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We consider a class of nonsmooth generalized semi-infinite programming problems.We apply results fromparametric optimization
to the lower level problems of generalized semi-infinite programming problems to get estimates for the value functions of the lower
level problems and thus derive necessary optimality conditions for generalized semi-infinite programming problems.We also derive
some new estimates for the value functions of the lower level problems in terms of generalized differentiation and further obtain
the necessary optimality conditions.

1. Introduction

Generalized semi-infinite programming problem (GSIP) is of
the form

min 𝑓 (𝑥)

s.t. 𝑥 ∈ R𝑛, 𝑔 (𝑥, 𝑦) ≤ 0, 𝑦 ∈ 𝑌 (𝑥),
(1)

where 𝑌(𝑥) := {𝑦 ∈ R𝑚 | V(𝑥, 𝑦) ≤ 0}. GSIP is different from
the standard semi-infinite programming in that its index set
𝑌 is dependent on 𝑥.

This first systematic study of GSIP was Hettich and
Still [1] where the reduction method was used to reduce
GSIP into standard nonlinear programming problems and
second-order optimality conditions were derived. Necessary
optimality conditions at an optimal solution 𝑥 for (1) with
differentiable data are as follows there exist nonnegative
numbers 𝜆

0
, . . . , 𝜆

𝑝
, not all zero, such that

𝜆
0
∇𝑓 (𝑥) +

𝑝

∑
𝑗=1

𝜆
𝑗
∇
𝑥
𝐿 (𝑥, 𝑦𝑗, 𝛼𝑗, 𝛽𝑗) = 0, (2)

where 𝐿(𝑥, 𝑦, 𝛼, 𝛽) = 𝛼𝑔(𝑥, 𝑦) − ⟨𝛽, V(𝑥, 𝑦)⟩ and each (𝛼𝑗, 𝛽𝑗)
is the usual FJ-multiplier of the lower level problem at its
optimal solution 𝑦𝑗

𝑄 (𝑥) max 𝑔 (𝑥, 𝑦)

s.t. V (𝑥, 𝑦) ≤ 0.
(3)

This condition was first derived by Jongen et al. [2] in
an elementary way without any constraint qualifications or
any kind of reduction approaches. They also proposed a
constraint qualification under which it follows that 𝜆

0
> 0

and discussed some geometrical properties of the feasible
set which do not appear in standard semi-infinite case. The
optimality conditions are further explored by Rückmann and
Shapiro [3] and Stein [4].

GSIP in itself is of complex and exclusive structures
such as the nonclosedness of the feasible set, nonconvexity,
nonsmoothness, and bilevel structure and thus a difficult
problem to solve see, for example, [2, 5, 6]. We also refer to
[7–10] for some recent study on the structure of GSIP.
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It is obvious that GSIP can be rewritten equivalently as the
nonlinear programming problem

min 𝑓 (𝑥)

s.t. 𝜙 (𝑥) ≤ 0,
(4)

where 𝜙(𝑥) is the optimal value of 𝑄(𝑥). Then we can relate
GSIP to the min-max problem

min
𝑥

max {𝑓 (𝑥) − 𝑓 (𝑥) , 𝜙 (𝑥)}; (5)

see [3] for more details. On the other hand, GSIP can be
related to the following bilevel problem:

min
(𝑥,𝑦)

𝑓 (𝑥)

s.t. 𝑔 (𝑥, 𝑦) ≤ 0,

𝑦 ∈ argmax {𝑔 (𝑥, 𝑦) : 𝑦 ∈ 𝑌 (𝑥)}.

(6)

The problem (6) is a special bilevel optimization problem in
that its upper level constraint is the same as the objective
function of its lower level problem. However, there is a slight
difference between GSIP problem (1) and problem (6). The
feasible set of (6) is a subset of (1) in that the feasible set
of (1) is the combination of the feasible set of (6) and the
complement of dom𝑌. For more comparisons between GSIP
and bilevel problems, see Stein and Still [11].

The bilevel problem (6) is equivalent to the following
problem:

min
(𝑥,𝑦)

𝑓 (𝑥)

s.t. (𝑥, 𝑦) ∈ Ω, 𝐺 (𝑥, 𝑦) ≤ 0,

(7)

where Ω = {(𝑥, 𝑦) | 𝑔(𝑥, 𝑦) ≤ 0, V(𝑥, 𝑦) ≤ 0} and
𝐺(𝑥, 𝑦) = 𝜙(𝑥) − 𝑔(𝑥, 𝑦). This approach was used by Dempe
and Zemkoho [12] to study bilevel optimization problems.
For general references of bilevel optimization, see [13].

In this paper we concentrate on the optimality conditions
of nonsmooth GSIP whose defining functions are Lipschitz
continuous. Similar works are [14, 15]. We achieve this via
the lower level optimal value function reformulation and then
derive its necessary optimality conditions via the generalized
differentiation. One of the key steps is to estimate the general-
ized gradients of the lower level optimal value functionwhich
involves parametric optimization.We will consider two cases
with different approaches related to the two reformulations of
GSIP as previously mentioned. Firstly, we develop optimality
conditions via themin-max formulation with Lipschitz lower
level optimal value function. Secondly, we develop optimality
conditions via bilevel formulation under the assumption of
partial calmness.

2. Preliminaries

In this section, we present some basic definitions and results
from variational analysis [16, 17]. Given a set 𝐴 in R𝑛, the
regular normal cone 𝑁̂

𝐴
of 𝐴 at 𝑥 ∈ 𝐴 is defined by

𝑁̂
𝐴
(𝑥) =

{
{
{

V ∈ R𝑛 | limsup
𝑥

𝐴

󳨀→𝑥

⟨V, 𝑥 − 𝑥⟩
‖𝑥 − 𝑥‖

≤ 0
}
}
}

. (8)

The (general) normal cone𝑁
𝐴
of 𝐴 at 𝑥 is defined by

𝑁
𝐴
(𝑥) = lim sup

𝑥→𝑥

𝑁̂
𝐴
(𝑥)

= {V | ∃𝑥𝑘 󳨀→ 𝑥, ∃V𝑘 󳨀→ V with V𝑘 ∈ 𝑁̂
𝐴
(𝑥𝑘)}.

