Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 123738, 8 pages
http://dx.doi.org/10.1155/2013/123738

Research Article

Advanced Harmony Search with Ant Colony Optimization
for Solving the Traveling Salesman Problem

Ho-Yoeng Yun,' Suk-Jae Jeong,” and Kyung-Sup Kim'

! Department of Industrial Information Engineering, Yonsei University, Seoul 120-749, Republic of Korea
2 Department of Business School, Kwangwoon University, Seoul 139-701, Republic of Korea

Correspondence should be addressed to Kyung-Sup Kim; kyungkim@yonsei.ac.kr

Received 27 June 2013; Revised 23 September 2013; Accepted 30 September 2013

Academic Editor: Chung-Li Tseng

Copyright © 2013 Ho-Yoeng Yun et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We propose a novel heuristic algorithm based on the methods of advanced Harmony Search and Ant Colony Optimization
(AHS-ACO) to effectively solve the Traveling Salesman Problem (TSP). The TSP, in general, is well known as an NP-complete
problem, whose computational complexity increases exponentially by increasing the number of cities. In our algorithm, Ant Colony
Optimization (ACO) is used to search the local optimum in the solution space, followed by the use of the Harmony Search to escape
the local optimum determined by the ACO and to move towards a global optimum. Experiments were performed to validate the
efficiency of our algorithm through a comparison with other algorithms and the optimum solutions presented in the TSPLIB. The
results indicate that our algorithm is capable of generating the optimum solution for most instances in the TSPLIB; moreover, our
algorithm found better solutions in two cases (kroB100 and prl44) when compared with the optimum solution presented in the

TSPLIB.

1. Introduction

The Traveling Salesman Problem (TSP) is a typical example
of an NP-complete problem of computational complexity
theory and can be understood as a “Maximum Benefit with
Minimum Cost” that searches for the shortest closed tour that
visits each city once and only once. As is well known, the
TSP belongs to a family of NP-complete problems. Generally,
when solving this type of problem with integer program-
ming (IP), determining the optimum solution is impossible
because the computational time to search the solution space
increases exponentially with increasing problem sizes. As a
result, the general approach involves determining a near-
optimal solution within a reasonable time by applying meta-
heuristics. In the last decade, TSP has been well studied by
many metaheuristic approaches, such as Genetic Algorithm
(GA), Simulated Annealing (SA), Tabu Search (TS), Ant
Colony Optimization (ACO), Particle Swarm Optimization
(PSO), Harmony Search (HS), Cuckoo Search (CS), and
Firefly Algorithm (FA). Among these approaches, the general
procedures of GA, SA, and TS have already been introduced
in many articles [1-3]. ACO is a metaheuristic approach

that is inspired by the behavior of ants searching for their
food source [4-7]. PSO is originally attributed to Kennedy
and Eberhart [8] and was first intended for simulating social
behavior as a stylized representation of the movement of
organisms in a bird flock or fish school. HS, proposed by
Geem et al. [9,10], is a metaheuristic that was inspired by the
improvisation process of musicians. CS is modeled after the
obligate brood parasitism of some Cuckoo species by laying
their eggs in the nests of other host birds (of other species)
[11]. FA is a metaheuristic algorithm that mimics the flashing
behavior of fireflies [12]. Freisleben and Merz [13] realized
GA by using a new mutation operator of Lin-Kernighan-
Opt for finding the high-quality solution in a reasonable
amount of time of the asymmetric TSP. Wang and Tian [14]
introduced the improved simulated annealing (ISA), which
is the integration of the basic simulated annealing (BSA)
with the four vertices and three lines inequality to search the
optimal Hamiltonian circuit (OHC) or near-OHC. Fiechter
[15] proposed the TS for obtaining near-optimal solution of
large-size TSPs. The remarkable idea of his research is that
while TS seeks a high global quality of the solution, the local
search inside TS performed several independent searches

