) 𝑧 (𝑡) ,

𝑑V
𝑑𝑡

= 𝑘𝑦 (𝑡) − 𝑢V (𝑡) ,

𝑑𝑧

𝑑𝑡
= 𝑐𝑦 (𝑡 − 𝜏

2
) − 𝑏𝑧 (𝑡) ,

(1)

where the uninfected target cells are denoted by 𝑥(𝑡), produc-
tively infected cells are denoted by 𝑦(𝑡), free virus is denoted
by V(𝑡), and the CTL response cells are denoted by 𝑧(𝑡). The
parameter 𝑠 represents the rate at which new target cells are
created, 𝑑 is the death rate of uninfected target cells, 𝛽 is the
infection rate of uninfected cells by virus, 𝑎 is the death rate
of productively infected cells, 𝑝 represents the killing rate of
infected cells by CTL response cells, 𝑘 is the rate of the virus
particles produced by infected cells, 𝑢 is the viral clearance
rate constant, 𝑐 is the rate at which the CTL response is
produced, and 𝑏 is the death rate of the CTL response.

In order to incorporate the intracellular phase of the
virus life cycle, we assume that virus production occurs after
the virus entry by the constant delay 𝜏

1
. The recruitment of

virus-producing cells at time 𝑡 is given by the number of the
uninfected CD4+ T cells that were newly infected at time
𝑡 − 𝜏
1
and are still alive at time 𝑡 [9, 10]. If we assume constant

death rates𝑚 for infected CD4+ T cells but not yet producing
virus particles, the probability of surviving the time period
from 𝑡 − 𝜏

1
to 𝑡 is exp−𝑚𝜏1 . And the immune response plays

an important role in eliminating or controlling the disease
after human body is infected by virus. Antigenic stimulation
generating CTLs may need a period of time 𝜏

2
; that is, the

CTL response at time 𝑡 may depend on the population of
antigen at a period time 𝑡 − 𝜏

2
[11].

Therefore, based on the discussion above, the model can
be written in the following form:

𝑑𝑥

𝑑𝑡
= 𝑠 − 𝑑𝑥 (𝑡) − 𝛽𝑥 (𝑡) V (𝑡) ,

𝑑𝑦

𝑑𝑡
= 𝛽𝑒
−𝑚𝜏
1
𝑥 (𝑡 − 𝜏

1
) V (𝑡 − 𝜏

1
) − 𝑎𝑦 (𝑡) − 𝑝𝑦 (𝑡) 𝑧 (𝑡) ,

𝑑V
𝑑𝑡

= 𝑘𝑦 (𝑡) − 𝑢V (𝑡) ,

𝑑𝑧

𝑑𝑡
= 𝑐𝑦 (𝑡 − 𝜏

2
) 𝑧 (𝑡 − 𝜏

2
) − 𝑏𝑧 (𝑡) .

(2)

The organization of this paper is as follows. In the next
section we deal with some basic properties such as positivity
and boundedness of the solutions and existence of equilibria
of system (2). In Section 3, we prove the local stability of
three possible equilibria. Further, by using the well-known
Lyapunov-Lasalle invariance principle, we prove the global
asymptotic stability of the infection-free equilibrium, CTL-
absent infection equilibrium, and a special case of CTL-
present equilibrium. By bifurcation theory, we also can prove
that there is a stability switch for another special case for
CTL-present equilibrium. In Section 4, one example is given
to illustrate that our main results are applicable. In the final
section, we offer a brief conclusion.

2. Basic Results

Based on the biological meaning, we will consider the system
(2) with the following initial conditions:

𝑥 (𝜃) ≥ 0, 𝑦 (𝜃) ≥ 0, V (𝜃) ≥ 0, 𝑧 (𝜃) ≥ 0, 𝜃 ∈ [−𝜏, 0]

𝑥 (0) > 0, 𝑦 (0) > 0, V (0) > 0, 𝑧 (0) > 0.

(3)

Let 𝑋 = 𝐶([−𝜏, 0]; 𝑅) be the Banach space of continuous
functions mapping the internal [−𝜏, 0] into 𝑅

4

+
equipped

with the sup-norm, where 𝜏 = max{𝜏
1
, 𝜏
2
}. Based on the

existence and uniqueness theory of solution for functional
differential equations [12, 13], it is easy to show that there is a
unique solution (𝑥(𝑡), 𝑦(𝑡), V(𝑡), 𝑧(𝑡)) to system (2)with initial
condition (3).

First wewill discuss the positivity and boundedness of the
solution.

Theorem 1. Let ((𝑥(𝑡), 𝑦(𝑡), V(𝑡), 𝑧(𝑡)) be the solution of (2)
satisfying conditions (3); then 𝑥(𝑡), 𝑦(𝑡), V(𝑡), and 𝑧(𝑡) are
positive and ultimately bounded.

Proof. From (2), we have

𝑥 (𝑡) = 𝑥 (0) 𝑒
−∫

𝑡

0
(𝑑+𝛽V(𝜉))d𝜉

+ ∫

𝑡

0

𝑠𝑒
−∫

𝑡

𝜂
(𝑑+𝛽V(𝜉))d𝜉d𝜂,

𝑦 (𝑡) = 𝑦 (0) 𝑒
−∫

𝑡

0
(𝑎+𝑝𝑧(𝜉))d𝜉

+ ∫

𝑡

0

𝛽𝑒
−𝑚𝜏
1V (𝑡 − 𝜏

1
) 𝑥 (𝑡 − 𝜏

1
) 𝑒
−∫

𝑡

𝜂
(𝑎+𝑝𝑧(𝜉))d𝜉d𝜂,

V (𝑡) = V (0) 𝑒−𝑢𝑡 + ∫
𝑡

0

𝑘𝑦 (𝜂) 𝑒
−𝑢(𝑡−𝜂)d𝜂,

𝑧 (𝑡) = 𝑧 (0) 𝑒
−𝑏𝑡

+ ∫

𝑡

0

𝑐𝑦 (𝜂 − 𝜏
2
) 𝑧 (𝜂 − 𝜏

2
) 𝑒
−𝑏(𝑡−𝜂)d𝜂.