(9)

Given a function 𝑓 : R𝑛 → R and a point 𝑥 with 𝑓(𝑥) finite,
denote by epi𝑓 the epigraph of 𝑓. The regular subdifferential
of 𝑓 at 𝑥 is defined by

𝜕̂𝑓 (𝑥) :={𝑢 ∈ R
𝑛 | lim inf

𝑥→𝑥,𝑥 ̸= 𝑥

(𝑓 (𝑥)−𝑓 (𝑥)−⟨𝑢, 𝑥−𝑥⟩)

‖𝑥 − 𝑥‖
≥0}.

(10)

The general (basic, limiting) and singular subdifferential of 𝑓
at 𝑥 are defined, respectively, by

𝜕𝑓 (𝑥) := lim sup
𝑥

𝑓

󳨀→𝑥

𝜕̂𝑓 (𝑥),

𝜕∞𝑓 (𝑥) := lim sup
𝑥

𝑓

󳨀→𝑥,𝜆↓0

𝜆𝜕̂𝑓 (𝑥).
(11)

The upper regular subdifferential of 𝑓 at 𝑥 is defined by
𝜕̂+𝑓(𝑥) := −𝜕̂(−𝑓)(𝑥), and the upper subdifferential of 𝑓 is
defined by 𝑥𝜕+𝑓(𝑥) := lim sup

𝑥

𝑓

󳨀→𝑥

𝜕̂+𝑓(𝑥).
The Clarke (convexified) normal cone can be defined by

two different approaches. On the one hand, it can be defined
by the polar cone of the Clarke’s tangent cone

𝑁
𝐴
(𝑥) := 𝑇̂

𝐴
(𝑥)

∘, (12)

where 𝑇̂
𝐴
(𝑥) = lim inf

𝑦

𝐴

󳨀→𝑥,𝑡↘0

(𝐴 − 𝑦)/𝑡 or defined via the
generalized directional derivative of the (Lipschitzian) distant
function dist(⋅, 𝐴); see Clarke [18]. On the other hand, it can
be defined by the closed convex hull of the (general) normal
cone

𝑁
𝐴
(𝑥) := cl co𝑁

𝐴
(𝑥) . (13)

For this definition and also the equivalence of the two
definitions, see, for example, Rockafellar and Wets [16].

TheClarke subgradients andClarke horizon subgradients
of 𝑓 at 𝑥 are defined by

𝜕𝑓 (𝑥) := {V | (V, −1) ∈ 𝑁epi𝑓 (𝑥, 𝑓 (𝑥))},

𝜕
∞

𝑓 (𝑥) := {V | (V, 0) ∈ 𝑁epi𝑓 (𝑥, 𝑓 (𝑥))}.
(14)
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The relationship between the Clarke sub-subdifferentials and
basic sub-differentials is also referred to by Mordukhovich
[17, Theorem 3.57].

Proposition 1 (see [16]). Let 𝑓 be proper and lsc around 𝑥 ∈
dom𝑓. Then,

𝜕𝑓 (𝑥) = cl co [𝜕𝑓 (𝑥) + 𝜕∞𝑓 (𝑥)]. (15)

If, in particular, 𝑓 is Lipschitz continuous at 𝑥, then

𝜕𝑓 (𝑥) = cl co 𝜕𝑓 (𝑥). (16)

The normal cone 𝑁
𝐴

enjoys the robustness property
𝑁
𝐴
(𝑥) = lim sup

𝑥→𝑥
𝑁
𝐴
(𝑥) provided that the setting is

finite dimension [17, page 11]. However, this is not true for
the convexified cone 𝑁

𝐴
; see, for example, Rockafellar [19].

Consider

𝐴 := {𝑥 ∈ R3 | 𝑥
3
= 𝑥

1
𝑥
2
or 𝑥

3
= −𝑥

1
𝑥
2
}, (17)

𝑥 = (0, 0, 0). (18)

The normal cone 𝑁
𝐴
(𝑥) is just the 𝑥

3
-axis, but 𝑁

𝐴
(𝑥) is the

𝑥
2
𝑥
3
-plane for all 𝑥 = (𝑥

1
, 0, 0). The following proposition is

from Rockafellar [19].

Proposition 2 (see [19]). If𝐴 is convex, or if 𝑁
𝐴
(𝑥) is pointed,

then the multifunction𝑁
𝐴
is closed at 𝑥; that is, for all 𝑥𝑘 →

𝑥, 𝑦𝑘
𝑁𝐴(𝑥

𝑘
)

󳨀󳨀󳨀󳨀󳨀→ 𝑦, one has 𝑦 ∈ 𝑁
𝐴
(𝑥).

Proposition 3. The Clarke normal cone has the robustness
property

𝑁
𝐴
(𝑥) = lim sup

𝑦→𝑥

𝑁
𝐴
(𝑦) (19)

provided that𝑁
𝐴
(𝑥) is pointed.

Proof. It suffices to prove that lim sup
𝑦→𝑥

co𝑁
𝐴
(𝑦) ⊂

cl co lim sup
𝑦→𝑥

𝑁
𝐴
(𝑦) = 𝑁

𝐴
(𝑥). Let V ∈

lim sup
𝑦→𝑥

co𝑁
𝐴
(𝑦). Then there are 𝑦

𝑘
∈ 𝐴, V

𝑖𝑘
∈ 𝑁

𝐴
(𝑦

𝑘
),

𝑖 = 1, . . . , 𝑛 + 1 such that

𝑛+1

∑
𝑖=1

V
𝑖𝑘
󳨀→ V as 𝑘 󳨀→ ∞, (20)

since the sets 𝑁
𝐴
(𝑦

𝑘
) are cones. Let 𝜆

𝑘
= ∑

𝑛+1

𝑖=1
‖V

𝑖𝑘
‖. Then

{𝜆
𝑘
} is bounded; that is also to say, {V

𝑖𝑘
} are bounded for all 𝑖.