without much loss of quality. Stiizle and Hoos [16] proposed
max-min ant system and demonstrated that their proposed
algorithm can be significantly improved in performance over
the general ant system in most cases discussed of the TSP
examples. Wang et al. [17] designed an advanced PSO with
the concept of a swap operator and a swap sequence that
exhibited good results in a small-size TSP having 14 nodes.
Geem et al. [9] applied HS for solving the 20-cities TSP.
They combined two operators (neighboring city-going and
city-inverting operators) inside the HS to arrive at the global
optimum quickly. One of two operators was able to find the
closest city that will be visited next after the current city.
The other is used to produce a new path by exchanging the
sequence of the two nodes selected randomly in one feasible
path. Ouyang et al. [18] presented the advanced CS with the
“search-new-nest” and “study” operator, derived from idea
of “inver-over” operator for solving the spherical TSP. Their
experiments demonstrated that CS provided better solutions
over GA in HA30 from TSPLIB. Kumbharana and Pandey
[19] implemented FA and demonstrated that it provides
better solutions than ACO, GA, and SA in most cases of
the TSP examples. Many articles mentioned previously are
examples of the application of only single metaheuristics or
a metaheuristic with a local search.

Recently, however, to complement the weakness of sin-
gle metaheuristics, a few research studies involving the
hybridization of two or more heuristics have been introduced.
Pang et al. proposed the combinations of PSO with Fuzzy
theory for solving the TSP. In their study, Fuzzy matrices were
used to represent the position and velocity of the particles in
the PSO, and the symbols and operators in the original PSO
formulas were redefined for transformation into the form of
the Fuzzy matrices [21]. Thamilselvan and Balasubramanie
[22] presented a genetic Tabu Search algorithm, a combined
heuristics with the dynamic switching of the GA and the
TS. The experimental results indicated that the combination
has better solution over the respective individual use of
the GA and the TS. Yan et al. [23] introduced a mixed
heuristic algorithm to solve the TSP. In their algorithm, SA
and ACO were mixed to obtain improved performance. By
comparison with the TSPLIB, they determined that the mixed
form is much better than (a) the original ACO and the
max-min ant system in the convergence rate and (b) the SA
in the probability of converging to optimal solution. Chen
and Chien [24] presented the parallelized genetic ACO for
solving the TSP. They demonstrated improved solutions in
three cases of the TSPLIB over Chu et al. [25] with original
ACO. Chen and Chien [26] proposed the combination of
four metaheuristics (GA, SA, ACO, and PSO) for obtaining
a better solution in the TSP. Their experiments tested the
combination of four metaheuristics by using 25 datasets of the
TSPLIB and demonstrated that it provided better solutions
through a comparison with four articles previously published.
According to a review of many articles that focused on the
combinations of two or more heuristics published since 2006,
the combination of HS and other heuristics for solving TSP
has been little studied. Therefore, in this paper, we propose
the hybridized HS and ACO to solve the TSP. In Section 4, our
algorithm will be introduced in detail. The rest of this paper

Journal of Applied Mathematics

is organized as follows; in Section 2, we introduce the simple
overview of both ACO and HS. In Section 3, we describe
the advanced HS for solving the TSP, and we explain the
overall procedures of the algorithm proposed in Section 4.
In Section 5, experiments performed with 20 data sets of
TSPLIB are described, and the results of our algorithm and
others are compared in the cases of 11 instances involved in
TSPLIB. Finally, the conclusion is provided in Section 6.

2. Overview of Ant Colony Optimization and
Harmony Search

2.1. Ant Colony Optimization. Ant Colony Optimization
(ACO), originally proposed by Dorigo, [4] is a stochastic-
based metaheuristic technique that uses artificial ants to
find solutions to combinatorial optimization problems. The
concept of ACO is to find shorter paths from their nests
to food sources. Ants deposit a chemical substance called a
pheromone to enable communication among other ants. As
an ant travels, it deposits a constant amount of pheromone
that the other ants can follow. Each ant moves in a somewhat
random fashion, but when an ant encounters a pheromone
trail, it must decide whether to follow it. If the ant follows
the trail, the ants own pheromone reinforces the existing trail,
and the increase in pheromone increases the probability that
the next ant will select the path. Therefore, the more ants that
travel on a path, the more attractive the path becomes for the
subsequent ants. In addition, an ant using a shorter route to
a food source will return to the nest sooner. Over time, as
more ants are able to complete the shorter route, pheromone
accumulates more rapidly on shorter paths and longer paths
are less reinforced. The evaporation of pheromone also makes
less desirable routes more difficult to detect and further
decreases their use. However, the continued random selection
of paths by individual ants helps the colony discover alternate
routes and ensures successful navigation around obstacles
that interrupt a route. ACO, thus, is an algorithm that
reflects the stochastic travels of ants by the probability, the
evaporation, and the update of pheromone over time. ACO is
composed of the state transition rule, the local updating rule,
and the global updating rule. Based on the state transition
rule as expressed in (1), ants move between nodes. Consider

arg urg?()f)[‘r(r, w)]*[n(r, M)]ﬁ) if g < qp» W

S, otherwise,

7(r,u) in state transition rule, s is the reciprocal of distance
between nodes r and u. J(r) means the set of nodes to which
ant k in node r can visit in the next time. «, 8 are parameters
that determine the relative importance of pheromone and
distance of nodes, respectively.