(4)

This means that all the solutions of system (2) with initial
condition (3) are positive. To prove the boundedness of the
solution, denote

𝑁(𝑡) = 𝑒
−𝑚𝜏
1
𝑥 (𝑡 − 𝜏

1
) + 𝑦 (𝑡) +

𝑎

2𝑘
V (𝑡) +

𝑝

𝑐
𝑧 (𝑡 + 𝜏

2
) . (5)
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Calculating the derivative of𝑁(𝑡) along the solution of system
(2) and by positivity of the solutions, we have

�̇� (𝑡) = 𝑒
−𝑚𝜏
1
𝑠 − 𝑒
−𝑚𝜏
1
𝑑𝑥 (𝑡 − 𝜏

1
)

−
1

2
𝑎𝑦 (𝑡) −

𝑎𝑢

2𝑘
V (𝑡) −

𝑝𝑏

𝑐
𝑧 (𝑡 + 𝜏

2
)

≤ 𝑒
−𝑚𝜏
1
𝑠 − 𝑞𝑁 (𝑡) ,

(6)

where 𝑞 = min{𝑑, 𝑎/2, 𝑢, 𝑏}.This implies that𝑁(𝑡) is bounded
for large 𝑡. So 𝑥(𝑡), 𝑦(𝑡), V(𝑡), and 𝑧(𝑡) are ultimately bounded.

Next we will discuss the equilibria of system (2). The
following is the basic reproductive ratio of system (2) which
describes the average number of newly infected cells gener-
ated from one infected cell at the beginning of the infectious
process:

𝑅
0
=
𝑘𝛽𝑠𝑒
−𝑚𝜏
1

𝑎𝑑𝑢
. (7)

By direct calculation we have that system (2) has three
equilibria. Infection-free equilibrium 𝐸

0
= (𝑥
0
, 0, 0, 0) =

(𝑠/𝑑, 0, 0, 0). If 𝑅
0
> 1, there is a CTL-absent infection

equilibrium

𝐸
1
= (𝑥, 𝑦, V, 0)

= (
𝑎𝑢𝑒
𝑚𝜏
1

𝛽𝑘
,
𝛽𝑘𝑠𝑒
−𝑚𝜏
1 − 𝑎𝑑𝑢

𝑘𝑎𝛽
,
𝛽𝑘𝑠𝑒
−𝑚𝜏
1 − 𝑎𝑑𝑢

𝑢𝑎𝛽
, 0) .

(8)

If 𝑅
0
> 1 + 𝛽𝑘𝑏/𝑢𝑐𝑑, then there is a CTL-present infection

equilibrium

𝐸
2
= (𝑥
∗

, 𝑦
∗

, V∗, 𝑧∗)

= (
𝑠𝑢𝑐

𝛽𝑘𝑏 + 𝑢𝑐𝑑
,
𝑏

𝑐
,
𝑘𝑏

𝑢𝑐
,
𝛽𝑘𝑠𝑐𝑒

−𝑚𝜏
1 − 𝑎 (𝑐𝑑𝑢 + 𝑘𝑏𝛽)

𝑝 (𝑐𝑑𝑢 + 𝑘𝑏𝛽)
) .

(9)

3. Stability Analysis of Delay Model (2)
In this section, wewill analyse locally and globally asymptotic
stability of the three equilibria.

3.1. Stability of Infection-Free Equilibrium 𝐸
0

Theorem 2. For the infection-free equilibrium 𝐸
0
of system

(2);

(i) if 𝑅
0
< 1, then 𝐸

0
is locally asymptotically stable;

(ii) if 𝑅
0
> 1, then 𝐸

0
is unstable.

Proof. First, we will prove the local stability of 𝐸
0
. At the

infection-free equilibrium 𝐸
0
, the characteristic equation for

the corresponding linearized system of (2) becomes

(𝜆 + 𝑏) (𝜆 + 𝑑) [(𝜆 + 𝑎) (𝜆 + 𝑢) − 𝛽𝑘
𝑠

𝑑
𝑒
−(𝑚+𝜆)𝜏

1
] = 0. (10)

Two of the roots of the characteristic equation (10) are 𝜆
1
=

−𝑏, and 𝜆
2
= −𝑑. The remaining two roots are obtained by

considering the following equation:

(𝜆 + 𝑎) (𝜆 + 𝑢) = 𝛽𝑘
𝑠

𝑑
𝑒
−(𝑚+𝜆)𝜏

1
. (11)

If 𝜆 has a nonnegative real part, then the modulus of the left-
hand side of (11) satisfies

|(𝜆 + 𝑎) (𝜆 + 𝑢)| ≥ 𝑎𝑢, (12)

while the modulus of the right-hand side (11) satisfies

𝛽𝑘
𝑠

𝑑
𝑒
−(𝑚+𝜆)𝜏

1
=

𝑎𝑢𝑒
−𝜆𝜏
1
𝑅
0


≤ 𝑎𝑢𝑅

0
< 𝑎𝑢. (13)

This leads to a contradiction. Thus, when 𝑅
0
< 1, all the

eigenvalues have negative real parts, and hence the infection-
free steady state is locally asymptotically stable.

When 𝑅
0
> 1, let

𝑓 (𝜆) = (𝜆 + 𝑎) (𝜆 + 𝑢) − 𝛽𝑘
𝑠

𝑑
𝑒
−(𝑚+𝜆)𝜏

1

= (𝜆 + 𝑎) (𝜆 + 𝑢) − 𝑎𝑢𝑒
−𝜆𝜏
1
𝑅
0
.

(14)

Then 𝑓(0) = 𝑎𝑢 − 𝑎𝑢𝑅
0
< 0, lim

𝜆→+∞
𝑓(𝜆) = +∞. By the

continuity of 𝑓(𝜆), there exists at least one positive root of
𝑓(𝜆) = 0. Thus, the infection-free equilibrium 𝐸

0
is unstable

if 𝑅
0
> 1.

Theorem 3. If 𝑅
0
< 1, then infection-free steady state 𝐸

0
is

globally asymptotically stable.