Otherwise,∑𝑛+1

𝑖=1
V
𝑖𝑘
/𝜆

𝑘
→ 0.That is, V

1
+⋅ ⋅ ⋅+V

𝑛+1
= 0, where

V
𝑖
is the limit of {V

𝑖𝑘
/𝜆

𝑘
}
𝑘
for each 𝑖. Note that V

𝑖
∈ 𝑁

𝐴
(𝑥)

since 𝑁
𝐴
(𝑥) = lim sup

𝑦→𝑥
𝑁
𝐴
(𝑦). Thus V

1
= ⋅ ⋅ ⋅ = V

𝑛+1
= 0

by the pointedness of𝑁
𝐴
(𝑥). On the other hand, ∑

𝑖
‖V

𝑖
‖ = 1.

This is a contradiction.Thus the sequence {V
𝑖𝑘
} is bounded. By

taking subsequences, wemay assume that V
𝑖𝑘
→ V

𝑖
.Then V

𝑖
∈

𝑁
𝐴
(𝑥) and V = V

1
+ ⋅ ⋅ ⋅ + V

𝑛+1
. This completes the proof.

The following definitions are required for further devel-
opment.

Definition 4 (see [17, Definition 1.63]). Let 𝑆 : 𝑋 󴁂󴀱 𝑌 be a
set-valued mapping with 𝑥 ∈ dom 𝑆, the domain of 𝑆.

(i) Given 𝑦 ∈ 𝑆(𝑥), we say that the mapping 𝑆 is inner
semicontinuous at (𝑥, 𝑦) if for every sequence 𝑥

𝑘
→

𝑥 there is a sequence 𝑦
𝑘
∈ 𝑆(𝑥

𝑘
) converging to 𝑦 as

𝑘 → ∞.

(ii) 𝑆 is inner semicompact at 𝑥 if for every sequence
𝑥
𝑘
→ 𝑥 there is a sequence 𝑦

𝑘
∈ 𝑆(𝑥

𝑘
) that contains

a convergent subsequence as 𝑘 → ∞.

(iii) 𝑆 is 𝜇-inner semicontinuous at (𝑥, 𝑦) (𝜇-inner semi-
compact at 𝑥) if in above two cases, 𝑥

𝑘
→ 𝑥 is

replaced by 𝑥
𝑘
→ 𝑥 with 𝜇(𝑥

𝑘
) → 𝜇(𝑥).

Here the concept of 𝜇-inner semicontinuity/semicom-
pactness is important for our considerations. It is typical that
the value function 𝜙 of the lower level problem 𝑄(𝑥) of GSIP
is not continuous, even taking value −∞.

Theorem 5 (subdifferentiation of maximum functions [17,
Theorem 3.46]). Consider the maximum function of the form

(max𝜙
𝑖
) (𝑥) = max {𝜙

𝑖
(𝑥) | 𝑖 = 1, . . . , 𝑙}. (21)

Let 𝜙
𝑖
be lower semicontinuous around 𝑥 for 𝑖 ∈ 𝐼(𝑥) := {𝑖 |

max(𝜙
𝑖
)(𝑥) = 𝜙

𝑖
(𝑥)} and be upper semicontinuous at 𝑥 for 𝑖 ∉

𝐼(𝑥). Assume that the qualification holds:

[ ∑
𝑖∈𝐼(𝑥)

𝑥∗
𝑖
= 0, 𝑥∗

𝑖
∈ 𝜕∞𝜙

𝑖
(𝑥)] 󳨐⇒ 𝑥

∗

𝑖
= 0, 𝑖 ∈ 𝐼 (𝑥).

(22)

Then

𝜕 (max𝜙
𝑖
) (𝑥) ⊂ ⋃{ ∑

𝑖∈𝐼(𝑥)

𝜆
𝑖
𝜕𝜙

𝑖
(𝑥) | (𝜆

1
, . . . , 𝜆

𝑙
) ∈ Λ (𝑥)},

(23)

where Λ(𝑥) = {(𝜆
1
, . . . , 𝜆

𝑙
) | 𝜆

𝑖
≥ 0,∑

𝑙

𝑖=1
𝜆
𝑖
= 1, 𝜆

𝑖
(𝜙

𝑖
(𝑥) −

(max𝜙
𝑖
)(𝑥)) = 0}.

Note that qualification (22) always holds if all related
functions are locally Lipschitz.

The following two results are about continuity properties
and estimates of subdifferentials of marginal functions which
are crucial to our analysis for GSIP problems.

Proposition 6 (limiting subgradients of marginal functions
[20]). Consider the parametric optimization problem

𝜇 (𝑥) := inf {𝜑 (𝑥, 𝑦) | 𝑦 ∈ 𝐺 (𝑥)}, (24)

and let𝑀(𝑥) := {𝑦 ∈ 𝐺(𝑥) | 𝜇(𝑥) = 𝜑(𝑥, 𝑦)}, 𝐺(𝑥) := {𝑦 ∈
R𝑚 | 𝜑

𝑖
(𝑥, 𝑦) ≤ 0, 𝑖 = 1, . . . , 𝑙}. For simplicity, one does not

consider the case with equality constraints involved.
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(i) Assume that𝑀 is 𝜇-inner semicontinuous at (𝑥, 𝑦) ∈
gph 𝑀 (the graph of 𝑀), that 𝜑 and all 𝜑

𝑖
are Lips-

chitz continuous around (𝑥, 𝑦), and that the following
qualification condition is satisfied:

𝑜𝑛𝑙𝑦 𝑡ℎ𝑒 V𝑒𝑐𝑡𝑜𝑟 (𝜆
1
, . . . , 𝜆l) = 0 ∈ R

l

𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 𝑡ℎ𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 0 ∈
𝑙

∑
𝑖=1

𝜆
𝑖
𝜕𝜑

𝑖
(𝑥, 𝑦)

𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 (𝜆
1
, . . . , 𝜆

𝑙
) ∈ R𝑙

+

𝑤𝑖𝑡ℎ 𝜆
𝑖
𝜑
𝑖
(𝑥, 𝑦) = 0, 𝑖 = 1, . . . , 𝑙.