Whenever ants visit their nodes through the state transi-
tion rule, pheromone is updated by the local updating rule. It
can be expressed by

7(r,s) — (1-p)7(r,s) + pAT(1,5). (2)

The pheromone evaporation coeflicient p is a decimal
number in range of 0 to 1. At(r,s) = 1, = (nx L,m)_1 is

Journal of Applied Mathematics

Initialize ACO parameters

Step

1

Construct solution using the probability distribution
(pheromone trail and randomization)

Step 2

Local updating of pheromone

Yes

Step 3

No All ants have visited through all cities?
Step 4

Compute the length of the optimal path and update
only the amount of the pheromone on the optimal path

Step 5
No Yes Output values contain
The termination conditions satisfied? the maximum
Step 6 pheromones

FIGURE 1: Flow chart of the Ant Colony Optimization.

the amount of initial pheromone. Here, n means the number
of cities and L,,,, is the cost produced by the nearest neighbor
heuristic. After all ants have visited through all cities, global
updating rule is performed with

7(r,s) «— (1= p) 7 (r,s) + pAt(1,5),

Ly, if (r,s) € global best tour, ()

0, otherwise,

At (r,s) = {

where p is constantand L , is the global best tour. The general
structure of ACO algorithms can be described as follows, and
Figure 1 shows the flow chart of the ACO algorithm.

Step 1. Initialize the pheromone table and the ACO parame-
ters.

Step 2. Randomly allocate ants to every node. Every ant must
move to next city, depending on the probability distribution.

Step 3. The local pheromone update is performed.

Step 4. If all ants have not visited through all cities, go to
Step 2.

Step 5. Compute the optimal path and global update of

pheromone.

Step 6. If stopping criteria are not satisfied, go to Step 2.

2.2. Harmony Search. Harmony Search (HS) is a meta-
heuristic algorithm that mimics the improvisation process
of music players and has been very successful in wide

variety of optimization problems [9, 10]. In the HS algorithm,
the fantastic harmony, the aesthetic standard, pitches of
instruments, and each practice in performance process of
HS indicate the global optimum, the objective function, the
value of variables, and each iteration in optimization process,
respectively. HS is composed of optimization operators, such
as the harmony memory (HM), the harmony memory size
(HMS), the harmony memory considering rate (HMCR), and
the pitch adjusting rate (PAR).

HS is conducted by the following steps, and the overall
flow chart of the HS algorithm is shown in Figure 2.

Step 1. Initialize the HM and the algorithm parameters.

Step 2. Improvise a new harmony from the HM. A new
harmony vector is generated from the HM, based on mem-
ory consideration, pitch adjustments, and randomization.
PHMCR and pPAR were generated randomly between 0 and
1, respectively, and each operator is selected according to the
following conditions.

(i) Condition 1: pHMCR < HMCR and pPAR > PAR;
select the memory consideration.

(ii) Condition 2: pHMCR < HMCR and pPAR < PAR;
select the pitch adjustments.

(iii) Condition 3: pHMCR > HMCR; select the random-
ization.

Step 3. If a new harmony is better than the worst harmony in
the HM, update the HM.

Step 4. If stopping criteria are not satisfied, go to Step 2.

Journal of Applied Mathematics

Initialize the HM with random vectors as many as the value of HMS;

initialize other parameters; evaluate HM

Step 1
Improvise a new harmony
[T 1
I I
| With probably HMCR —> Select a new value for a variable from HM |
] I
i —> w.p. (1-PAR) do nothing. |
I
i — w.p. PAR choose a neighboring value i
I
i With probably 1-HMCR —> Select a new value randomly from the possible |
I
I |
Step 2
Update the HM
Step 3
N Ye
o The termination conditions satisfied? L Output HM
Step 4

FIGURE 2: The flow chart for the Harmony Search [20].