Proof. Define a Lyapunov functional

𝑉 (𝑡) = 𝑥
0
(
𝑥

𝑥
0

− ln 𝑥

𝑥
0

− 1) + 𝑒
𝑚𝜏
1
𝑦 +

𝛽𝑠

𝑢𝑑
V +

𝑝𝑒
𝑚𝜏
1

𝑐
𝑧

+ 𝛽∫

𝑡

𝑡−𝜏
1

V (𝑠) 𝑥 (𝑠) d𝑠 + 𝑝𝑒𝑚𝜏1 ∫
𝑡

𝑡−𝜏
2

𝑦 (𝑠) 𝑧 (𝑠) d𝑠,

(15)

where 𝑥
0
= 𝑑/𝑠. Calculating the time derivative of𝑉(𝑡) along

the solution of system (2), we obtain

𝐷
+

𝑉
(2)

= (1 −
𝑥
0

𝑥
) (𝑑𝑥
0
− 𝑑𝑥 (𝑡) − 𝛽𝑥 (𝑡) V (𝑡))

+ 𝑒
𝑚𝜏
1
[𝛽𝑒
−𝑚𝜏
1
𝑥 (𝑡 − 𝜏

1
) V (𝑡 − 𝜏

1
)
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−𝑎𝑦 (𝑡) − 𝑝𝑦 (𝑡) 𝑧 (𝑡)]

+
𝛽𝑠

𝑢𝑑
(𝑘𝑦 (𝑡) − 𝑢V (𝑡))

+
𝑝𝑒
𝑚𝜏
1

𝑐
[𝑐𝑦 (𝑡 − 𝜏

2
) 𝑧 (𝑡 − 𝜏

2
) − 𝑏𝑧 (𝑡)]

+ 𝛽𝑥 (𝑡) V (𝑡) − 𝛽𝑥 (𝑡 − 𝜏
1
) V (𝑡 − 𝜏

1
)

+ 𝑝𝑒
𝑚𝜏
1
𝑦 (𝑡) 𝑧 (𝑡) − 𝑝𝑒

𝑚𝜏
1
𝑦 (𝑡 − 𝜏

2
) 𝑧 (𝑡 − 𝜏

2
)

= −𝑑
1

𝑥
(𝑥 − 𝑥

0
)
2

− (𝑎𝑒
𝑚𝜏
1
+
𝑘𝛽𝑠

𝑢𝑑
) 𝑘𝑦 (𝑡) −

𝑝𝑒
𝑚𝜏
1

𝑐
𝑏𝑧 (𝑡) ≤ 0.

(16)

Note that 𝐷+𝑉(𝑡)|
(2)

= 0 if and only if 𝑥 = 𝑥
0
, 𝑦(𝑡) =

0, 𝑧(𝑡) = 0. By the second equation of (2), we also have
V(𝑡) = 0. Therefore, the maximal compact invariant set in
𝐷
+
𝑉(𝑡)|
(2)

= 0 is the singleton 𝐸
0
. By the Lasalle Invariance

principle [12], the infection-free steady state 𝐸
0
is globally

attracting.Therefore,𝐸
0
is globally asymptotically stable.

3.2. Stability of the CTL-Absent Infection Equilibrium 𝐸
1

Theorem 4. For the CTL-absent infection equilibrium 𝐸
1
of

system (2),

(i) if 1 < 𝑅
0

< 1 + 𝛽𝑘𝑏/𝑢𝑐𝑑, then 𝐸
1
is locally

asymptotically stable;
(ii) if 𝑅

0
> 1 + 𝛽𝑘𝑏/𝑢𝑐𝑑, then 𝐸

1
is unstable.

Proof. At the CTL-absent infection equilibrium 𝐸
1
, the char-

acteristic equation for the corresponding linearized system of
(2) is

(𝜆 − 𝑐𝑦𝑒
−𝜆𝜏
2
+ 𝑏)

× [𝜆
3

+ 𝑎
1
𝜆
2

+ 𝑎
2
𝜆 + 𝑎
3
+ (𝑎
4
𝜆 + 𝑎
5
) 𝑒
−𝜆𝜏
1
] = 0,

(17)

where

𝑎
1
= 𝑑 + 𝛽V + 𝑎 + 𝑢 = 𝑑 +

𝛽𝑘𝑠𝑒
−𝑚𝜏
1 − 𝑎𝑢𝑑

𝑎𝑢
+ 𝑎 + 𝑢,

𝑎
2
= 𝑎𝑢 + (𝑎 + 𝑢) (𝑑 + 𝛽V)

= 𝑎𝑢 + (𝑎 + 𝑢) (𝑑 +
𝛽𝑘𝑠𝑒
−𝑚𝜏
1 − 𝑎𝑢𝑑

𝑎𝑢
) ,

𝑎
3
= 𝑎𝑢 (𝑑 + 𝛽V) = 𝑎𝑢(𝑑 +

𝛽𝑘𝑠𝑒
−𝑚𝜏
1 − 𝑎𝑢𝑑

𝑎𝑢
) ,

𝑎
4
= −𝑘𝑒

−𝑚𝜏
1
𝛽𝑥,

𝑎
5
= −𝑘𝑑𝑒

−𝑚𝜏
1
𝛽𝑥.

(18)

First we consider

𝜆
3

+ 𝑎
1
𝜆
2

+ 𝑎
2
𝜆 + 𝑎
3
+ (𝑎
4
𝜆 + 𝑎
5
) 𝑒
−𝜆𝜏
1
= 0. (19)

When 𝜏
1
= 0, (19) becomes

𝜆
3

+ 𝑎
1
𝜆
2

+ (𝑎
2
+ 𝑎
4
) 𝜆 + (𝑎

3
+ 𝑎
5
) = 0. (20)

As 𝑎
1
= 𝑎 + 𝑢 > 0, 𝑎

2
+ 𝑎
4
= (𝑎 + 𝑢)(𝑑 + (𝛽𝑘𝑠 − 𝑎𝑢𝑑)/𝑎𝑢) > 0,

𝑎
3
+𝑎
5
= 𝛽𝑘𝑠−𝑎𝑑𝑢 > 0, by Routh-Hurwitz criterion, we only

need to show the following statement:

𝑎
1
(𝑎
2
+ 𝑎
4
) − (𝑎

3
+ 𝑎
5
)

= (
𝛽𝑘𝑠

𝑎𝑢
+ 𝑎 + 𝑢) (𝑎 + 𝑢)

𝛽𝑘𝑠

𝑎𝑢
− 𝑘𝛽𝑠 + 𝑎𝑑𝑢 > 0.

(21)

Thus all the roots of (19) have negative real parts when 𝜏
1
= 0.

