
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 139123, 8 pages
http://dx.doi.org/10.1155/2013/139123

Research Article
New Hybrid Steepest Descent Algorithms for
Equilibrium Problem and Infinitely Many Strict
Pseudo-Contractions in Hilbert Spaces

Peichao Duan

College of Science, Civil Aviation University of China, Tianjin 300300, China

Correspondence should be addressed to Peichao Duan; pcduancauc@126.com

Received 4 May 2013; Accepted 17 June 2013

Academic Editor: Gue Myung Lee

Copyright © 2013 Peichao Duan.This is an open access article distributed under the Creative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We propose an explicit iterative scheme for finding a common element of the set of fixed points of infinitely many strict pseudo-
contractivemappings and the set of solutions of an equilibriumproblemby the general iterativemethod,which solves the variational
inequality. In the setting of real Hilbert spaces, strong convergence theorems are proved. The results presented in this paper
improve and extend the corresponding results reported by some authors recently. Furthermore, two numerical examples are given
to demonstrate the effectiveness of our iterative scheme.

1. Introduction

Let 𝐻 be a real Hilbert space with inner product ⟨ , ⟩ and
induced norm ‖ ⋅ ‖. Let𝐶 be a nonempty closed convex subset
of𝐻.

Let𝐴 : 𝐶 → 𝐻 be a nonlinear mapping; we consider the
problem of finding 𝑥∗ ∈ 𝐶 such that

⟨𝐴𝑥
∗

, 𝑥 − 𝑥
∗

⟩ ≥ 0, ∀𝑥 ∈ 𝐶. (1)

It is known as the variational inequality problem (denoted by
VI(𝐴, 𝐶)).

Generally, 𝐴 is assumed to be Lipschitzian and strongly
monotone. The relative definitions are listed as follows.

(i) 𝐴 is called 𝑘-Lipschitzian on 𝐶, if there exists a
constant 𝑘 > 0 such that

󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦
󵄩󵄩󵄩󵄩 ≤ 𝑘

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐶. (2)

(ii) 𝐴 is said to be 𝜂-strongly monotone on 𝐶, if there
exists a constant 𝜂 > 0 such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ ≥ 𝜂
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

, ∀𝑥, 𝑦 ∈ 𝐶. (3)

(iii) A mapping 𝑆 of 𝐶 is said to be a 𝜅-strict pseudo-
contraction if there exists a constant 𝜅 ∈ [0, 1) such
that

󵄩󵄩󵄩󵄩𝑆𝑥 − 𝑆𝑦
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

+ 𝜅
󵄩󵄩󵄩󵄩(𝐼 − 𝑆) 𝑥 − (𝐼 − 𝑆) 𝑦

󵄩󵄩󵄩󵄩

2 (4)

for all 𝑥, 𝑦 ∈ 𝐶; see [1].
(iv) A mapping 𝑆 of 𝐶 is said to be a nonexpansive map-

ping if it is strictly pseudo-contractive with constant
𝜅 = 0.

Obviously, the class of strict pseudo-contractions strictly
includes the class of nonexpansive mappings. We denote the
set of fixed points of 𝑆 by 𝐹

𝑖𝑥
(𝑆) (i.e., 𝐹

𝑖𝑥
(𝑆) = {𝑥 ∈ 𝐶 : 𝑆𝑥 =

𝑥}).
Let 𝐹 be a bifunction from 𝐶 × 𝐶 toR, whereR is the set

of real numbers.
The equilibrium problem for 𝐹 : 𝐶 × 𝐶 → R is to

determine its equilibrium points, that is, the set

{𝑥 ∈ 𝐶 : 𝐹 (𝑥, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶} . (5)

The set of such solutions is denoted by EP(𝐹).
Many problems in applied sciences such as physics, opti-

mization, and economics reduce into finding some element
of EP(𝐹). Some methods have been proposed to solve the



2 Journal of Applied Mathematics

equilibrium problem (5); see, for instance, [2–6]. In particu-
lar, Combettes and Hirstoaga [7] proposed several methods
for solving the equilibrium problem. On the other hand,
Mann [8] and Shimoji and Takahashi [9] considered iterative
schemes for finding a fixed point of a nonexpansive mapping.
Further, Acedo and Xu [10] projected new iterative methods
for finding a fixed point of strict pseudo-contractions.

In 2006, Marino and Xu [5] proposed a general iterative
method and proved that the algorithm converged strongly.
Recently, Tian [11] revealed the inner contact of Yamada’s
algorithm [12] and viscosity iterative algorithm and then
introduced a new general iterative algorithm combining a
𝑘-Lipschitzian and 𝜂-strong monotone operator. On this
basis, Wang [13] considered a general composite iterative
method for infinitely many strict pseudo-contractions in
2010.However, the𝑊-mapping used inWang’s paper requires
many composite operations. Very recently, He and Sun [14]
proposed a new operator 𝐿

𝑛
to replace the 𝑊-mapping for

infinite family nonexpansive mappings.
The mapping 𝐿

𝑛
is defined as follows:

𝐿
𝑛
=

𝑛

∑

𝑖=1

𝜔
𝑖

𝑠
𝑛

𝑇
𝑖

(𝑛 = 1, 2, . . .) , (6)

where {𝜔
𝑖
} ⊂ (0, 1) such that ∑∞

𝑖=1
𝜔
𝑖
= 1, 𝑠

𝑛
= ∑
𝑛

𝑖=1
𝜔
𝑖
, and

{𝑇
𝑖
} are infinite nonexpansive mappings. Because it does not

contain many composite computations, it is more simple and
easy to realize.

In this paper, we combine the operator 𝐿
𝑛
and the general

iterative algorithm to propose a new explicit iterative scheme
involving equilibrium problem (5) and an infinite family of
strict pseudo-contractions. Under certain assumptions, we
will prove that the sequence converges strongly. Further an
example will be given to demonstrate the effectiveness of
our iterative scheme and another will be given to compare
numerical results and convergence rate of the algorithm in
this paper and [15].

2. Preliminaries

In the sequel, we will make use of the following lemmas in a
real Hilbert space𝐻.

Lemma 1. Let 𝐻 be a real Hilbert space. There hold the
following identities:

(i)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

= ‖𝑥‖
2

−
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

2

− 2 ⟨𝑥 − 𝑦, 𝑦⟩ , ∀𝑥, 𝑦 ∈ 𝐻, (7)

(ii)
󵄩󵄩󵄩󵄩𝑡𝑥 + (1 − 𝑡) 𝑦

󵄩󵄩󵄩󵄩

2

= 𝑡‖𝑥‖
2

+ (1 − 𝑡)
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

2

− 𝑡 (1 − 𝑡)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

,

∀𝑡 ∈ [0, 1] , ∀𝑥, 𝑦 ∈ 𝐻.