3. Advanced Harmony Search for Traveling
Salesman Problems

The HS algorithm exhibits good performance in solving a
diverse set of problems; however, it has some drawbacks in
terms of the sequential problems, such as the TSP and the
vehicle routing problem. In case of sequential problems, a
close positioning between the nodes implies a strong cor-
relation. HS, however, uses a uniform probability regardless
of the correlation between nodes when choosing the new
value in a new harmony from the historic values stored in the
same index of the existing HM. The memory consideration
operator does not even function under the following case:
when generating the value of a new harmony under that ith
value of index is city 1, if all the values of (i + 1)th in the
existing HM are city 1, if all the values of (i+1)th in the existing
HM are city 1. To remedy these shortcomings, we propose the
advanced HS (AHS), which includes the fitness, elite strategy,
and mutation operators of the GA.

3.1. Revised Memory Consideration and Pitch Adjustments.
The memory consideration operator of the original HS runs
randomly from the historic values in the HM. In the advanced
HS algorithm, however, the memory consideration operator
is implemented by using a roulette wheel, so that the fittest
index of HM has a greater chance of survival than the weaker
ones. Fitness and distance are inversely related. Meanwhile,
although the memory consideration operator runs a certain
number of times, if the ith value and the candidate (i +
1)th value that are selected by the memory consideration
operator are the same, the (i + 1)th value of a new harmony
is determined by a randomization operator. In the case of
satisfying condition 1 of Section 2.2, the pitch adjustment

UOT}RISUID)

FIGURE 3: Operator of inversion mutation.

generates the (i + 1)th index value of a new harmony that is
the closest value to the ith value from the possible range of
values.

3.2. Elite Preserving Rule and Mutation. The HS algorithm
updates in a manner that a new harmony is included in the
HM and the existing worst one is excluded from the HM
when a new harmony is better than the worst harmony in
the existing HM. This mechanism forces to the convergence
of all the elements in the HM to the same value that could
be the local optimum, when it is repeated infinitely. To
escape such case, we consider the inversion operator, one
of all mutations of the GA. It is performed for HM that
satisfies the following equations: (1 — Elite Rate) x HMS,
where (1 — Elite Rate) means the rate of noting the per-
formance of the elite strategy. Inversion mutation operator
meanwhile selects a few nodes among all nodes randomly,
and the nodes selected are rearranged in inverse order. As
shown in example of Figure 3, the previous node (1, 2, 3, 4, 5,
6,7, 8) is converted to new node (1,7, 3, 5, 4, 6, 2, 8) through
the inversion mutation.

Journal of Applied Mathematics

i—i+1

4. The Proposed Algorithm for the TSP

The overall procedures of our algorithm that combines the
AHS and ACO algorithms are shown in Figure 4. First, we
generate an initial solution randomly. A pheromone trail is
updated. By using memory consideration, pitch adjustment,
and randomization under each condition mentioned in
Section 2.2, we create a new harmony and check whether an
update occurs. When the mutation operator is implemented
at a certain probability, the inversion mutation is performed

5
Initialize variables and parameters
Initialize the HM with random vectors as many as the value of HMS
N
1 Improvise a new harmon | Create ant solutions
| P v Y | depending on pheromone
! 1
1 | | [£
| = I <
) ! : . N
= Update HM ! Combined HM and ant solutions g
| 3 I é‘i
BN \
£ | 1 :
i : <
LE Inversion mutation ! Sorting HM and ant solutions S
i =
: 1 2
| ! : [
| I
! Update pheromone value l Update the HM
1
! I
S ! {
No
Stopping criteria
Output best harmony
FIGURE 4: The flow chart for the proposed algorithm.
TABLE 1: Parameters settings of the proposed algorithm.
Parameters Values
HMS 100~200
HMCR 0.9
PAR 0.4
P 0.05
ot 0.8
B 1.0
P 0.01
Iteration 1000

to the rest, except the HM as regarded as Elite, and then the
pheromone is updated. After that, ant solutions with the size
of HMS are generated by using the ACO algorithm, based on
the pheromone trail determined by the HS algorithm. The
combined ant solution and HM are stored in a temporary
memory that has twice the size of HMS, and they are
sorted in ascending order by the total distance, defined as
the objective function. The top 50% with higher value in
the temporary memory are determined as the new HM.
These procedures are repeated until the stopping criteria
are satisfied. Pseudocode 1 describes the pseudocode of the
proposed algorithm.