Now we consider the distribution of roots of (19) while
𝜏
1
̸= 0. If 𝑖𝑤 (𝑤 > 0) is a solution of (19), separating real and

imaginary parts, it follows that

𝑎
1
𝑤
2

− 𝑎
3
= 𝑎
4
𝑤 sin (𝑤𝜏

1
) + 𝑎
5
cos (𝑤𝜏

1
) ,

𝑤
3

− 𝑎
2
𝑤 = 𝑎

4
𝑤 cos (𝑤𝜏

1
) − 𝑎
5
sin (𝑤𝜏

1
) .

(22)

Squaring and adding the two equations of (22) yield

𝑤
6

+ (𝑎
2

1
− 2𝑎
2
)𝑤
4

+ (𝑎
2

2
− 2𝑎
1
𝑎
3
− 𝑎
2

4
)𝑤
2

+ 𝑎
2

3
− 𝑎
2

5
= 0.

(23)

Letting 𝑟 = 𝑤2, (23) becomes

𝑟
3

+ (𝑎
2

1
− 2𝑎
2
) 𝑟
2

+ (𝑎
2

2
− 2𝑎
1
𝑎
3
− 𝑎
2

4
) 𝑟 + 𝑎

2

3
− 𝑎
2

5
= 0, (24)

where

𝑎
2

1
− 2𝑎
2
= (𝑑 + 𝛽V)2 + (𝑎2 + 𝑢2) > 0,

𝑎
2

2
− 2𝑎
1
𝑎
3
− 𝑎
2

4
= (𝑎
2

+ 𝑢
2

) (𝑑 + 𝛽V)2 > 0,

𝑎
2

3
− 𝑎
2

5
= [𝑎𝑢𝛽V] , [𝑎𝑢 (2𝑑 + 𝛽V)] > 0,

(𝑎
2

1
− 2𝑎
2
) (𝑎
2

2
− 2𝑎
1
𝑎
3
− 𝑎
2

4
) − (𝑎

2

3
− 𝑎
2

5
)

= (𝑎
2

+ 𝑢
2

) (𝑑 + 𝛽V)4 + (𝑎4 + 𝑢4) [𝑑 + 𝛽V]2

+ 2𝑎
2

𝑢
2

𝑑
2

+ 𝑎
2

𝑢
2

(𝛽V)2 + 2𝑎2𝑢2𝑑𝛽V > 0.

(25)

By the Routh-Hurwitz criterion, (24) has no positive roots.
This shows that (19) can not have a purely imaginary root.

Next, we analyze the transcendental equation

𝜆 − 𝑐𝑦𝑒
−𝜆𝜏
2
+ 𝑏 = 0. (26)

For 𝜏
2
= 0, if 1 < 𝑅

0
< 1 + 𝛽𝑘𝑏/𝑢𝑐𝑑, we have 𝜆 = 𝑐𝑦 − 𝑏 =

(𝛽𝑘𝑠𝑐 − 𝑎𝛽𝑘𝑏 − 𝑎𝑐𝑢𝑑)/𝑎𝛽𝑘 < 0. This shows that the root of
(26) is negative for 𝜏

2
= 0.

Now we only need to consider (26) in the case 𝜏
2
> 0. By

letting 𝜆 = 𝜔𝑖 (𝜔 > 0) be a purely imaginary root of (26) for
some 𝜔 > 0, we have

𝜔 = −
𝑐 (𝛽𝑘𝑠𝑒

−𝑚𝜏
1 − 𝑎𝑢𝑑)

𝑎𝑘𝛽
sin𝜔𝜏

2
,

𝑏 =
𝑐 (𝛽𝑘𝑠𝑒

−𝑚𝜏
1 − 𝑎𝑢𝑑)

𝑎𝑘𝛽
cos𝜔𝜏

2
,

(27)
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which implies that 𝜔2 = [𝑐(𝛽𝑘𝑠𝑒
−𝑚𝜏
1 − 𝑎𝑢𝑑)/𝑎𝑘𝛽]

2

− 𝑏
2.

Note that 1 < 𝑅
0
< 1 + 𝛽𝑘𝑏/𝑢𝑐𝑑; then 𝜔2 < 0, which is a

contradiction.
Therefore, we conclude that the characteristic equation

(17) does not have any root with nonnegative real part. By
the general theory of delay differential equations from Kuang
[12], we see that if 1 < 𝑅

0
< 1 + 𝛽𝑘𝑏/𝑢𝑐𝑑, the equilibrium 𝐸

1

is locally asymptotically stable.

Theorem 5. If 1 < 𝑅
0
< 1 + 𝛽𝑘𝑏/𝑢𝑐𝑑, then the CTL-absent

infection equilibrium𝐸
1
of system (2) is globally asymptotically

stable.

Proof. Denote 𝑔(𝜉) = 𝜉 − 1 − ln 𝜉, 𝜉 ∈ 𝑅+. Define a Lyapunov
functional

𝑉 (𝑡) = 𝑥𝑔 (
𝑥

𝑥
) + 𝑒
𝑚𝜏
1
𝑦𝑔(

𝑦

𝑦
) +

𝑎𝑒
𝑚𝜏
1

𝑘
V𝑔(

V
V
)

+
𝑝𝑒
𝑚𝜏
1

𝑐
𝑧𝑔 (

𝑧

𝑧
) + 𝛽V 𝑥∫

𝑡

𝑡−𝜏
1

𝑔(
𝑥 (𝑠) V (𝑠)

V 𝑥
) d𝑠

+ 𝑝𝑒
𝑚𝜏
1
∫

𝑡

𝑡−𝜏
2

𝑦 (𝑠) 𝑧 (𝑠) d𝑠.