(8)

Lemma 2 (see [13]). Let 𝐴 : 𝐻 → 𝐻 be a 𝑘-Lipschitzian and
𝜂-strongly monotone operator on a Hilbert space𝐻with 𝑘 > 0,

𝜂 > 0, 0 < 𝜇 < 2𝜂/𝑘
2, and 0 < 𝑡 < 1. Then 𝑆 = (𝐼 − 𝑡𝜇𝐴) :

𝐻 → 𝐻 is a contraction with contractive coefficient 1−𝑡𝜏 and
𝜏 = 𝜇(2𝜂 − (𝜇𝑘

2

/2)).

Lemma 3 (see [1]). Let 𝑆 : 𝐶 → 𝐶 be a 𝜅-strict pseudo-
contraction. Define 𝑇 : 𝐶 → 𝐶 by 𝑇𝑥 = 𝜆𝑥 + (1 − 𝜆)𝑆𝑥 for
each 𝑥 ∈ 𝐶. Then, as 𝜆 ∈ [𝜅, 1), 𝑇 is a nonexpansive mapping
such that 𝐹

𝑖𝑥
(𝑇) = 𝐹

𝑖𝑥
(𝑆).

Lemma 4. Let 𝑉 : 𝐶 → 𝐻 be an 𝑙-Lipschitz mapping with
coefficient 𝑙 ≥ 0 and 𝐴 : 𝐶 → 𝐻 a 𝑘-Lipschitzian continuous
operator and 𝜂-strongly monotone operator with 𝑘 > 0, 𝜂 > 0.
Then, for 0 < 𝛾 < 𝜇𝜂/𝑙,

⟨𝑥 − 𝑦, (𝜇𝐴 − 𝛾𝑉) 𝑥 − (𝜇𝐴 − 𝛾𝑉) 𝑦⟩

≥ (𝜇𝜂 − 𝛾𝑙)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

, 𝑥, 𝑦 ∈ 𝐻.

(9)

That is, 𝜇𝐴 − 𝛾𝑉 is strongly monotone with coefficient 𝜇𝜂 − 𝛾𝑙.

Proof. Since 𝐴 is 𝑙-Lipschitz and 𝜂-strongly monotone, it is
easy to get

⟨𝑥 − 𝑦, (𝜇𝐴 − 𝛾𝑉) 𝑥 − (𝜇𝐴 − 𝛾𝑉) 𝑦⟩

= 𝜇 ⟨𝑥 − 𝑦, 𝐴𝑥 − 𝐴𝑦⟩ − 𝛾 ⟨𝑥 − 𝑦, 𝑉𝑥 − 𝑉𝑦⟩

≥ (𝜇𝜂 − 𝛾𝑙)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

, 𝑥, 𝑦 ∈ 𝐶.

(10)

Lemma 5 (see [16]). Assume that {𝑎
𝑛
} is a sequence of

nonnegative real numbers such that
𝑎
𝑛+1

≤ (1 − 𝛾
𝑛
) 𝑎
𝑛
+ 𝛿
𝑛
, (11)

where {𝛾
𝑛
} is a sequence in (0, 1) and {𝛿

𝑛
} is a sequence such

that
(i)

∞

∑

𝑛=1

𝛾
𝑛
= ∞; (12)

(ii)

lim sup
𝑛→∞

𝛿
𝑛

𝛾
𝑛

≤ 0 or
∞

∑

𝑛=1

󵄨󵄨󵄨󵄨𝛿𝑛
󵄨󵄨󵄨󵄨 < ∞. (13)

Then, lim
𝑛→∞

𝑎
𝑛
= 0.

Let {𝑆
𝑛
} be a sequence of 𝜅

𝑛
-strict pseudo-contractions.

Define 𝑆󸀠
𝑛
= 𝜃
𝑛
𝐼 + (1 − 𝜃

𝑛
)𝑆
𝑛
, 𝜃
𝑛
∈ [𝜅
𝑛
, 1). Then, by Lemma 3,

𝑆
󸀠

𝑛
is nonexpansive. In order to find the common fixed point

set of infinite mappings,𝑊-mapping is often used; see [9, 13,
15, 17, 18] and references therein. The mapping𝑊

𝑛
is defined

by
𝑈
𝑛,𝑛+1

= 𝐼,

𝑈
𝑛,𝑛
= 𝑡
𝑛
𝑆
󸀠

𝑛
𝑈
𝑛,𝑛+1

+ (1 − 𝑡
𝑛
) 𝐼,

𝑈
𝑛,𝑛−1

= 𝑡
𝑛−1
𝑆
󸀠

𝑛−1
𝑈
𝑛,𝑛
+ (1 − 𝑡

𝑛−1
) 𝐼,

...
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𝑈
𝑛,𝑖
= 𝑡
𝑖
𝑆
󸀠

𝑖
𝑈
𝑛,𝑖+1

+ (1 − 𝑡
𝑖
) 𝐼,

...

𝑈
𝑛,2
= 𝑡
2
𝑆
󸀠

2
𝑈
𝑛,3
+ (1 − 𝑡

2
) 𝐼,

𝑊
𝑛
= 𝑈
𝑛,1
= 𝑡
1
𝑆
󸀠

1
𝑈
𝑛,2
+ (1 − 𝑡

1
) 𝐼,

(14)

where 𝑡
1
, 𝑡
2
, . . . are real numbers such that 0 ≤ 𝑡

𝑛
< 1. Such

a mapping𝑊
𝑛
is called a𝑊-mapping generated by 𝑆󸀠

1
, 𝑆
󸀠

2
, . . .

and 𝑡
1
, 𝑡
2
, . . .. As we have seen, 𝑊-mapping contains many

composite computation of 𝑆󸀠
𝑛
, and it is complicated and needs

a large number of complex operations. In [14], He and Sun
proposed a new hybrid steepest descent method for solving
fixed point problem defined on the common fixed point set
of infinite nonexpansive mappings.

Lemma 6 (see [14]). Let𝐻 be a real Hilbert and 𝑇
𝑖
: 𝐻 → 𝐻

(𝑖 = 1, 2, . . .) all nonexpansive mappings with ⋂∞
𝑖=1
𝐹
𝑖𝑥
(𝑇
𝑖
) ̸= 0.

Let 𝑇 = ∑
∞

𝑖=1
𝜔
𝑖
𝑇
𝑖
(𝑖 = 1, 2, . . .), where {𝜔

𝑖
} ⊂ (0, 1) such that

∑
∞

𝑖=1
𝜔
𝑖
= 1. Then 𝑇 is a nonexpansive mapping with 𝐹

𝑖𝑥
(𝑇) =

⋂
∞

𝑖=1
𝐹
𝑖𝑥
(𝑇
𝑖
).