(25)

One has the inclusions

𝜕𝜇 (𝑥) ⊂ {𝑢
∗ ∈ 𝑋∗ | (𝑢∗, 0) ∈ 𝜕𝜑 (𝑥, 𝑦)

+
𝑙

∑
𝑖=1

𝜆
𝑖
𝜕𝜑

𝑖
(𝑥, 𝑦) 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 (𝜆

1
, . . . , 𝜆

𝑙
) ∈ R𝑙

+

𝑤𝑖𝑡ℎ 𝜆
𝑖
𝜑
𝑖
(𝑥, 𝑦) = 0, 𝑖 = 1, . . . , 𝑙}.

(26)

(ii) Assume that 𝑀 is 𝜇-inner semicompact at 𝑥, and all
𝜑 and 𝜑

𝑖
are Lipschitz continuous around (𝑥, 𝑦) for all

𝑦 ∈ 𝑀(𝑥), and qualification (25) holds for all (𝑥, 𝑦),
𝑦 ∈ 𝑀(𝑥). Then

𝜕𝜇 (𝑥)⊂ ⋃
𝑦∈𝑀(𝑥)

{𝑢∗ ∈ 𝑋∗ | (𝑢∗, 0) ∈ 𝜕𝜑 (𝑥, 𝑦)

+
𝑙

∑
𝑖=1

𝜆
𝑖
𝜕𝜑

𝑖
(𝑥, 𝑦),𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 (𝜆

1
, . . . , 𝜆

𝑙
)∈R𝑚

+

𝑤𝑖𝑡ℎ 𝜆
𝑖
𝜑
𝑖
(𝑥, 𝑦) = 0, 𝑖 = 1, . . . , 𝑙}.

(27)

Proposition 7 (Lipschitz continuity of marginal functions
[21,Theorem 5.2]). Continue to consider the parametric prob-
lem (24) in Proposition 6. Then the following assertions hold.

(i) Assume that𝑀 is 𝜇-inner semicontinuous at (𝑥, 𝑦) ∈
gph𝑀 and 𝜑 is locally Lipschitz around this point.
Then 𝜇 is Lipschitz around 𝑥 provided that it is lsc
around 𝑥 and 𝐺 is Lipschitz-like around (𝑥, 𝑦).

(ii) Assume that𝑀 is 𝜇-inner compact at 𝑥 and 𝜑 is locally
Lipschitz around (𝑥, 𝑦) for all 𝑦 ∈ 𝑀(𝑥). Then 𝜇 is
Lipschitz around 𝑥 provided that it is lsc around 𝑥 and
𝐺 is Lipschitz-like around (𝑥, 𝑦) for all 𝑦 ∈ 𝑀(𝑥).

3. Main Results

Nowwe are prepared to develop the optimality conditions for
GSIP problem (1). Given a local solution 𝑥 of problem (1),
associate it with the following min-max problem

min
𝑥

max {𝑓 (𝑥) − 𝑓 (𝑥) , 𝜙 (𝑥)}, (28)

where 𝜙(𝑥) := sup
𝑦∈𝑌(𝑥)

𝑔(𝑥, 𝑦). Let 𝑌
0
(𝑥) := {𝑦 ∈ 𝑌(𝑥) :

𝜙(𝑥) = 𝑔(𝑥, 𝑦)}. Denote by

𝐹 (𝑥) = max {𝑓 (𝑥) − 𝑓 (𝑥) , 𝜙 (𝑥)}. (29)

If 𝑥 solves GSIP (1), then 𝑥 also solves problem

min {𝐹 (𝑥) : 𝑥 ∈ R𝑛}, (30)

and thus by generalized Fermat’s rule (cf. [16,Theorem 10.1]),
we have

0 ∈ 𝜕𝐹 (𝑥). (31)

So, calculus for the maximum function and the estimate
of subdifferentials are essential to proceed. From (31) and
Theorem 5, there exists 𝜇 ∈ [0, 1] such that (if 𝜙 is Lipschitz)

0 ∈ 𝜇𝜕𝑓 (𝑥) + (1 − 𝜇) 𝜕𝜙 (𝑥) ⊂ 𝜇𝜕𝑓 (𝑥) + (1 − 𝜇) co 𝜕𝜙 (𝑥).
(32)

Note that for a Lipschitz function 𝜙,

co 𝜕𝜙 (𝑥) = −co 𝜕 (−𝜙) (𝑥). (33)

Theorem 8 (optimality for GSIP with Lipschitz lower level
optimal value function). Consider the GSIP problem (1), and
let 𝑥 ∈ 𝑀 be its locally optimal solution. Assume that all
functions 𝑓, 𝑔, and V are Lipschitz continuous, 𝑌

0
is 𝜙-inner

semicompact at 𝑥, and 𝑌 is Lipschitz-like at (𝑥, 𝑦) for all 𝑦 ∈
𝑌
0
(𝑥). Then there is 𝑦𝑗 ∈ 𝑌

0
(𝑥) and 𝜆

0
≥ 0, 𝜆

𝑗
≥ 0, 𝛼𝑗

𝑖
≥ 0,

𝑖 = 1, . . . , 𝑙, 𝑗 = 1, . . . , 𝑘 such that ∑𝑘

𝑗=1
𝜆
𝑗
= 1 and

0∈(𝜆
0
𝜕𝑓 (𝑥) , 0)+

𝑘

∑
𝑗=1

𝜆
𝑗
[−𝜕 (−𝑔) (𝑥, 𝑦𝑗)−

𝑙

∑
𝑖=1

𝛼
𝑗

𝑖
𝜕V

𝑖
(𝑥, 𝑦𝑗)].

(34)

If in addition𝑔 and all components of V are regular at all (𝑥, 𝑦𝑗),
then the optimality is of the form

0 ∈ 𝜆
0
𝜕𝑓 (𝑥) +

𝑘

∑
𝑗=1

𝜆
𝑗
[−𝜕

𝑥
(−𝑔) (𝑥, 𝑦𝑗) −

𝑙

∑
𝑖=1

𝛼
𝑗

𝑖
𝜕
𝑥
V
𝑖
(𝑥, 𝑦𝑗)],

0 ∈
𝑘

∑
𝑗=1

𝜆
𝑗
[−𝜕

𝑦
(−𝑔) (𝑥, 𝑦𝑗) −

𝑙

∑
𝑖=1

𝛼
𝑗

𝑖
𝜕
𝑦
V
𝑖
(𝑥, 𝑦𝑗)].