(28)

By calculating the derivative of 𝑉(𝑡) along the solution of
system (2), we obtain that

𝐷
+

𝑉 (𝑡)
(2)

= �̇� (𝑡) (1 −
𝑥

𝑥
) + 𝑒
𝑚𝜏
1 ̇𝑦 (𝑡) (1 −

𝑦

𝑦
)

+
𝑎𝑒
𝑚𝜏
1

𝑘
V̇ (𝑡) (1 −

V
V
) +

𝑝𝑒
𝑚𝜏
1

𝑐
�̇� (𝑡) (1 −

𝑧

𝑧
)

+ 𝛽V 𝑥[𝑔(
V (𝑡) 𝑥 (𝑡)

V 𝑥
) − 𝑔(

V (𝑡 − 𝜏
1
) 𝑥 (𝑡 − 𝜏

1
)

V 𝑥
)]

+ 𝑝𝑒
𝑚𝜏
1
[𝑦 (𝑡) 𝑧 (𝑡) − 𝑦 (𝑡 − 𝜏

2
) 𝑧 (𝑡 − 𝜏

2
)]

= (1 −
𝑥

𝑥
) [𝑑𝑥 + 𝛽V 𝑥 − 𝑑𝑥 (𝑡) − 𝛽𝑥 (𝑡) V (𝑡)]

+ 𝑒
𝑚𝜏
1
(1 −

𝑦

𝑦
)

× [𝛽𝑒
−𝑚𝜏
1
𝑥 (𝑡 − 𝜏

1
) V (𝑡 − 𝜏

1
) − 𝑎𝑦 (𝑡) − 𝑝𝑦 (𝑡) 𝑧 (𝑡)]

+
𝑎𝑒
𝑚𝜏
1

𝑘
[1 −

V
V
] (𝑘𝑦 (𝑡) − 𝑢V (𝑡))

+
𝑝𝑒
𝑚𝜏
1

𝑐
(1 −

𝑧

𝑧
) [𝑐𝑦 (𝑡 − 𝜏

2
) 𝑧 (𝑡 − 𝜏

2
) − 𝑏𝑧 (𝑡)]

+ 𝛽𝑥 (𝑡) V (𝑡) − 𝛽𝑥 (𝑡 − 𝜏
1
) V (𝑡 − 𝜏

1
)

− 𝛽V 𝑥 ln V (𝑡) 𝑥 (𝑡)
V (𝑡 − 𝜏

1
) 𝑥 (𝑡 − 𝜏

1
)

+ 𝑝𝑒
𝑚𝜏
1
[𝑦 (𝑡) 𝑧 (𝑡) − 𝑦 (𝑡 − 𝜏

2
) 𝑧 (𝑡 − 𝜏

2
)] .

(29)

Remember that

𝑠 = 𝑑𝑥 + 𝛽V 𝑥, 𝛽𝑒
−𝑚𝜏
1V 𝑥 = 𝑎𝑦, 𝑘𝑦 = 𝑢V. (30)

The equation above can be rewritten as

𝐷
+

𝑉
(2)

= 𝑑𝑥(2 −
𝑥

𝑥
−
𝑥

𝑥
)

+ 𝛽V𝑥[3 −
𝑥

𝑥
−
𝑦𝑥 (𝑡 − 𝜏

1
) V (𝑡 − 𝜏

1
)

𝑦𝑥 V

−
𝑦 (𝑡) V
V (𝑡) 𝑦

− ln V (𝑡) 𝑥 (𝑡)
V (𝑡 − 𝜏

1
) 𝑥 (𝑡 − 𝜏

1
)
]

+ 𝑝𝑒
𝑚𝜏
1
𝑧 (𝑡) (𝑦 −

𝑏

𝑐
)

= 𝑑𝑥(2 −
𝑥

𝑥
−
𝑥

𝑥
)

− 𝛽V 𝑥[𝑔(
𝑦𝑥 (𝑡 − 𝜏

1
) V (𝑡 − 𝜏

1
)

𝑦𝑥 V
)

+ 𝑔(
𝑥

𝑥
) + 𝑔(

𝑦 (𝑡) V
V (𝑡) 𝑦

)]

+ 𝑝𝑒
𝑚𝜏
1
𝑧 (𝑡) (𝑦 −

𝑏

𝑐
) .

(31)

From (31), it follows that 𝐷+𝑉(𝑡)|
(2)

≤ 0 for all 𝑥, 𝑦, V, 𝑧 >

0. 𝐷+𝑉(𝑡)|
(2)

= 0 if and only if (𝑥(𝑡), 𝑦(𝑡), V(𝑡), 𝑧(𝑡)) =

(𝑥, 𝑦, 𝑧, 0). Then the globally asymptotic attractivity of 𝐸
1

follows from Lyapunov-Lasalle invariance principle [12].
Therefore, 𝐸

1
is globally asymptotically stable.

3.3. Stability of CTL-Present Infection Equilibrium 𝐸
2
. On the

stability analysis of CTL-present infection equilibrium𝐸
2
, we

only consider the two special cases, that is, 𝜏
2
= 0, 𝜏
1
̸= 0 and

𝜏
1
= 0, 𝜏
2
̸= 0.

Firstly, we consider the local and global stability of 𝐸
2
for

the first case, and we have the following results.

Theorem 6. If 𝜏
2
= 0, 𝜏

1
̸= 0 and 𝑅

0
> 1 + 𝛽𝑘𝑏/𝑢𝑐𝑑, then the

CTL-present infection equilibrium 𝐸
2
is locally asymptotically

stable.

Proof. At equilibrium 𝐸
2
, the characteristic equation for the

corresponding linearized system of (2) is

(𝜆 + 𝑑 + 𝛽V∗) (𝜆 + 𝑢)

× [(𝜆 + 𝑏 − 𝑐𝑦
∗

𝑒
−𝜆𝜏
2
) (𝜆 + 𝛿𝑅

0
) + 𝑏 (𝛿𝑅

0
− 𝑎) 𝑒

−𝜆𝜏
2
]

= (𝜆 + 𝑏 − 𝑐𝑦
∗

𝑒
−𝜆𝜏
2
) (𝜆 + 𝑑) 𝑢𝛿𝑅

0
𝑒
−𝜆𝜏
1
,

(32)
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where 𝛿 = 𝑎𝑢𝑐𝑑/(𝑢𝑐𝑑 + 𝑘𝑏𝛽). Further let 𝜏
2
= 0; then (32)

becomes

(𝜆 + 𝑑 + 𝛽V∗) (𝜆 + 𝑢) [𝜆 (𝜆 + 𝛿𝑅
0
) + 𝑏 (𝑅

0
𝛿 − 𝑎)]

= 𝜆 (𝜆 + 𝑑) 𝑢𝛿𝑅
0
𝑒
−𝜆𝜏
1
.

(33)

By the continuous dependence of roots of the characteristic
equation on 𝑅

0
, we know that the curve of the roots must

cross the imaginary axis as 𝑅
0
decreases sufficiently close to 1.