Lemma 7 (see [14]). Let𝐻 be a real Hilbert and 𝑇
𝑖
: 𝐻 → 𝐻

(𝑖 = 1, 2, . . .) all nonexpansive mappings with ⋂∞
𝑖=1
𝐹
𝑖𝑥
(𝑇
𝑖
) ̸= 0.

Let 𝑇 = ∑
∞

𝑖=1
𝜔
𝑖
𝑇
𝑖
, where {𝜔

𝑖
} ⊂ (0, 1) such that ∑∞

𝑖=1
𝜔
𝑖
=

1. Assume 𝐿
𝑛
= ∑
𝑛

𝑖=1
𝜔
𝑖
𝑇
𝑖
/𝑠
𝑛
, where 𝑠

𝑛
= ∑
𝑛

𝑖=1
𝜔
𝑖
. Then 𝐿

𝑛

uniformly converges to 𝑇 in each bounded subset in𝐻.

For solving the equilibrium problem, let us assume that
the bifunction 𝐹 satisfies the following conditions:

(A1) 𝐹(𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝐶;
(A2) 𝐹 is monotone; that is, 𝐹(𝑥, 𝑦) + 𝐹(𝑦, 𝑥) ≤ 0 for any

𝑥, 𝑦 ∈ 𝐶;
(A3) for each 𝑥, 𝑦, 𝑧 ∈ 𝐶, lim sup

𝑡→0
𝐹(𝑡𝑧 + (1 − 𝑡)𝑥, 𝑦) ≤

𝐹(𝑥, 𝑦);
(A4) 𝐹(𝑥, ⋅) is convex and lower semicontinuous for each

𝑥 ∈ 𝐶.
We recall some lemmas which will be needed in the rest

of this paper.

Lemma 8 (see [2]). Let 𝐶 be a nonempty closed convex subset
of𝐻, let 𝐹 be bifunction from 𝐶×𝐶 toR satisfying (A1)–(A4),
and let 𝑟 > 0 and 𝑥 ∈ 𝐻. Then there exists 𝑧 ∈ 𝐶 such that

𝐹 (𝑧, 𝑦) +
1

𝑟
⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (15)

Lemma 9 (see [7]). For 𝑟 > 0, 𝑥 ∈ 𝐻, define a mapping 𝑇
𝑟
:

𝐻 → 𝐶 as follows:

𝑇
𝑟
(𝑥)

= {𝑧 ∈ 𝐶 | 𝐹 (𝑧, 𝑦) +
1

𝑟
⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶}

(16)

for all 𝑥 ∈ 𝐻. Then, the following statements hold:

(i) 𝑇
𝑟
is single valued;

(ii) 𝑇
𝑟
is firmly nonexpansive; that is, for any 𝑥, 𝑦 ∈ 𝐻,

󵄩󵄩󵄩󵄩𝑇𝑟𝑥 − 𝑇𝑟𝑦
󵄩󵄩󵄩󵄩

2

≤ ⟨𝑇
𝑟
𝑥 − 𝑇
𝑟
𝑦, 𝑥 − 𝑦⟩ ; (17)

(iii) 𝐹
𝑖𝑥
(𝑇
𝑟
) = EP(𝐹);

(iv) EP(𝐹) is closed and convex.

Lemma 10 (see [19]). Let {𝑥
𝑛
} and {𝑧

𝑛
} be bounded sequences

in a Banach space and {𝛽
𝑛
} a sequence of real numbers such

that 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1 for all 𝑛 =

0, 1, 2, . . . Suppose that 𝑥
𝑛+1

= (1 − 𝛽
𝑛
)𝑧
𝑛
+ 𝛽
𝑛
𝑥
𝑛
for all 𝑛 =

0, 1, 2, . . . and lim sup
𝑛→∞

‖𝑧
𝑛+1

−𝑧
𝑛
‖ − ‖𝑥

𝑛+1
−𝑥
𝑛
‖ ≤ 0. Then

lim
𝑛→∞

‖𝑧
𝑛
− 𝑥
𝑛
‖ = 0.

Lemma 11 (see [6]). Let 𝐶,𝐻, 𝐹, and 𝑇
𝑟
𝑥 be as in Lemma 9.

Then the following holds:

󵄩󵄩󵄩󵄩𝑇𝑠𝑥 − 𝑇𝑡𝑥
󵄩󵄩󵄩󵄩

2

≤
𝑠 − 𝑡

𝑠
⟨𝑇
𝑠
𝑥 − 𝑇
𝑡
𝑥, 𝑇
𝑠
𝑥 − 𝑥⟩ (18)

for all 𝑠, 𝑡 > 0 and 𝑥 ∈ 𝐻.

Lemma 12 (see [13]). Let𝐻 be a Hilbert space, 𝐶 a nonempty
closed convex subset of 𝐻, and 𝑇 : 𝐶 → 𝐶 a nonexpansive
mapping with 𝐹

𝑖𝑥
(𝑇) ̸= 0. If {𝑥

𝑛
} is a sequence in 𝐶 weakly

converging to 𝑥 and if {(𝐼 − 𝑇)𝑥
𝑛
} converges strongly to 𝑦, then

(𝐼 − 𝑇)𝑥 = 𝑦.

We adopt the following notations:

(1) 𝑥
𝑛
⇀ 𝑥 stands for the weak convergence of {𝑥

𝑛
} to 𝑥,

(2) 𝑥
𝑛
→ 𝑥 stands for the strong convergence of {𝑥

𝑛
} to

𝑥.

3. Main Result

Recall that, given a nonempty closed convex subset𝐶 of a real
Hilbert space𝐻, for any 𝑥 ∈ 𝐻, there exists a unique nearest
point in 𝐶, denoted by 𝑃

𝐶
𝑥, such that

󵄩󵄩󵄩󵄩𝑥 − 𝑃𝐶𝑥
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 (19)

for all 𝑦 ∈ 𝐶. Such a 𝑃
𝐶
is called the metric (or the nearest

point) projection of𝐻 onto𝐶. As we all know, 𝑦 = 𝑃
𝐶
𝑥 if and

only if there holds the following relation:

⟨𝑥 − 𝑦, 𝑦 − 𝑧⟩ ≥ 0 ∀𝑧 ∈ 𝐶. (20)

Throughout the rest of this paper, we always assume that
𝑉 is an 𝑙-Lipschitzianmapping of𝐻 into itself with coefficient
𝑙 ≥ 0 and 𝐴 is a 𝑘-Lipschitzian continuous operator and 𝜂-
strongly monotone on 𝐻 with 𝑘 > 0, 𝜂 > 0. Assume that
0 < 𝜇 < 2𝜂/𝑘