(35)

Note that −𝜕(−𝑔) = 𝜕+𝑔.
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Proof. Under regularity and Lipschitz continuity, since the
following calculus rule for basic subgradients holds (see [16,
Corollary 10.11]):

𝜕
𝑥
𝑓 (𝑥, 𝑦) = {𝑢 | ∃V s.t. (𝑢, V) ∈ 𝜕𝑓 (𝑥, 𝑦)} , (36)

the last two equations follow directly from the first one. Note
that the function −𝜙 is in position of 𝜇 in Proposition 6.
Under our assumptions, by Proposition 7, −𝜙 is Lipschitz
continuous and the estimate of 𝜕(−𝜙)(𝑥) is

𝜕 (−𝜙) (𝑥) ⊂ ⋃
𝑦∈𝑌0(𝑥)

{𝑢∗ ∈ 𝑋∗ | (𝑢∗, 0) ∈ 𝜕 (−𝑔) (𝑥, 𝑦)

+
𝑙

∑
𝑖=1

𝛼
𝑖
𝜕V

𝑖
(𝑥, 𝑦)

for some (𝛼
1
, . . . , 𝛼

𝑙
) ∈ R𝑙

+

with 𝛼
𝑖
V
𝑖
(𝑥, 𝑦) = 0, 𝑖 = 1, . . . , 𝑙}.

(37)

If 𝑥 ∈ 𝑀 solves GSIP, then it also solves min
𝑥
𝐹(𝑥). By (31),

(32), and (33), there exists 𝜇 ∈ [0, 1] such that

0 ∈ 𝜇𝜕𝑓 (𝑥) − (1 − 𝜇) co 𝜕 (−𝜙) (𝑥) . (38)

Combining (37) and (38), there is 𝑦𝑗 ∈ 𝑌
0
(𝑥) and 𝜆

𝑗
≥ 0,

𝛼
𝑗

𝑖
≥ 0, 𝑖 = 1, . . . , 𝑙, 𝑗 = 1, . . . , 𝑘 such that ∑𝑘

𝑗=1
𝜆
𝑗
= 1 and

0 ∈ (𝜇𝜕𝑓 (𝑥) , 0)

+ (1 − 𝜇)
𝑘

∑
𝑗=1

𝜆
𝑗
[−𝜕 (−𝑔) (𝑥, 𝑦𝑗) −

𝑙

∑
𝑖=1

𝛼
𝑗

𝑖
𝜕V

𝑖
(𝑥, 𝑦𝑗)].

(39)

Letting 𝜆
0
= 𝜇, 𝜆

𝑗
= (1 − 𝜇)𝜆

𝑗
, 𝛼𝑗

𝑖
= 𝛼

𝑗

𝑖
, 𝑖 = 1, . . . , 𝑙, 𝑗 =

1, . . . , 𝑘, we obtain the desired result.

Corollary 9. In addition to the assumptions in Theorem 8,
assume that 𝑓, 𝑔, and V are continuously differentiable. Then
the optimality condition at the optimal point 𝑥 is that there
exist 𝑦𝑗 ∈ 𝑌

0
(𝑥) and 𝜆

0
≥ 0, 𝜆

𝑗
≥ 0, 𝛼𝑗

𝑖
≥ 0, 𝑖 = 1, . . . , 𝑙,

𝑗 = 1, . . . , 𝑘 such that ∑𝑘

𝑗=1
𝜆
𝑗
= 1 and

0 = 𝜆
0
∇
𝑥
𝑓 (𝑥) +

𝑘

∑
𝑗=1

𝜆
𝑗
[∇

𝑥
𝑔 (𝑥, 𝑦𝑗) −

𝑙

∑
𝑖=1

𝛼
𝑗

𝑖
∇
𝑥
V
𝑖
(𝑥, 𝑦𝑗)] ,

0 =
𝑘

∑
𝑗=1

𝜆
𝑗
[∇

𝑦
𝑔 (𝑥, 𝑦𝑗) −

𝑙

∑
𝑖=1

𝛼
𝑗

𝑖
∇
𝑦
V
𝑖
(𝑥, 𝑦𝑗)] .

(40)

Next we consider the case where the lower level value
function 𝜙may fail to be Lipschitz and give estimates for the
subdifferentials of 𝜙 and thus further derive the optimality
conditions for GSIP. However, it requires to use the Clarke
subdifferentials.

Proposition 10. Consider the parametric optimization prob-
lem same as (24):

𝜇 (𝑥) := inf {𝜑 (𝑥, 𝑦) | 𝑦 ∈ 𝐺 (𝑥)}, (41)

with corresponding solution mapping 𝑀 : 𝑋 󴁂󴀱 𝑌. Let 𝑥 ∈
dom 𝑀. Assume that the following conditions hold:

(i) 𝜑 is lower semicontinuous at 𝑥;
(ii) 𝑀 is 𝜇-inner semicompact at 𝑥 and𝑀(𝑥) is nonempty

and compact;

(iii) if (𝑢
𝑖
, 𝑤

𝑖
) ∈ 𝜕

∞

𝜑(𝑥, 𝑦
𝑖
), (V

𝑖
, −𝑤

𝑖
) ∈ 𝑁 gph𝐺(𝑥, 𝑦𝑖), 𝑦𝑖 ∈

𝑀(𝑥), 𝑖 ≤ 𝑛 + 1, and ∑
𝑖
𝑢
𝑖
+ V

𝑖
= 0, then 𝑢

𝑖
= V

𝑖
= 0,

𝑤
𝑖
= 0;

(iv) the cones 𝑁gph𝐺(𝑥, 𝑦) and 𝑁epi𝜑(𝑥, 𝑦, 𝜑(𝑥, 𝑦)) for all
𝑦 ∈ 𝑀(𝑥) are pointed.