That is, the characteristic equation (33) has a pure imaginary
root 𝜆 = 𝑖𝜔

0
(𝜔
0
> 0) if and only if the following statement is

true:

(𝑖𝜔
0
+ 𝑑 + 𝛽V∗) (𝑖𝜔

0
+ 𝑢) [𝑖𝜔

0
(𝑖𝜔
0
+ 𝛿𝑅
0
) + 𝑏 (𝑅

0
𝛿 − 𝑎)]

= 𝑖𝜔
0
(𝑖𝜔
0
+ 𝑑) 𝑢𝛿𝑅

0
𝑒
𝑖𝜔
0
𝜏
1
.

(34)

We claim that the following inequality holds:


𝑖𝜔
0
(𝑖𝜔
0
+ 𝛿𝑅
0
) + 𝑏 (𝑅

0
𝛿 − 𝑎)


>

𝑖𝜔
0


𝑅
0
𝛿. (35)

In fact, we have


𝑖𝜔
0
(𝑖𝜔
0
+ 𝛿𝑅
0
) + 𝑏 (𝑅

0
𝛿 − 𝑎)



2

−

𝑖𝜔
0



2

(𝑅
0
𝛿)
2

= [𝜔
2

0
− 𝑏 (𝑅

0
𝛿 − 𝑎)]

2

≥ 0.

(36)

It follows from |𝑖𝜔
0
+ 𝑑 + 𝛽V∗| ≥ |𝑖𝜔

0
+ 𝑑|, |𝑖𝜔

0
+ 𝑢| ≥ 𝑢,

and the inequality (35) that the modulus of the left-hand side
of (34) is greater than the modulus of the right-hand side.
This leads to a contradiction.Therefore, we conclude that (33)
does not have any root with nonnegative real part. Thus, the
CTL-present infection equilibrium 𝐸

2
of system (2) is locally

asymptotically stable when 𝑅
0
> 1 + 𝛽𝑘𝑏/𝑢𝑐𝑑 in the case of

𝜏
2
= 0 and 𝜏

1
̸= 0.

Theorem 7. If 𝜏
2
= 0, 𝜏
1
̸= 0, and 𝑅

0
> 1 + 𝛽𝑘𝑏/𝑢𝑐𝑑, then the

𝐸
2
is globally asymptotically stable.

Proof. Define a Lyapunov functional

𝑉 (𝑡) = 𝑥
∗

𝑔(
𝑥

𝑥
∗
) + 𝑒
𝑚𝜏
1
𝑦
∗

𝑔(
𝑦

𝑦
∗
) + 𝑎
1
V∗𝑔(

V
V∗
)

+ 𝑎
2
𝑧
∗

𝑔(
𝑧

𝑧
∗
) + 𝛽𝑥

∗V∗ ∫
𝑡

𝑡−𝜏
1

𝑔(
𝑥 (𝑠) V (𝑠)
𝑥
∗V∗

) d𝑠,

(37)

where 𝑥∗, 𝑦∗, V∗, and 𝑧∗ satisfy the following equations:

𝑠 = 𝑑𝑥
∗

+ 𝛽𝑥
∗V∗, 𝛽𝑒

−𝑚𝜏
1
𝑥
∗V∗ − 𝑎𝑦∗ − 𝑝𝑦∗𝑧∗ = 0,

𝑘𝑦
∗

= 𝑢V∗, 𝑐𝑦
∗

= 𝑏.

(38)

Calculating the derivative of𝑉(𝑡) along the solution of system
(2) and using the similarmethodwith the proof ofTheorem5,
we have

𝐷
+

𝑉 (𝑡)
(2)

= 𝑑𝑥
∗

(2 −
𝑥
∗

𝑥
−
𝑥

𝑥
∗
)

− 𝛽𝑥
∗V∗ [𝑔(

𝑥
∗

𝑥
) + 𝑔(

𝑦
∗
𝑥 (𝑡 − 𝜏

1
) V (𝑡 − 𝜏

1
)

𝑦𝑥
∗V∗

)

+ 𝑔(
𝑦V∗

𝑦
∗V
)] .

(39)

Since 2 − 𝑥
∗
/𝑥 − 𝑥/𝑥

∗
≤ 0, it follows that 𝐷+𝑉|

(1.2)
≤

0 for all 𝑥, 𝑦, V, 𝑧 > 0 and 𝐷
+
𝑉|
(2)

= 0 if and only
if (𝑥(𝑡), 𝑦(𝑡), V(𝑡), 𝑧(𝑡)) = (𝑥

∗
, 𝑦
∗
, V∗, 𝑧∗). Then the global

attractivity of 𝐸
2
follows from Lyapunov-Lasalle invariance

principle [12]. Therefore the CTL-present infection equilib-
rium 𝐸

2
of system (2) is globally asymptotically stable.

The following discussions focus on the stability of the
equilibrium𝐸

2
in the second case. Let 𝜏

1
= 0 in (32); it follows

that that

𝜆
4

+ 𝑎
1
𝜆
3

+ 𝑎
2
𝜆
2

+ 𝑎
3
𝜆 + 𝑎
4

+ (𝑏
1
𝜆
3

+ 𝑏
2
𝜆
2

+ 𝑏
3
𝜆 + 𝑏
4
) 𝑒
−𝜆𝜏
2
= 0,

(40)

where

𝑎
1
= 𝑏 + 𝑑 + 𝛽V∗ + 𝑢 + 𝛿𝑅

0
,

𝑎
2
= 𝑏 (𝑑 + 𝛽V∗ + 𝑢 + 𝛿𝑅

0
) + (𝑑 + 𝛽V∗) (𝑢 + 𝛿𝑅

0
) ,

𝑎
3
= 𝛿𝑅
0
𝑢𝛽V∗ + 𝑏 (𝑑 + 𝛽V∗) (𝑢 + 𝛿𝑅

0
) ,

𝑎
4
= 𝑏𝛿𝑅

0
𝑢𝛽V∗,

𝑏
1
= −𝑏,

𝑏
2
= −𝑏 (𝑑 + 𝛽V∗ + 𝑎 + 𝑢) ,

𝑏
3
= 𝑏𝑢 (𝛿𝑅

0
− 𝑎) − 𝑏 (𝑑 + 𝛽V∗) (𝑢 + 𝑎) ,

𝑏
4
= 𝑏𝑢𝑑𝛿𝑅

0
− 𝑎𝑏𝑢𝑑 − 𝑎𝑏𝑢𝛽V∗.