2 and 0 < 𝛾 < 𝜇(𝜂 − (𝜇𝑘2/2))/𝛼 = 𝜏/𝑙.
Define a mapping 𝑈

𝑛
= 𝛽
𝑛
𝐼 + (1 − 𝛽

𝑛
)𝐿
𝑛
𝑇
𝑟
𝑛

. Since both
𝐿
𝑛
and 𝑇

𝑟
𝑛

are nonexpansive, it is easy to get that 𝑈
𝑛
is also

nonexpansive. Consider the mapping 𝐺
𝑛
on𝐻 defined by

𝐺
𝑛
𝑥 = 𝛼

𝑛
𝛾𝑉 (𝑥) + (𝐼 − 𝛼

𝑛
𝜇𝐴)𝑈

𝑛
𝑥, ∀𝑥 ∈ 𝐻, 𝑛 ∈ 𝑁, (21)
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where 𝛼
𝑛
∈ (0, 1). By Lemmas 2 and 9, we have

󵄩󵄩󵄩󵄩𝐺𝑛𝑥 − 𝐺𝑛𝑦
󵄩󵄩󵄩󵄩 ≤ 𝛼𝑛𝛾

󵄩󵄩󵄩󵄩𝑉𝑥 − 𝑉𝑦
󵄩󵄩󵄩󵄩 + (1 − 𝛼𝑛𝜏)

󵄩󵄩󵄩󵄩𝑈𝑛𝑥 − 𝑈𝑛𝑦
󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛
𝛾𝑙
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 + (1 − 𝛼𝑛𝜏)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

= (1 − 𝛼
𝑛
(𝜏 − 𝛾𝑙))

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 .

(22)

Since 0 < 1 − 𝛼
𝑛
(𝜏 − 𝛾𝑙) < 1, it follows that 𝐺

𝑛
is a

contraction. Therefore, by the Banach contraction principle,
𝐺
𝑛
has a unique fixed point 𝑥𝑉

𝑛
∈ 𝐻 such that

𝑥
𝑉

𝑛
= 𝛼
𝑛
𝛾𝑉 (𝑥

𝑉

𝑛
) + (𝐼 − 𝛼

𝑛
𝜇𝐴)𝑈

𝑛
𝑥
𝑉

𝑛
. (23)

For simplicity, we will write 𝑥
𝑛
for 𝑥𝑉
𝑛

provided no
confusion occurs. Next we prove the sequence {𝑥

𝑛
} converges

strongly to a 𝑥∗ ∈ Ω = ⋂
∞

𝑖=1
𝐹
𝑖𝑥
(𝑆
𝑖
) ∩ EP(𝐹) which solves the

variational inequality

⟨(𝛾𝑉 − 𝜇𝐴) 𝑥
∗

, 𝑝 − 𝑥
∗

⟩ ≤ 0, ∀𝑝 ∈ Ω. (24)

By the property of the projection, we can get 𝑥∗ = 𝑃
Ω
(𝐼−𝜇𝐴+

𝛾𝑉)𝑥
∗ equivalently.

Theorem 13. Let 𝐶 be a nonempty closed convex subset of a
real Hilbert space 𝐻 and 𝐹 a bifunction from 𝐶 × 𝐶 to R

satisfying (A1)–(A4). Let 𝑆
𝑖
: 𝐶 → 𝐶 be family 𝜅

𝑖
-strict

pseudo-contractions for some 0 ≤ 𝜅
𝑖
< 1. Assume the set

Ω = ⋂
∞

𝑖=1
𝐹(𝑆
𝑖
)∩EP(𝐹) ̸= 0. Let𝑉 be an 𝑙-Lipschitzianmapping

of 𝐻 into itself with 𝑙 ≥ 0, and let 𝐴 be a 𝑘-Lipschitzian
continuous operator and 𝜂-stronglymonotone on𝐻with 𝑘 > 0,
𝜂 > 0, 0 < 𝜇 < 2𝜂/𝑘

2, and 0 < 𝛾 < 𝜇(𝜂 − (𝜇𝑘
2

/2))/𝑙 = 𝜏/𝑙.
For every 𝑛 ∈ N, let 𝐿

𝑛
be the mapping generated by 𝑆󸀠

𝑖
and 0 <

𝜔
𝑖
< 1with∑∞

𝑖=1
𝜔
𝑖
= 1 according to (6). Given 𝑥

1
∈ 𝐻, let {𝑥

𝑛
}

and {𝑢
𝑛
} be sequences generated by the following algorithm:

𝑢
𝑛
= 𝑇
𝑟
𝑛

𝑥
𝑛
,

𝑦
𝑛
= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝐿
𝑛
𝑢
𝑛
,

𝑥
𝑛+1

= 𝛼
𝑛
𝛾𝑉𝑥
𝑛
+ (𝐼 − 𝜇𝛼

𝑛
𝐴)𝑦
𝑛
.

(25)

If {𝛼
𝑛
}, {𝛽
𝑛
}, and {𝑟

𝑛
} satisfy the following conditions:

(i) {𝛼
𝑛
} ⊂ (0, 1), lim

𝑛→∞
𝛼
𝑛
= 0, and ∑∞

𝑛=1
𝛼
𝑛
= ∞;

(ii) 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1;

(iii) {𝑟
𝑛
} ⊂ (0,∞), lim inf

𝑛→∞
𝑟
𝑛
> 0, and lim

𝑛→∞
|𝑟
𝑛+1

−

𝑟
𝑛
| = 0,

then, {𝑥
𝑛
} converges strongly to 𝑥∗ ∈ Ω, which solves the

variational inequality (24).

Proof. The proof is divided into several steps.
Step 1. Show first that {𝑥

𝑛
} is bounded.

Taking any 𝑝 ∈ Ω, by Lemma 9, we have

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑟
𝑛

𝑥
𝑛
− 𝑇
𝑟
𝑛

𝑝
󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 . (26)

It follows from (25) that

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝛽𝑛 (𝑥𝑛 − 𝑝) + (1 − 𝛽𝑛) (𝐿𝑛𝑢𝑛 − 𝐿𝑛𝑝)

󵄩󵄩󵄩󵄩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + (1 − 𝛽𝑛)

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 .