Then one has the inclusion

𝜕𝜇 (𝑥)⊂co( ⋃
𝑦∈𝑀(𝑥)

{𝑢 | (𝑢, 0) ∈ 𝜕𝜑 (𝑥, 𝑦) + 𝑁 gph𝐺 (𝑥, 𝑦)}).

(42)

Proof (sketch: the definition of 𝜕 = cl co {𝜕 + 𝜕∞}). The proof
is divided into two parts. First the set on the right hand of the
required inclusion, denoted by Λ, is closed. The second step
is to justify that 𝜕 + 𝜕∞ ⊂ Λ.

Let ∑𝑛+1

𝑖=1
𝜆𝑘
𝑖
𝑢𝑘
𝑖
→ 𝑢, 𝜆𝑘

𝑖
≥ 0, ∑𝑛+1

𝑖=1
𝜆𝑘
𝑖
= 1, and

(𝑢𝑘
𝑖
, 0) = (𝑥𝑘

1𝑖
, 𝑦𝑘

1𝑖
) + (𝑥𝑘

2𝑖
, 𝑦𝑘

2𝑖
) , 𝑖 = 1, 2, . . . , 𝑛 + 1, (43)

where (𝑥𝑘
1𝑖
, 𝑦𝑘

1𝑖
) ∈ 𝜕𝜑(𝑥, 𝑦𝑘

𝑖
), (𝑥𝑘

2𝑖
, 𝑦𝑘

2𝑖
) ∈ 𝑁gph𝐺(𝑥, 𝑦

𝑘

𝑖
), 𝑦𝑘

𝑖
∈

𝑀(𝑥), 𝑖 = 1, . . . , 𝑛 + 1. We have to show that 𝑢 ∈ Λ. We may
assume that𝑦𝑘

𝑖
→ 𝑦

𝑖
, 𝑖 = 1, . . . , 𝑛+1, as𝑀(𝑥) is compact.We

show first that the sequence {𝑧𝑘 := (𝑧𝑘
𝑖
)
𝑖
= (𝑥𝑘

1𝑖
, 𝑦𝑘

1𝑖
, 𝑥𝑘

2𝑖
, 𝑦𝑘

2𝑖
)}
𝑘

is bounded. Suppose on the contrary that ‖𝑧𝑘‖ → ∞. Then
for each 𝑖,

1
󵄩󵄩󵄩󵄩𝑧

𝑘
󵄩󵄩󵄩󵄩
(𝑢𝑘

𝑖
, 0) =

1
󵄩󵄩󵄩󵄩𝑧

𝑘
󵄩󵄩󵄩󵄩
(𝑥𝑘

1𝑖
, 𝑦𝑘

1𝑖
) + (𝑢𝑘

2𝑖
, V𝑘

2𝑖
) , with (𝑢𝑘

2𝑖
, V𝑘

2𝑖
)

=
1
󵄩󵄩󵄩󵄩𝑧

𝑘
󵄩󵄩󵄩󵄩
(𝑥𝑘

2𝑖
, 𝑦𝑘

2𝑖
).

(44)

Multiplying (44) by 𝜆𝑘
𝑖
and taking summation over 𝑖, we have

1
󵄩󵄩󵄩󵄩𝑧

𝑘
󵄩󵄩󵄩󵄩
(
𝑛+1

∑
𝑖=1

𝜆𝑘
𝑖
𝑥𝑘
1𝑖
,
𝑛+1

∑
𝑖=1

𝜆𝑘
𝑖
𝑦𝑘
1𝑖
)+(

𝑛+1

∑
𝑖=1

𝜆𝑘
𝑖
𝑢𝑘
2𝑖
,
𝑛+1

∑
𝑖=1

𝜆𝑘
𝑖
V𝑘
2𝑖
) 󳨀→ (0, 0).

(45)

Note that for each 𝑖, by definition of 𝜕,

(
1
󵄩󵄩󵄩󵄩𝑧

𝑘
󵄩󵄩󵄩󵄩
(𝑥𝑘

1𝑖
, 𝑦𝑘

1𝑖
) ,
−1
󵄩󵄩󵄩󵄩𝑧

𝑘
󵄩󵄩󵄩󵄩
) ∈ 𝑁epi𝜑 (𝑥, 𝑦

𝑘

𝑖
, 𝜑 (𝑥, 𝑦𝑘

𝑖
)) . (46)
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Let (𝑢𝑘
1𝑖
, V𝑘

1𝑖
) := 1/‖𝑧𝑘‖(𝑥𝑘

1𝑖
, 𝑦𝑘

1𝑖
) → (𝑢

1𝑖
, V

1𝑖
). Then by

assumption (iv) and Proposition 3 one has (𝑢
1𝑖
, V

1𝑖
, 0) ∈

𝑁epi𝜑(𝑥, 𝑦𝑖, 𝜑(𝑥, 𝑦𝑖)), and thus (𝑢
1𝑖
, V

1𝑖
) ∈ 𝜕

∞

𝜑(𝑥, 𝑦
𝑖
). Then

1
󵄩󵄩󵄩󵄩𝑧

𝑘
󵄩󵄩󵄩󵄩
(
𝑛+1

∑
𝑖=1

𝜆𝑘
𝑖
𝑥𝑘
1𝑖
,
𝑛+1

∑
𝑖=1

𝜆𝑘
𝑖
𝑦𝑘
1𝑖
) 󳨀→

𝑛+1

∑
𝑖=1

𝜆
𝑖
(𝑢

1𝑖
, V

1𝑖
), (47)

where 𝜆
𝑖
:= lim

𝑘→∞
𝜆𝑘
𝑖
, ∑𝑛+1

𝑖=1
𝜆
𝑖
= 1. Let (𝑢𝑘

2𝑖
, V𝑘

2𝑖
) →

(𝑢
2𝑖
, V

2𝑖
) ∈ 𝑁gph𝐺(𝑥, 𝑦𝑖). Then V

1𝑖
+ V

2𝑖
= 0 from (43).