(41)

Let

𝑃 (𝜆, 𝜏
2
) = 𝜆
4

+ 𝑎
1
𝜆
3

+ 𝑎
2
𝜆
2

+ 𝑎
3
𝜆 + 𝑎
4
,

𝑄 (𝜆, 𝜏
2
) = 𝑏
1
𝜆
3

+ 𝑏
2
𝜆
2

+ 𝑏
3
𝜆 + 𝑏
4
.

(42)

Then we can rewrite (40) as follows:

𝑃 (𝜆, 𝜏
2
) + 𝑄 (𝜆, 𝜏

2
) 𝑒
−𝜆𝜏
2
= 0. (43)

Assume that𝑃(𝜆, 𝜏
2
) and𝑄(𝜆, 𝜏

2
) are analytic functions in the

right half-plane Re 𝜆 > −𝛿, where 𝛿 > 0.

Lemma 8. Consider (43); 𝑃(𝜆, 𝜏
2
) and 𝑄(𝜆, 𝜏

2
) satisfy the

following conditions:
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Figure 1: The time histories and the phase trajectories of system (50) before Hopf bifurcation occurs for 𝜏
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= 0.2145.
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(i) 𝑃(0, 𝜏
2
) + 𝑄(0, 𝜏

2
) ̸= 0;

(ii) 𝑃(𝑖𝑤, 𝜏
2
) + 𝑄(𝑖𝑤, 𝜏

2
) ̸= 0;

(iii) lim sup{|𝑄(𝜆, 𝜏
2
)/𝑃(𝜆, 𝜏

2
)| : |𝜆| → ∞,Re 𝜆 ≥ 0} < 1

for any 𝜏
2
;

(iv) 𝐹(𝑤) ≡ |𝑃(𝑖𝑤, 𝜏
2
)|
2
− |𝑄(𝑖𝑤, 𝜏

2
)|
2 for real 𝑤, has at

most a finite number of real zeros;
(v) each positive root 𝑤(𝜏

2
) of 𝐹(𝑤, 𝜏

2
) = 0 is continuous

and differentiable at 𝜏
2
whenever it exists.

Proof. (i) 𝑃(0, 𝜏
2
) + 𝑄(0, 𝜏

2
) = 𝑎
4
+ 𝑏
4
= (𝑑 + 𝛽V∗)𝑏𝑢(𝛿𝑅

0
−

𝑎) ̸= 0. This means 𝜆 = 0 is not a characteristic root of (43).
(ii) Consider

𝑃 (𝑖𝑤, 𝜏
2
) + 𝑄 (𝑖𝑤, 𝜏

2
)

= 𝑤
4

− 𝑎
1
𝑤
3

𝑖 − 𝑎
2
𝑤
2

+ 𝑎
3
𝑤𝑖 + 𝑎

4

+ (−𝑏
1
𝑤
3

𝑖 − 𝑏
2
𝑤
2

+ 𝑏
3
𝑤𝑖 + 𝑏

4
)

= 𝑤
4

− (𝑎
1
+ 𝑏
1
) 𝑤
3

𝑖 − (𝑎
2
+ 𝑏
2
) 𝑤
2

+ (𝑎
3
+ 𝑏
3
) 𝑤𝑖 + 𝑎

4
+ 𝑏
4
̸= 0.

(44)

(iii) Since

lim
|𝜆|→∞



𝑄 (𝜆, 𝜏
2
)

𝑃 (𝜆, 𝜏
2
)



= lim
|𝜆|→∞



𝑏
1
𝜆
3
+ 𝑏
2
𝜆
2
+ 𝑏
3
𝜆 + 𝑏
4

𝜆
4
+ 𝑎
1
𝜆
3
+ 𝑎
2
𝜆
2
+ 𝑎
3
𝜆 + 𝑎
4



= 0,

(45)

we have lim sup
|𝜆|→∞,𝑅𝑒𝜆≥0

|𝑄(𝜆, 𝜏
2
)/𝑃(𝜆, 𝜏

2
)| < 1 for any

𝜏
2
> 0.
(iv) Since

𝐹 (𝑤, 𝜏
2
) =


𝑃 (𝑖𝑤, 𝜏

2
)


2

−

𝑄 (𝑖𝑤, 𝜏

2
)


2

= 𝑤
8

+ (−2𝑎
2
+ 𝑎
2

1
− 𝑏
2

1
)𝑤
6

+ (𝑎
2

2
+ 2𝑎
4
− 2𝑎
1
𝑎
3
− 𝑏
2

2
+ 2𝑏
1
𝑏
3
)𝑤
4

+ (−2𝑎
2
𝑎
4
+ 𝑎
2

3
+ 2𝑏
2
𝑏
4
− 𝑏
2

3
)𝑤
2

+ 𝑎
2

4
− 𝑏
2

4
.

(46)

It is obvious that property (iv) is satisfied.
(v) The last assertion is valid because 𝐹(𝑤, 𝜏

2
) is a

quadratic polynomial in 𝑤
2 and the fact that 𝑎

𝑖
, 𝑏
𝑗
(𝑖, 𝑗 =

1, 2, 3, 4) are all continuous functions of 𝜏
2
. This completes

the proof.

Let 𝑧 = 𝑤2 and denote 𝑝 = −2𝑎
2
+ 𝑎
2

1
− 𝑏
2

1
, 𝑞 = 𝑎2

2
+ 2𝑎
4
−

2𝑎
1
𝑎
3
−𝑏
2

2
+2𝑏
1
𝑏
3
, 𝑟 = −2𝑎

2
𝑎
4
+𝑎
2

3
+2𝑏
2
𝑏
4
−𝑏
2

3
, and 𝑢

0
= 𝑎
2

4
−𝑏
2

4
;

then (46) becomes

𝐹 (𝑧) = 𝑧
4

+ 𝑝𝑧
3

+ 𝑞𝑧
2

+ 𝑟𝑧 + 𝑢
0
= 0. (47)

On the distribution of positive roots of (46), we have the
following results.

Lemma 9. If 𝑢
0
< 0, then (46) has at least one positive root.

Proof. Since 𝐹(𝑤) = 𝑤
8
+ 𝑝𝑤
6
+ 𝑞𝑤
4
+ 𝑟𝑤
2
+ 𝑢
0
= 0 and

𝐹(0) = 𝑢
0
< 0, lim

𝑤→+∞
𝐹(𝑤) = +∞. Hence, there exists at

least an 𝑤
0
> 0 such that 𝐹(𝑤

0
) = 0.