(27)

Further we get

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝛼𝑛 (𝛾𝑉𝑥𝑛 − 𝜇𝐴𝑝) + (𝐼 − 𝜇𝛼𝑛𝐴)𝑦𝑛

− (𝐼 − 𝜇𝛼
𝑛
𝐴)𝑝

󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛
(
󵄩󵄩󵄩󵄩𝛾𝑉𝑥𝑛 − 𝛾𝑉𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝛾𝑉𝑝 − 𝜇𝐴𝑝

󵄩󵄩󵄩󵄩)

+ (1 − 𝛼
𝑛
𝜏)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛
𝑙𝛾
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝛼𝑛
󵄩󵄩󵄩󵄩𝛾𝑉𝑝 − 𝜇𝐴𝑝

󵄩󵄩󵄩󵄩

+ (1 − 𝛼
𝑛
𝜏)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

= (1 − 𝛼
𝑛
(𝜏 − 𝑙𝛾))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+ 𝛼
𝑛
(𝜏 − 𝑙𝛾)

󵄩󵄩󵄩󵄩𝛾𝑉𝑝 − 𝜇𝐴𝑝
󵄩󵄩󵄩󵄩

𝜏 − 𝑙𝛾

≤ max{󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝛾𝑉𝑝 − 𝜇𝐴𝑝
󵄩󵄩󵄩󵄩

𝜏 − 𝑙𝛾
} .

(28)

By induction, we obtain ‖𝑥
𝑛
− 𝑝‖ ≤ max{‖𝑥

1
− 𝑝‖, ‖𝛾𝑉𝑝 −

𝜇𝐴𝑝‖/(𝜏 − 𝑙𝛾)}, 𝑛 ≥ 1. Hence, {𝑥
𝑛
} is bounded, so are {𝑢

𝑛
}

and {𝑦
𝑛
}. It follows from the Lipschitz continuity of 𝐴 and

𝑉 that {𝐴𝑥
𝑛
}, {𝐴𝑢

𝑛
}, and {𝑉𝑥

𝑛
} are also bounded. From the

nonexpansivity of 𝐿
𝑛
, it follows that {𝐿

𝑛
𝑥
𝑛
} is also bounded.

Step 2. Show that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩 󳨀→ 0. (29)

Suppose 𝑥
𝑛+1

= 𝛽
𝑛
𝑥
𝑛
+(1−𝛽

𝑛
)𝑧
𝑛
, then 𝑧

𝑛
= (𝑥
𝑛+1
−𝛽
𝑛
𝑥
𝑛
)/(1−

𝛽
𝑛
) = (𝛼

𝑛
𝛾𝑉𝑥
𝑛
+ (𝐼 − 𝜇𝛼

𝑛
𝐴)𝑦
𝑛
− 𝛽
𝑛
𝑥
𝑛
)/(1 − 𝛽

𝑛
).

Hence, we have

𝑧
𝑛+1

− 𝑧
𝑛

=
𝛼
𝑛+1
𝛾𝑉𝑥
𝑛+1

+ (𝐼 − 𝜇𝛼
𝑛+1
𝐴)𝑦
𝑛+1

− 𝛽
𝑛+1
𝑥
𝑛+1

1 − 𝛽
𝑛+1

−
𝛼
𝑛
𝛾𝑉𝑥
𝑛
+ (𝐼 − 𝜇𝛼

𝑛
𝐴)𝑦
𝑛
− 𝛽
𝑛
𝑥
𝑛

1 − 𝛽
𝑛

=
𝛼
𝑛+1

(𝛾𝑉𝑥
𝑛+1

− 𝜇𝐴𝑦
𝑛+1
)

1 − 𝛽
𝑛+1

+
𝑦
𝑛+1

− 𝛽
𝑛+1
𝑥
𝑛+1

1 − 𝛽
𝑛+1

−
𝛼
𝑛
(𝛾𝑉𝑥
𝑛
− 𝜇𝐴𝑦

𝑛
)

1 − 𝛽
𝑛

−
𝑦
𝑛
− 𝛽
𝑛
𝑥
𝑛

1 − 𝛽
𝑛
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=
𝛼
𝑛+1

(𝛾𝑉𝑥
𝑛+1

− 𝜇𝐴𝑦
𝑛+1
)

1 − 𝛽
𝑛+1

+
𝛽
𝑛+1
𝑥
𝑛+1

+ (1 − 𝛽
𝑛+1
) 𝐿
𝑛+1
𝑢
𝑛+1

− 𝛽
𝑛+1
𝑥
𝑛+1

1 − 𝛽
𝑛+1

−
𝛼
𝑛
(𝛾𝑉𝑥
𝑛
− 𝜇𝐴𝑦

𝑛
)

1 − 𝛽
𝑛

−
𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝐿
𝑛
𝑢
𝑛
− 𝛽
𝑛
𝑥
𝑛

1 − 𝛽
𝑛

≤
𝛼
𝑛+1

(𝛾𝑉𝑥
𝑛+1

− 𝜇𝐴𝑦
𝑛+1
)

1 − 𝛽
𝑛+1

−
𝛼
𝑛
(𝛾𝑉𝑥
𝑛
− 𝜇𝐴𝑦

𝑛
)

1 − 𝛽
𝑛

+ 𝐿
𝑛+1
𝑢
𝑛+1

− 𝐿
𝑛
𝑢
𝑛
.

(30)

Observe that
󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑢𝑛

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑟
𝑛+1

𝑥
𝑛+1

− 𝑇
𝑟
𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑟
𝑛+1

𝑥
𝑛+1

− 𝑇
𝑟
𝑛+1

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑟
𝑛+1

𝑥
𝑛
− 𝑇
𝑟
𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑟
𝑛+1

𝑥
𝑛
− 𝑇
𝑟
𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
.

(31)

By the definition of 𝐿
𝑛
, we have

󵄩󵄩󵄩󵄩𝐿𝑛+1𝑢𝑛+1 − 𝐿𝑛𝑢𝑛
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝐿𝑛+1𝑢𝑛+1 − 𝐿𝑛+1𝑢𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐿𝑛+1𝑢𝑛 − 𝐿𝑛𝑢𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑢𝑛

󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛+1

∑

𝑖=1

𝜔
𝑖

𝑠
𝑛+1

𝑆
󸀠

𝑖
𝑢
𝑛
−

𝑛

∑

𝑖=1

𝜔
𝑖

𝑠
𝑛

𝑆
󸀠

𝑖
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑟
𝑛+1

𝑥
𝑛
− 𝑇
𝑟
𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜔
𝑛+1

𝑠
𝑛+1

𝑆
󸀠

𝑛+1
𝑢
𝑛
+

𝑛

∑

𝑖=1

(
𝜔
𝑖

𝑠
𝑛+1

−
𝜔
𝑖

𝑠
𝑛

) 𝑆
󸀠

𝑖
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑟
𝑛+1

𝑥
𝑛
− 𝑇
𝑟
𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜔
𝑛+1

𝑠
𝑛+1

𝑆
󸀠

𝑛+1
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑

𝑖=1

−𝜔
𝑛+1
𝜔
𝑖

𝑠
𝑛+1
𝑠
𝑛

𝑆
󸀠

𝑖
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑟
𝑛+1

𝑥
𝑛
− 𝑇
𝑟
𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
+ 2𝑀
1

𝜔
𝑛+1

𝑠
𝑛+1

,

(32)

where𝑀
1
= sup

𝑖,𝑛≥1
{‖𝑆
󸀠

𝑖
𝑢
𝑛
‖}.