Combining (45) and (47), we have
𝑛+1

∑
𝑖=1

𝜆
𝑖
((𝑢

1𝑖
, V

1𝑖
) + (𝑢

2𝑖
, V

2𝑖
)) = 0. (48)

Based on the assumption (iii), we have (𝑢
1𝑖
, V

1𝑖
) =

(0, 0), (𝑢
2𝑖
, V

2𝑖
) = (0, 0). This contradicts the fact that

(𝑢
1𝑖
, V

1𝑖
, 𝑢

2𝑖
, V

2𝑖
) is of norm 1, and thus {𝑧𝑘} is bounded.

Then (𝑥𝑘
1𝑖
, 𝑦𝑘

1𝑖
), (𝑥𝑘

2𝑖
, 𝑦𝑘

2𝑖
) have convergent subsequences, say

(𝑥𝑘
1𝑖
, 𝑦𝑘

1𝑖
) → (𝑥

1𝑖
, 𝑦

1𝑖
) ∈ 𝜕𝜑(𝑥, 𝑦

𝑖
), (𝑥𝑘

2𝑖
, 𝑦𝑘

2𝑖
) → (𝑥

2𝑖
, 𝑦

2𝑖
) ∈

𝑁gph𝐺(𝑥, 𝑦𝑖). Thus 𝑢 = ∑𝜆
𝑖
𝑢
𝑖
with 𝑢

𝑖
= 𝑥

1𝑖
+ 𝑥

2𝑖
. That is to

say, Λ is closed.
Next, we justify that 𝜕+𝜕∞ ⊂ Λ. Assume that 𝑢

1
∈ 𝜕𝜇(𝑥),

𝑢
2
∈ 𝜕∞𝜇(𝑥). Under the semicompactness assumption,

invoking [17, Theorem 1.108], one gets that

𝜕𝜇 (𝑥)⊂{𝑢| (𝑢, 0)∈∪
𝑦∈𝑀(𝑥)

𝜕 (𝜑 (𝑥, 𝑦)+𝛿 ((𝑥, 𝑦) , gph𝐺))},

𝜕∞𝜇 (𝑥)⊂{𝑢| (𝑢, 0)∈∪
𝑦∈𝑀(𝑥)

𝜕∞(𝜑 (𝑥, 𝑦)+𝛿 ((𝑥, 𝑦), gph𝐺))}.
(49)

Employing the sum rule from [17, Theorem 3.36] to the
two above leads to

(𝑢
1
+ 𝑢

2
, 0) ∈ [𝜕𝜑 (𝑥, 𝑦) + 𝑁gph𝐺 (𝑥, 𝑦)]

+ [𝜕∞𝜑 (𝑥, 𝑦) + 𝑁gph𝐺 (𝑥, 𝑦)]

⊂ cl co[𝜕𝜑 (𝑥, 𝑦) + 𝜕∞𝜑 (𝑥, 𝑦)] + 𝑁gph𝐺 (𝑥, 𝑦)

= 𝜕𝜑 (𝑥, 𝑦) + 𝑁gph𝐺 (𝑥, 𝑦),

(50)

which completes the proof.

Theorem 11 (convexified normal cone to inequality system
[22]). Consider 𝐺 defined by inequality system 𝐺(𝑥) = {𝑦 |
𝜙(𝑥, 𝑦) ≤ 0}. Let 𝜙 be Lipschitz, and the qualification (non-
smooth MFCQ) at (𝑥, 𝑦) holds:

[

[

∑
𝑖∈𝐼(x,𝑦)

𝜆
𝑖
𝑤
𝑖
= 0 𝑤𝑖𝑡ℎ 𝑤

𝑖
∈ 𝜕𝜙

𝑖
(𝑥, 𝑦) , 𝜆

𝑖
≥ 0]

]

󳨐⇒ 𝜆
𝑖

= 0 𝑓𝑜𝑟 𝑖 ∈ 𝐼 (𝑥, 𝑦) ,

(51)

where 𝐼(𝑥, 𝑦) := {𝑖 | 𝜙
𝑖
(𝑥, 𝑦) = 0}. Then

𝑁gph𝐺 (𝑥, 𝑦) ⊂
{
{
{

∑
𝑖∈𝐼(𝑥,𝑦)

𝜆
𝑖
𝜕𝜙

𝑖
(𝑥, 𝑦) | 𝜆

𝑖
≥ 0
}
}
}

. (52)

As mentioned, GSIP can be relaxed into the following
bilevel programming problem:

min
(𝑥,𝑦)

𝑓 (𝑥)

s.t. 𝑔 (𝑥, 𝑦) ≤ 0, V (𝑥, 𝑦) ≤ 0, 𝜙 (𝑥) − 𝑔 (𝑥, 𝑦) ≤ 0.
(53)

The feasible set of above problem is a subset of the feasible set
𝑀 of (1). Thus, if 𝑥 solves GSIP and 𝜙(𝑥) = 0 and 𝑌(𝑥) ̸= 0,
then 𝑥 also solves problem (6). The perturbed version of the
above bilevel problem is

min
(𝑥,𝑦)

𝑓 (𝑥)

s.t. 𝑔 (𝑥, 𝑦) ≤ 0, V (𝑥, 𝑦) ≤ 0, 𝜙 (𝑥) − 𝑔 (𝑥, 𝑦) ≤ 𝑢.
(54)

Problem (6) is said to be partially calm at (𝑥, 𝑦) [23] if

there is 𝜅>0 and a neighborhood𝑉 of (𝑥, 𝑦, 0)∈R𝑛×R𝑚×R

such that for all (𝑥, 𝑦, 𝑢) ∈ 𝑉 feasible for (54) we have

𝑓 (𝑥) − 𝑓 (𝑥) ≥ −𝜅 |𝑢| .