In the following, we will analyze the case 𝑢
0
≥ 0. Let 𝑧 =

𝑦 − 𝑝/4; then (47) can be rewritten as

𝑦
4

+ 𝑝
1
𝑦
2

+ 𝑞
1
𝑦 + 𝑟
1
= 0, (48)

where 𝑝
1
= −3𝑝

2
/8+𝑞, 𝑞

1
= 𝑝
3
/8−𝑝𝑞/2+𝑟, 𝑟

1
= −3𝑝

4
/256+

(𝑝
2
/16)𝑞 − 𝑝𝑟/4 + 𝑢

0
. If 𝑞
1
= 0, then it is easy to obtain the

four roots of (48) as follows

𝑦
1
= √

−𝑝
1
+ √Δ

0

2
, 𝑦

2
= −√

−𝑝
1
+ √Δ

0

2
,

𝑦
3
= √

−𝑝
1
− √Δ

0

2
, 𝑦

4
= −√

−𝑝
1
− √Δ

0

2
,

(49)

where Δ
0
= 𝑝
2

1
− 4𝑟
1
. Thus 𝑧

𝑖
= 𝑦
𝑖
− (𝑝/4) (𝑖 = 1, 2, 3, 4) are

the roots of (47). Then we have the following result.

Lemma 10. Suppose that 𝑢
0
≥ 0 and 𝑞

1
= 0.

(i) If Δ
0
< 0, then (47) has no positive real roots.

(ii) If Δ
0
≥ 0, 𝑝

1
> 0 and 𝑟

1
> 0, then (47) has no positive

real roots.

Based onTheorem 4.1 in [12] and Lemmas 8–10, we have
the following results.

Theorem 11. (i) If 𝑢
0
≥ 0, 𝑞

1
= 0;

(a) Δ
0
< 0

(b) Δ
0
≥ 0, 𝑝

1
> 0, and 𝑟

1
> 0,

the equation 𝐹(𝑤) = 0 has no positive roots. Then system (2) is
stable for all 𝜏

2
≥ 0.

(ii) If 𝑢
0
< 0, the equation 𝐹(𝑤) = 0 has at least one posi-

tive root and each positive root is simple; then stability switches
may occur as 𝜏

2
increases.That is, there exists a positive number

𝜏
∗

2
such that (2) is unstable for all 𝜏

2
> 𝜏
∗

2
. As 𝜏

2
varies

from 0 to 𝜏∗
2
, at most a finite number of stability switches may

occur.

4. Numerical Simulations

In the previous sections, we studied dynamical behaviors of
the system (2) and obtained some important results. In this
section, we perform a numerical analysis of the model based
onTheorem 11.
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Example 12. By corresponding to system (2), we consider the
following system:

𝑑𝑥

𝑑𝑡
= 160 − 0.16𝑥 (𝑡) − 0.002𝑥 (𝑡) V (𝑡) ,

𝑑𝑦

𝑑𝑡
= 0.002𝑒

−2𝜏
1
𝑥 (𝑡 − 𝜏

1
) V (𝑡 − 𝜏

1
)

− 1.85𝑦 (𝑡) − 0.2𝑦 (𝑡) 𝑧 (𝑡) ,

𝑑V
𝑑𝑡

= 1200𝑦 (𝑡) − 8V (𝑡) ,

𝑑𝑧

𝑑𝑡
= 0.2𝑦 (𝑡 − 𝜏

2
) 𝑧 (𝑡 − 𝜏

2
) − 0.4𝑧 (𝑡) ,

(50)

where 𝜏
1

= 0. By direct calculation we can get CTL-
present infection equilibrium 𝐸

2
= (210.5263, 2.0000,

300.0000, 306.5395) for system (50).

From the parameters given in system (50) and the values
of 𝜏
2
, we can see that there are two critical values of the delay

𝜏
2
, denoted by 𝜏∗

2
and 𝜏∗∗
2
, 𝜏∗
2
≈ 0.2611, 𝜏

∗∗

2
≈ 2.4276. Simple

numerical simulations show that the CTL-present infection
equilibrium of system (50) is globally asymptotically stable
for 𝜏
2
∈ [0, 𝜏

∗

2
) (see Figure 1). In this case, we take 𝜏

2
=

0.2145 < 𝜏
∗

2
. The above CTL-present infection equilibrium

𝐸
2
of system (50) is unstable for 𝜏

2
∈ (𝜏
∗

2
, 𝜏
∗∗

2
) (see Figure 2).

In this case, we take 𝜏
2
= 0.57 > 𝜏

∗

2
. The above CTL-

present infection equilibrium 𝐸
2
of system (50) is globally

asymptotically stable for 𝜏
2
> 𝜏
∗∗

2
(see Figure 3). In this

case, we take 𝜏
2
= 2.55 > 𝜏

∗∗

2
. From above analysis we can

conclude that Hopf bifurcation occurs when 𝜏
2
∈ (𝜏
∗

2
, 𝜏
∗∗

2
).

5. Conclusions

In this paper, we have discussed HIV infection model with
intracellular delay and CTL-response delay. We assume that
the production of CTLs depends on the infected cells and
CTL cells for some important biological meanings. Dynam-
ical analysis of system (2) shows that intracellular delay 𝜏

1

and immune delay 𝜏
2
play different roles in the stability of

the equilibrium. The results show that when 𝑅
0
< 1, the

infection-free equilibrium is globally asymptotically stable,
which means that the viruses are cleared and immune is
not active. When 1 < 𝑅

0
< 1 + 𝛽𝑘𝑏/𝑢𝑐𝑑, the CTL-absent

infection equilibrium exists and is globally asymptotically
stable, which means that the CTL immune response would
not be activated and viral infection becomes vanished. When
𝑅
0
> 1 + 𝛽𝑘𝑏/𝑢𝑐𝑑 and 𝜏

2
= 0, the CTL-present infection

equilibrium is globally asymptotically stable. Actually, the
intracellular delay does not affect the stability of the system.
When 𝑅

0
> 1 + 𝛽𝑘𝑏/𝑢𝑐𝑑 and 𝜏

1
= 0, system (2) may undergo

a stability switch.
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