It follows from (30) and (32) that
󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧𝑛

󵄩󵄩󵄩󵄩

≤
𝛼
𝑛+1

1 − 𝛽
𝑛+1

(
󵄩󵄩󵄩󵄩𝛾𝑉𝑥𝑛+1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝜇𝐴𝑦𝑛+1

󵄩󵄩󵄩󵄩)

+
𝛼
𝑛

1 − 𝛽
𝑛

(
󵄩󵄩󵄩󵄩𝛾𝑉𝑥𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝜇𝐴𝑦𝑛

󵄩󵄩󵄩󵄩) +
󵄩󵄩󵄩󵄩𝐿𝑛+1𝑢𝑛+1 − 𝐿𝑛𝑢𝑛

󵄩󵄩󵄩󵄩

≤ (
𝛼
𝑛+1

1 − 𝛽
𝑛+1

+
𝛼
𝑛

1 − 𝛽
𝑛

)𝑀
2
+
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑟
𝑛+1

𝑥
𝑛
− 𝑇
𝑟
𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
+ 2𝑀
1

𝜔
𝑛+1

𝑠
𝑛+1

,

(33)

where𝑀
2
= sup

𝑛
{‖𝛾𝑉𝑥

𝑛
‖ + ‖𝜇𝐴𝑦

𝑛
‖}.

Hence we get ‖𝑧
𝑛+1
−𝑧
𝑛
‖−‖𝑥
𝑛+1
−𝑥
𝑛
‖ ≤ ‖𝑇

𝑟
𝑛+1

𝑥
𝑛
−𝑇
𝑟
𝑛

𝑥
𝑛
‖+

((𝛼
𝑛+1
/(1 − 𝛽

𝑛+1
)) + (𝛼

𝑛
/(1 − 𝛽

𝑛
)))𝑀
2
+𝑀
1
(𝜔
𝑛+1
/𝑆
𝑛+1
). Since

∑
∞

𝑛=1
𝜔
𝑛
= 1 is convergent, it is easy to see that ∑∞

𝑛=1
𝜔
𝑛
/𝑠
𝑛
is

also convergent. Thus we have 𝜔
𝑛
/𝑠
𝑛
→ 0 (𝑛 → ∞).

From conditions (i) and (iii) and Lemma 11, we obtain

lim sup
𝑛→∞

(
󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧𝑛

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛

󵄩󵄩󵄩󵄩) ≤ 0. (34)

By Lemma 10, we have lim
𝑛→∞

‖𝑧
𝑛
− 𝑥
𝑛
‖ = 0. Thus

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩 = lim
𝑛→∞

(1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩 = 0. (35)

By Lemma 11 and (30) and (29), we obtain
󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑢𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0. (36)

Step 3. Show that
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐿𝑥𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0, (37)

where 𝐿 = ∑∞
𝑖=1
𝜔
𝑖
𝑆
󸀠

𝑖
(𝑖 = 1, 2, . . .).

Observe that
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐿𝑛𝑥𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐿𝑛𝑢𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐿𝑛𝑢𝑛 − 𝐿𝑛𝑥𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐿𝑛𝑢𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐿𝑛𝑢𝑛
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛+1
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑦𝑛
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝐿𝑛𝑢𝑛
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛+1

󵄩󵄩󵄩󵄩 + 𝛼𝑛
󵄩󵄩󵄩󵄩𝛾𝑉𝑥𝑛 − 𝜇𝐴𝑦𝑛

󵄩󵄩󵄩󵄩

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐿𝑛𝑢𝑛
󵄩󵄩󵄩󵄩 .

(38)

From condition (i) and (25), we can obtain

(1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐿𝑛𝑢𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛+1

󵄩󵄩󵄩󵄩 + 𝛼𝑛
󵄩󵄩󵄩󵄩𝛾𝑉𝑥𝑛 − 𝜇𝐴𝑦𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0.

(39)

It follows from condition (ii) that
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐿𝑛𝑢𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0. (40)

By Lemma 9, we get

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑟
𝑛

𝑥
𝑛
− 𝑇
𝑟
𝑛

𝑝
󵄩󵄩󵄩󵄩󵄩

2

≤ ⟨𝑇
𝑟
𝑛

𝑥
𝑛
− 𝑇
𝑟
𝑛

𝑝, 𝑥
𝑛
− 𝑝⟩

=
1

2
(
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩

2

) .

(41)

This implies that

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩

2

. (42)

By nonexpansivity of 𝐿
𝑛
, we have

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ (1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− (1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩

2

.

(43)
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It follows from (25) that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛼𝑛 (𝛾𝑉𝑥𝑛 − 𝑝) + (𝐼 − 𝜇𝛼𝑛𝐴)𝑦𝑛 − (𝐼 − 𝜇𝛼𝑛𝐴)𝑝

+𝛼
𝑛
(𝑝 − 𝜇𝐴𝑝)

󵄩󵄩󵄩󵄩

2

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝛾𝑉𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ (1 − 𝛼
𝑛
𝜏)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑝 − 𝜇𝐴𝑝
󵄩󵄩󵄩󵄩

2

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝛾𝑉𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ (1 − 𝛼
𝑛
𝜏) (

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

− (1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩

2

)

+ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑝 − 𝜇𝐴𝑝
󵄩󵄩󵄩󵄩

2

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝛾𝑉𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− (1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑝 − 𝜇𝐴𝑝
󵄩󵄩󵄩󵄩

2

.

(44)

This implies that

(1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩

2

≤ 𝛼
𝑛
(
󵄩󵄩󵄩󵄩𝛾𝑉𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑝 − 𝜇𝐴𝑝

󵄩󵄩󵄩󵄩

2

)

+
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

2

≤ 𝛼
𝑛
(
󵄩󵄩󵄩󵄩𝛾𝑉𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑝 − 𝜇𝐴𝑝

󵄩󵄩󵄩󵄩

2

)

+ (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛

󵄩󵄩󵄩󵄩 .

(45)

From conditions (i) and (ii) and (29), we have
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0. (46)

Thus, we get
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐿𝑛𝑥𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0. (47)

On the other hand, we have
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐿𝑥𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐿𝑛𝑥𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐿𝑛𝑥𝑛 − 𝐿𝑥𝑛

󵄩󵄩󵄩󵄩 . (48)

Combining (47) and Lemma 7, we obtain (37).
Step 4. Show that

lim sup
𝑛→∞

⟨(𝛾𝑉 − 𝜇𝐴) 𝑥
∗

, 𝑥
𝑛
− 𝑥
∗

⟩ ≤ 0, (49)

where 𝑥∗ = 𝑃
Ω
(𝐼 − 𝜇𝐴 + 𝛾𝑉)𝑥

∗ is a unique solution of the
variational inequality (24). Indeed, take a subsequence {𝑥

𝑛
𝑗

}

of {𝑥
𝑛
} such that

lim sup
𝑛→∞

⟨(𝛾𝑉 − 𝜇𝐴) 𝑥
∗

, 𝑥
𝑛
− 𝑥
∗

⟩

= lim
𝑗→∞

⟨(𝛾𝑉 − 𝜇𝐴) 𝑥
∗

, 𝑥
𝑛
𝑗

− 𝑥
∗

⟩ .