5. Experimental Results

Table 1 lists the parameter setting of the proposed algorithm.
To show the performance of the proposed algorithm, we

performed experiments using a computer with an Intel Core-
i5 processor and 2 GBRAM and used C# as the program-
ming language to implement the algorithm. We tested the
algorithm using 20 datasets from the TSPLIB (e.g., berlin52,
st70, €il76, kroA100, kroB100, kroC100, kroD100, kroE100,
eil101, 1in105, ch130, pri44, ch150, pr152, d198, tsp225, pr226,
pr264, a280, and pr299). For the exact comparison with
other algorithms and known best solutions obtained from
TSPLIB, the distance between any two cities is calculated as
the Euclidian distance and rounded off to 1 decimal place.
Each experiment was performed using 1000 iterations and
10 runs, and the best, worst, mean, and standard deviation
were recorded for each run. As seen in Table 2, among the
20 datasets tested, we found the optimum solution in 19

6 Journal of Applied Mathematics

Procedure: The proposed algorithm for the TSP
Begin
Objective function f (x), x = (x,x,,..., %)
Generate initial harmonics (real number arrays)
Define harmony memory considering rate (pycg)> pitch adjusting rate (p,,), mutation rate (p,,)
Initialize the pheromone tables
Generate initial harmony randomly and apply pheromone update
while (not_termination)
for i = 1: number of nodes
Generate random number variable (rand)
if (rand < pyyvcr)
Generate random number variable (rand)
if (rand < p,,), generate the nearest city to the previous harmonic
else choose an existing harmonic the highest fitness probability
end if
else generate new harmonics via randomization
end if
end for
Accept the new harmonics (solutions) if better
Generate random number variable (rand)
if (rand < p,,) operate inversion mutation end if
Apply the pheromone update
Create as many cities as the HMS based pheromone using Ant Colony Optimization
Update harmony memory and apply pheromone update
end while
Find the current best solutions

End
PseuDOCODE 1: The pseudo-code for the proposed algorithm (AHS-ACO).
TABLE 2: Results of our algorithm (AHS-ACO) for 20 TSP instances from the TSPLIB.

TSPLIB Known best solutions Solution Running Time Relative error (%)

Best Worst Mean STDEV Second (s) Best
berlin52 7542 7542 7542 7542 0.000 15.12 0.000
st70 675 675 677 675.375 0.812 19.45 0.000
¢il76 538 538 542 540.494 1.473 22.27 0.000
kroA100 21282 21282 21378 21307.554 34.983 40.97 0.000
kroB100* 22141 22139* 22271 22193.114 53.678 42.87 -0.009
kroC100 20749 20749 20868 20770 34.937 39.62 0.000
kroD100 21294 21294 21467 21338.03 63.797 41.24 0.000
kroE100 22068 22068 22117 22093.099 14.819 42.38 0.000
eill01 629 629 643 634.355 4.479 49.47 0.000
1lin105 14379 14379 14541 14434.947 59.097 56.27 0.000
ch130 6110 6110 6200 6173.038 24.544 69.24 0.000
prl44” 58537 58534" 58902 58659.283 144.807 80.27 -0.003
ch150 6528 6528 6586 6554.589 17.303 97.34 0.000
pri52 73682 73682 74754 73846.437 325.185 111.59 0.000
d198 15780 15780 15963 15876.892 70.497 180.27 0.000
tsp225 3919 3859 4013.724 3977.047 26.516 208.48 0.000
pr226 80369 80369 80882 80558.519 174.915 213.78 0.000
pr264 49135 49135 49379 49205.87 75.675 279.69 0.000
a280 2579 2579 2726 2641.61 4491 303.36 0.000

pr299 48191 48195 49989 49121.289 577.831 36772 0.016

Journal of Applied Mathematics 7
TaBLE 3: Comparison result of our algorithm with the results of Randall and Montgomery (2003) [27].