(55)

Under the partial calmness condition, problem (6) can be
transformed into the problem below, for some constant 𝜅 > 0,

min
(𝑥,𝑦)

𝑓 (𝑥) + 𝜅 [𝜙 (𝑥) − 𝑔 (𝑥, 𝑦)]

s.t. 𝑔 (𝑥, 𝑦) ≤ 0, V (𝑥, 𝑦) ≤ 0.
(56)

Theorem 12 (necessary conditions of optimality of GSIP).
Let 𝑥 be an optimal solution of GSIP with 𝜙(𝑥) = 0, and
𝑌(𝑥) ̸= 0. Let the data functions 𝑓, 𝑔, and V be Lipschitz and
the partial calmness condition (55) hold at (𝑥, 𝑦) for some
𝑦 ∈ 𝑌

0
(𝑥). Assume that the following conditions hold:

(i) Qualification (51) holds for Ω := {(𝑥, 𝑦) | V(𝑥, 𝑦) ≤
0, 𝑔(𝑥, 𝑦) ≤ 0} at (𝑥, 𝑦).

(ii) 𝑌
0
is 𝜙-inner semicompact at 𝑥 and 𝑌

0
(𝑥) ̸= 0.

(iii) If (𝑢
𝑖
, 𝑤

𝑖
) ∈ 𝜕

∞

𝑔(𝑥, 𝑦
𝑖
), (V

𝑖
, −𝑤

𝑖
) ∈ 𝑁 gph𝑌(𝑥, 𝑦𝑖), 𝑦𝑖 ∈

𝑌
0
(𝑥), 𝑖 ≤ 𝑛 + 1, and ∑

𝑖
𝑢
𝑖
+ V

𝑖
= 0, then 𝑢

𝑖
= V

𝑖
= 0

and 𝑤
𝑖
= 0.

(iv) The cones 𝑁gph𝑌(𝑥, 𝑦) and 𝑁epi𝑔(𝑥, 𝑦, 𝑔(𝑥, 𝑦)) for all
𝑦 ∈ 𝑌

0
(𝑥) are pointed.

Then there is 𝜅 > 0, 𝜆
𝑖
≥ 0, 𝑦

𝑖
∈ 𝑌

0
(𝑥), 𝑖 = 1, . . . , 𝑟 such that

∑
𝑟

𝑖=1
𝜆
𝑖
= 1, and

0 ∈ (𝜕𝑓 (𝑥) , 0) + 𝜅
𝑟

∑
𝑖=1

𝜆
𝑖
[𝜕𝑔 (𝑥, 𝑦

𝑖
) − 𝜕𝑔 (𝑥, 𝑦)]

+
𝑟

∑
𝑖=1

𝑁 gph𝑌 (𝑥, 𝑦𝑖) + 𝑁Ω
(𝑥, 𝑦).

(57)

Proof. Let Ω = {(𝑥, 𝑦) | V(𝑥, 𝑦) ≤ 0, 𝑔(𝑥, 𝑦) ≤ 0}.
Under our assumptions, GSIP can be relaxed into problem
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(6) and (𝑥, 𝑦) also solves (6) for all 𝑦 ∈ 𝑌
0
(𝑥). Due to the

partial calmness of (6), we also have that (𝑥, 𝑦) solves (56).
Under the qualification assumption, the necessary optimality
condition for problem (56) is (see, e.g., [24, Theorem 5.1] or
[22, Theorem 6.2])

0 ∈ (𝜕𝑓 (𝑥) , 0) + 𝜅 (𝜕𝜙 (𝑥) , 0) + 𝜅𝜕 (−𝑔) (𝑥, 𝑦) + 𝑁
Ω
(𝑥, 𝑦).

(58)

If V ∈ 𝜕+(−𝜙)(𝑥), then −V ∈ 𝜕𝜙(𝑥). Indeed, by definition,

𝜕+ (−𝜙) (𝑥) = {V | (−V, 1) ∈ 𝑁hypo(−𝜙) (𝑥, −𝜙 (𝑥))}

= {V | (−V, −1) ∈ 𝑁epi𝜙 (𝑥, 𝜙 (𝑥))}

⊂ {V | (−V, −1) ∈ 𝑁epi𝜙 (𝑥, 𝜙 (𝑥))}.

(59)

Thus, 𝜕𝜙(𝑥) = −𝜕+(−𝜙)(𝑥) ⊂ 𝜕𝜙(𝑥) = −𝜕(−𝜙)(𝑥), and from
(58),

0 ∈ (𝜕𝑓 (𝑥) , 0) − 𝜅 (𝜕 (−𝜙) (𝑥) , 0) + 𝜅𝜕 (−𝑔) (𝑥, 𝑦)

+ 𝑁
Ω
(𝑥, 𝑦).

(60)

Applying Proposition 10 to −𝜙, there are 𝜆
𝑖
≥ 0, 𝑦

𝑖
∈

𝑌
0
(𝑥), 𝑖 = 1, . . . , 𝑟 such that ∑𝑟

𝑖=1
𝜆
𝑖
= 1 and

(𝜕 (−𝜙) (𝑥) , 0) ⊂
𝑟

∑
𝑖=1

𝜆
𝑖
[𝜕 (−𝑔) (𝑥, 𝑦

𝑖
) + 𝑁gph𝑌 (𝑥, 𝑦𝑖)] .

(61)

So, noting that 𝜕(−𝑔) = −𝜕𝑔,

0 ∈ (𝜕𝑓 (𝑥) , 0) + 𝜅
𝑟

∑
𝑖=1

𝜆
𝑖
𝜕𝑔 (𝑥, 𝑦

𝑖
) − 𝜅𝜕𝑔 (𝑥, 𝑦)

+ 𝜅
𝑟

∑
𝑖=1

𝜆
𝑖
𝑁gph𝑌 (𝑥, 𝑦𝑖) + 𝑁Ω

(𝑥, 𝑦)

⊂ (𝜕𝑓 (𝑥) , 0) + 𝜅
𝑟

∑
𝑖=1

𝜆
𝑖
[𝜕𝑔 (𝑥, 𝑦

𝑖
) − 𝜕𝑔 (𝑥, 𝑦)]

+
𝑟

∑
𝑖=1

𝑁gph𝑌 (𝑥, 𝑦𝑖) + 𝑁Ω
(𝑥, 𝑦) .

(62)

This completes the proof.
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