(50)

Since {𝑥
𝑛
𝑗

} is bounded, there exists a subsequence {𝑥
𝑛
𝑗
𝑘

} of
{𝑥
𝑛
𝑗

}which converges weakly to 𝑞. Without loss of generality,
we can assume 𝑥

𝑛
𝑗

⇀ 𝑞. From (37), we obtain 𝐿𝑥
𝑛
𝑗

⇀ 𝑞.
By the same argument as in the proof of Theorem 13, we

have 𝑞 ∈ Ω. Since 𝑥∗ = 𝑃
Ω
(𝐼 − 𝜇𝐴 + 𝛾𝑉)𝑥

∗, it follows that

lim sup
𝑛→∞

⟨(𝛾𝑉 − 𝜇𝐴) 𝑥
∗

, 𝑥
𝑛
− 𝑥
∗

⟩

= lim
𝑗→∞

⟨(𝛾𝑉 − 𝜇𝐴) 𝑥
∗

, 𝑥
𝑛
𝑗

− 𝑥
∗

⟩

= ⟨(𝛾𝑉 − 𝜇𝐴) 𝑥
∗

, 𝑞 − 𝑥
∗

⟩ ≤ 0.

(51)

Step 5. Show that

𝑥
𝑛
󳨀→ 𝑥
∗

. (52)

Since

⟨(𝛾𝑉 − 𝜇𝐴) 𝑥
∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

= ⟨(𝛾𝑉 − 𝜇𝐴) 𝑥
∗

, 𝑥
𝑛+1

− 𝑥
𝑛
⟩ + ⟨(𝛾𝑉 − 𝜇𝐴) 𝑥

∗

, 𝑥
𝑛
− 𝑥
∗

⟩

≤
󵄩󵄩󵄩󵄩(𝛾𝑉 − 𝜇𝐴) 𝑥

∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩+ ⟨(𝛾𝑉 − 𝜇𝐴) 𝑥

∗

, 𝑥
𝑛
− 𝑥
∗

⟩ .

(53)

It follows from (29) and (51) that

lim sup
𝑛→∞

⟨(𝛾𝑉 − 𝜇𝐴) 𝑥
∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩ ≤ 0,

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛼𝑛𝛾𝑉𝑥𝑛 + (𝐼 − 𝜇𝛼𝑛𝐴)𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩(𝐼 − 𝜇𝛼𝑛𝐴)𝑦𝑛 − (𝐼 − 𝜇𝛼𝑛𝐴) 𝑥

∗

+𝛼
𝑛
(𝛾𝑉𝑥
𝑛
− 𝜇𝐴𝑥

∗

)
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩(𝐼 − 𝜇𝛼𝑛𝐴)𝑦𝑛 − (𝐼 − 𝜇𝛼𝑛𝐴) 𝑥

∗󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝛾𝑉𝑥
𝑛
− 𝜇𝐴𝑥

∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

≤ (1 − 𝛼
𝑛
𝜏)
2󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝛾𝑉𝑥
𝑛
− 𝛾𝑉𝑥

∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

+ 2𝛼
𝑛
⟨(𝛾𝑉 − 𝜇𝐴) 𝑥

∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

≤ (1 − 𝛼
𝑛
𝜏)
2󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
𝑙𝛾 (

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩

2

)

+ 2𝛼
𝑛
⟨(𝛾𝑉 − 𝜇𝐴) 𝑥

∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩ .

(54)

This implies that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

2

≤
(1 − 𝛼

𝑛
𝜏)
2

+ 𝛼
𝑛
𝑙𝛾

1 − 𝛼
𝑛
𝑙𝛾

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2
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Table 1: 𝑥
1
= 1/2.

𝑛 (iterative number) 𝑥
(1) (initial guess) Errors (𝑛)

94 0.9969 3.1 × 10
−3

150 0.9981 1.9 × 10
−3

450 0.9994 6.3 × 10
−4

+
2𝛼
𝑛

1 − 𝛼
𝑛
𝑙𝛾
⟨(𝛾𝑉 − 𝜇𝐴) 𝑥

∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

≤ (1 −
2𝛼
𝑛
(𝜏 − 𝑙𝛾)

1 − 𝛼
𝑛
𝑙𝛾

)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

+
2𝛼
𝑛

1 − 𝛼
𝑛
𝑙𝛾
⟨(𝛾𝑉 − 𝜇𝐴) 𝑥

∗

, 𝑥
𝑛+1

− 𝑥
∗

⟩

+
(𝛼
𝑛
𝜏)
2

1 − 𝛼
𝑛
𝑙𝛾
𝑀
3
,
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where 𝑀
3
= sup

𝑛
‖𝑥
𝑛
− 𝑥
∗

‖
2, 𝑛 ≥ 1. Put 𝛾

𝑛
= 2𝛼

𝑛
(𝜏 −

𝑙𝛾)/(1 − 𝛼
𝑛
𝑙𝛾), 𝛿

𝑛
= (2𝛼

𝑛
/(1 − 𝛼

𝑛
𝑙𝛾))⟨(𝛾𝑉 − 𝜇𝐴)𝑥

∗,
𝑥
𝑛+1

− 𝑥
∗

⟩ + ((𝛼
𝑛
𝜏)
2

/(1 − 𝛼
𝑛
𝑙𝛾))𝑀

3
. It is easy to see that

lim sup
𝑛→∞

𝛿
𝑛
/𝛾
𝑛
≤ 0. Hence, by Lemma 5, the sequence

{𝑥
𝑛
} converges strongly to 𝑥∗.

Remark 14. If we extend the equilibrium problem to be
system of equilibrium problems, we still obtain the desired
result by the similar proof of Theorem 13.

4. Numerical Result

In this section, we consider the following two simple exam-
ples to demonstrate the effectiveness, realization, and conver-
gence of the algorithm in Theorem 13. Further, we compare
convergence rates of the algorithm in this paper and [15].

First, we give an example as follows.