TSPLIB Randall and Montgomery (2003) [27] Proposed algorithm

Best Mean Worst Best Mean Worst
berlin52 7547 7790 8148 7542 7542 7542
st70 678 687 712 675 675.376 677
¢il76 546 555 559 538 540.494 542
kroA100 21373 21512 21915 21282 21307.554 21378
ch130 6180 6269 6407 6110 6173.038 6200
d198 16044 16209 16465 15780 15876.892 15963

TaBLE 4: Comparison result of our algorithm with the results of Chen and Chien (2011) [26].
TSPLIB Chen and Chien (2011) [26] Proposed algorithm
Best Mean SD Best Mean SD

berlin52 7542 7542 0.00 7542 7542 0.00
¢il76 538 540.20 2.94 538 540.494 1.473
kroA100 21282 21370 123.36 21282 21307.554 34.983
kroB100 22141 22282.87 183.99 22139 22193.114 53.678
kroC100 20749 20878.97 158.64 20749 20770 34.937
kroD100 21309 21620.47 226.60 21294 21338.03 63.797
kroE100 22068 22183.47 103.32 22068 22093.099 14.819
eil101 630 635.23 3.59 629 634.355 4.479
lin105 14379 14406.37 37.28 14379 14434.907 59.097
ch130 6141 6205.63 43.70 6110 6173.038 24.544
ch150 6528 6563.70 22.45 6528 6554.589 17.303

datasets, except for pr299, indicated from the TSPLIB. In
the case of kroB100 and prl44, in particular, our algorithm
outperformed the known best solutions from the TSPLIB (see
the asterisks of Table 2 for details).

To validate the superiority of our algorithm, we compared
it with Randall and Montgomery [27] and Chen and Chien
[24, 26]. Randall and Montgomery [27] proposed accumu-
lated experience ant colony (AEAC) for using the previous
experiences of the colony to guide in the choice of elements,
and Chen an Chien [24, 26] solved TSP with combination of
four metaheuristics having GA, SA, ACO, and PSO. Tables
3 and 4 show the comparative results with two previous
researches, respectively.

6. Conclusion

In this paper, we proposed the AHS-ACO algorithm, which
is a combination of the advanced Harmony Search and the
Ant Colony Optimization algorithms, to solve the TSP. We
modified the generic HS algorithm to produce a new HS algo-
rithm that includes the fitness, elite strategy, and mutation
operators in the GA, and we combined the ACO algorithm
inside the HS algorithm to overcome the shortcomings of the
HS algorithm for solving sequential problems. We performed
experiments using the AHS-ACO algorithm on 20 datasets of
the TSPLIB. As shown in the experimental results, we found
the optimal solution obtained from the TSPLIB in almost
all cases of the TSPLIB; moreover, our algorithm provided
a better solution over the TSPLIB solution in the cases of

kroB100 and pr144. The results of this paper indicate that the
HS algorithm can be a good method, in combination with
other heuristics, to solve sequential problems such as TSP, as
well as many other problems.

Acknowledgments

This research was supported by the Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education, Science and
Technology (2010-0023236).

References

[1] J. H. Holland, Adaptation in Natural and Artificial Systems, MIT
Press, Cambridge, Mass, USA, 1975.

[2] S.Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, “Optimization
by simulated annealing,” Science, vol. 220, no. 4598, pp. 671-680,
1983.

[3] E Glover and M. Laguna, Tabu Search, Springer, 1997.

[4] M. Dorigo, Learning and Nature Algorithm [Ph.D. thesis],
Dipartimento di Electtonica, Politecnico di Milano, Milano,
Italy, 1992.

[5] L. M. Gambardella and M. Dorigo, “Solving symmetric and
asymmetric TSPs by ant colonies,” in Proceedings of the IEEE
International Conference on Evolutionary Computation (ICEC
°96), pp. 622-627, May 1996.

[6] M. Dorigo and L. M. Gambardella, “Ant colony system: a coop-
erative learning approach to the traveling salesman problem,”

(10]

(11]

(12]

(15]

(16]

(17]

[20]

[21]

(22]

IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp.
53-66, 1997.

M. Dorigo and L. M. Gambardella, “Ant colonies for the
travelling salesman problem,” BioSystems, vol. 43, no. 2, pp. 73—
81, 1997.

J. Kennedy and R. Eberhart, “Particle swarm optimization,”
in Proceedings of the IEEE International Conference on Neural
Networks, vol. 4, pp. 1942-1948, December 1995.

Z. W. Geem, J. H. Kim, and G. V. Loganathan, “A new heuristic
optimization algorithm: Harmony search,” Simulation, vol. 76,
no. 2, pp. 60-68, 2001.

K.S. Lee and Z. W. Geem, “A new meta-heuristic algorithm for
continuous engineering optimization: harmony search theory
and practice,” Computer Methods in Applied Mechanics and
Engineering, vol. 194, no. 36-38, pp. 3902-3933, 2005.

X.-S. Yang and S. Deb, “Cuckoo search via Lévy flights,” in
Proceedings of the World Congress on Nature and Biologically
Inspired Computing (NABIC "09), pp. 210-214, IEEE Publica-
tions, December 2009.

X. S. Yang, Nature-Inspired Metaheuristic Algorithms, Lunvie
Press, Frome, UK, 2008.

B. Freisleben and P. Merz, “Genetic local search algorithm
for solving symmetric and asymmetric traveling salesman
problems,” in Proceedings of the IEEE International Conference
on Evolutionary Computation (ICEC ’96), pp. 616-621, May
1996.

Y. Wang and D. Tian, “An improve simulated annealing
algorithm for traveling salesman problem,” in Proceedings of
the International Conference on Information Technology and
Software Engineering, vol. 211 of Lecture Notes In Electrical
Engineering, pp. 525-532, 2013.

C.-N. Fiechter, “A parallel tabu search algorithm for large
traveling salesman problems,” Discrete Applied Mathematics,
vol. 51, no. 3, pp. 243-267, 1994.

T. Stiizle and H. Hoos, “MAX-MIN Ant system and local
search for the traveling salesman problem,” Reference Future
Generations Computer Systems, vol. 16, no. 8, pp. 889-914, 1997.
K.-P. Wang, L. Huang, C.-G. Zhou, and W. Pang, “Particle
swarm optimization for traveling salesman problem,” in Pro-
ceedings of the International Conference on Machine Learning
and Cybernetics, pp. 1583-1585, Xian, China, November 2003.
X. Ouyang, Y. Zhou, Q. Luo, and H. Chen, “A novel discrete
cuckoo search algorithm for spherical traveling salesman prob-
lem,” Applied Mathematics & Information Sciences, vol. 7, no. 2,
pp. 777-784, 2013.

S. N. Kumbharana and G. M. Pandey, “A comparative study of
ACO, GA and SA for solving traveling salesman problem,” Inter-
national Journal of Societal Applications of Computer Science,
vol. 2, no. 2, pp. 224-228, 2013.

A. Kaveh and S. Talatahari, “Particle swarm optimizer, ant
colony strategy and harmony search scheme hybridized for
optimization of truss structures,” Computers and Structures, vol.
87, 0. 5-6, pp. 267-283, 2009.

W. Pang, K.-P. Wang, C.-G. Zhou, and L.-J. Dong, “Fuzzy
discrete particle swarm optimization for solving traveling sales-
man problem,” in Proceedings of the 4th International Conference
on Computer and Information Technology (CIT °04), pp. 796-
800, September 2004.

R. Thamilselvan and P. Balasubramanie, “A genetic algorithm
with a Tabu search(GTA) for traveling salesman problem,”
International Journal of Recent Trends in Engineering, vol. 1, no.
1, 2009.

(23]

(27]

Journal of Applied Mathematics

Y. Yan, X. Zhao, J. Xu, and Z. Xiao, “A mixed heuristic
algorithm for traveling salesman problem,” in Proceedings of
the 3rd International Conference on Multimedia Information
Networking and Security (MINES ’11), pp. 229-232, November
2011.

S.-M. Chen and C.-Y. Chien, “Parallelized genetic ant colony
systems for solving the traveling salesman problem,” Expert
Systems with Applications, vol. 38, no. 4, pp. 3873-3883, 2011.
S.-C. Chu, J. E Roddick, and J.-S. Pan, “Ant colony system with
communication strategies,” Information Sciences, vol. 167, no. 1-
4, pp. 63-76, 2004.

S.-M. Chen and C.-Y. Chien, “Solving the traveling salesman
problem based on the genetic simulated annealing ant colony
system with particle swarm optimization techniques,” Expert
Systems with Applications, vol. 38, no. 12, pp. 14439-14450, 2011.
M. Randall and J. Montgomery, “The accumulated experience
Ant colony for the traveling salesman problem,” International
Journal of Computational Intelligence and Applications, vol. 03,
no. 2, pp. 189-198, 2003.