Example 15. InTheorem 13, let𝐻 = 𝑅,𝐶 = [1/4, +∞), 𝐹 ≡ 0,
for all 𝑥, 𝑦 ∈ 𝐶. Define 𝑆

0
: 𝑥 󳨃→ √𝑥, 𝑆

1
: 𝑥 󳨃→ 𝑥 + (𝜋/4) −

arctanx, and let 𝑆
𝑛
= 𝑆nmod2, 𝑛 = 1, 2, . . .. Take 𝐴 = 𝐼 with

Lipschitz constant 𝑘 = 1 and strongly monotone constant 𝜂 =
1,𝑉𝑥 = 2𝑥, for all 𝑥 ∈ 𝐻with Lipschitz coefficient 𝑙 = 2. Give
the parameters 𝛼

𝑛
= 1/20√𝑛, 𝛽

𝑛
= 1/4 for every 𝑛 ≥ 1, and

fix 𝜇 = 1 and 𝛾 = 1/8. Then {𝑥
𝑛
} is the sequence generated by

𝑦
𝑛
=
1

4
𝑥
𝑛
+
3

4
𝐿
𝑛
𝑥
𝑛
,

𝑥
𝑛+1

=
1

8

1

20√𝑛
2𝑥
𝑛
+ (1 −

1

20√𝑛
)𝑦
𝑛
.

(56)

As 𝑛 → ∞, we have {𝑥
𝑛
} → 𝑥

∗

= 1.

Let 𝜔
𝑖
= 1/2

𝑖, 𝑖 = 1, 2, . . .; then we have ∑∞
𝑖=1
𝜔
𝑖
= 1. Take

the initial guess 𝑥
1
= 1/2, using softwareMATLABR2012, we

obtain the numerical experiment results in Table 1.
Let𝑅2 be the two-dimensional Euclidean spacewith usual

inner product ⟨𝑥(1), 𝑥(2)⟩ = 𝑥(1)
1
𝑥
(2)

1
+ 𝑥
(1)

2
𝑥
(2)

2
(for all 𝑥(1) =

Table 2: (a) 𝑥(1) = (1, 0)⊤. (b) 𝑥(1) = (1, 0)⊤.

(a)

𝑛 (iterative number) 𝑥
(1) (initial guess) Errors (𝑛)

10 (0.8289, 0.5521) 4.6 × 10
−3

50 (0.8308, 0.5559) 3.8 × 10
−4

100 (0.8310, 0.5561) 1.9 × 10
−4

(b)

𝑛 (iterative number) 𝑥
(1) (initial guess) Errors (𝑛)

10 (0.8271, 0.5521) 5.6 × 10
−3

50 (0.8308, 0.5558) 4.7 × 10
−4

100 (0.8309, 0.5561) 2.2 × 10
−4

(𝑥
(1)

1
, 𝑥
(1)

2
)
⊤

, 𝑥
(2)

= (𝑥
(2)

1
, 𝑥
(2)

2
)
⊤

∈ 𝑅
2

) and induced norm
‖𝑥‖ = √𝑥

2

1
+ 𝑥
2

2
(for all 𝑥 = (𝑥

1
, 𝑥
2
)
⊤

∈ 𝑅
2

).
Next, we consider another simple example.

Example 16. In Theorem 13, let 𝐻 = 𝑅
2, 𝐶 = [0, 1] ×

[0, 1], 𝐹 ≡ 0, for all 𝑥, 𝑦 ∈ 𝐶. Give 𝑆
1
= 𝐼, 𝑆

0
: 𝑥 =

(𝑥
1
, 𝑥
2
)
⊤

󳨃→ (sin((𝑥
1
+ 𝑥
2
)/√2), cos((𝑥

1
+ 𝑥
2
)/√2))

⊤, and let
𝑆
𝑛
= 𝑆nmod2, 𝑛 = 1, 2, . . . 𝜔

𝑛
= 1/2

𝑛

∈ (0, 1), 𝑛 ≥ 1. Take
𝐴 = 𝐼 with Lipschitz constant 𝑘 = 1 and strongly monotone
constant 𝜂 = 1, 𝑓(𝑥) = ((1/4)𝑥

1
, −(1/4)𝑥

2
)
⊤, for all 𝑥 ∈ 𝐻

with contraction coefficient 𝜌 = 1/4. Give the parameters
𝛼
𝑛
= 1/10𝑛, 𝛽

𝑛
= 1/2 for every 𝑛 ≥ 1, and fix 𝜇 = 1 and

𝛾 = 1. Then {𝑥(𝑛)} is the sequence generated by

𝑦
(𝑛)

=
1

2
𝑥
(𝑛)

+
1

2
𝐿
𝑛
𝑥
(𝑛)

,

𝑥
(𝑛+1)

=
1

10𝑛
(
1

4
𝑥
(𝑛)

1
, −
1

4
𝑥
(𝑛)

2
) +

10𝑛 − 1

10𝑛
𝑦
(𝑛)

,

(57)

As 𝑛 → ∞, we have {𝑥(𝑛)} → 𝑥
∗

≈ (0.8310, 0.5562)
⊤.

For analysis of the rate of convergence, we use the concept
introduced by Rhoades [20] as follows.

Definition 17. Let 𝐸 be a closed interval on the real line and
𝑓 : 𝐸 → 𝐸 a continuous function. Suppose that {𝑥

𝑛
}
∞

𝑛=1
and

{𝑦
𝑛
}
∞

𝑛=1
are two iterations which converge to the fixed point 𝑝

of 𝑓. Then, {𝑥
𝑛
}
∞

𝑛=1
is said to converge faster than {𝑦

𝑛
}
∞

𝑛=1
if

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩 , ∀𝑛 ≥ 1. (58)

Nowwe turn to numerical simulation using the algorithm
(57). Take the initial guess 𝑥(1) = (1, 0)

⊤ and 𝑥(1) = (1, 1)
⊤,

respectively. All the numerical experiment results are given
in Tables 2(a) and 3(a). Then we realize the algorithm in [15],
and the𝑊-mapping is used in the paper. Further we obtain
the corresponding numerical results which can be found in
Tables 2(b) and 3(b).

It is easy to see that the approximation values obtained by
the algorithm (25) in this paper aremore close to the common
fixed point 𝑥∗ at the same iterative number. And from the
computer programming point of view, the algorithm is easier
to implement in this paper.
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Table 3: (a) 𝑥(1) = (1, 1)⊤. (b) 𝑥(1) = (1, 1)⊤.

(a)

𝑛 (iterative number) 𝑥
(1) (initial guess) Errors (𝑛)

10 (0.8341, 0.5534) 9.7 × 10
−4

50 (0.8308, 0.5559) 3.8 × 10
−4

100 (0.8310, 0.5561) 1.9 × 10
−4

(b)

𝑛 (iterative number) 𝑥
(1) (initial guess) Errors (𝑛)

10 (0.8359, 0.5531) 2.3 × 10
−3

50 (0.8308, 0.5558) 4.7 × 10
−4

100 (0.8309, 0.5561) 2.1 × 10
−4
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