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We consider the analytic solution of a class of fractional differential equations with variable coefficients by operatorial methods.We
obtain three theorems which extend the Garra’s results to the general case.

1. Introduction

Recently, Garra [1] studied the analytic solution of a class of
fractional differential equations with variable coefficients by
using operatorial methods.

The proof of his main results is strongly based on
operatorial properties of Caputo fractional derivative and the
following theorem by Miller and Ross [2].

TheoremM.-R. (Theorem 1.1 in [1]). Let 𝑓(𝑡) be any function
of the form 𝑡𝜆𝜂(𝑡) or 𝑡𝜆(ln 𝑡)𝜂(𝑡), where 𝜆 > −1, and

𝜂 (𝑡) =
∞

∑
𝑛=0

𝑎𝑛𝑡
𝑛 (1)

has a radius of convergence 𝑅 > 0 and 0 < 𝑋 < 𝑅. Then

𝐷𝛼
𝑡
𝐷
𝛽

𝑡
𝑓 (𝑡) = 𝐷

𝛼+𝛽

𝑡
𝑓 (𝑡) (2)

holds for all 𝑡 ∈ (0, 𝑋), provided
(1) 𝛽 < 𝜆 + 1 and 𝛼 are arbitrary, or
(2) 𝛽 ≥ 𝜆 + 1 and 𝛼 are arbitrary and 𝑎𝑘 = 0 for 𝑘 =
0, 1, . . . , 𝑚 − 1, where𝑚 = ⌈𝛽⌉ (ceiling of the number).

Garra’s main results are as follows.

Theorem Garra (Theorem 1.2 in [1]). Consider the following
boundary value problem (BVP):

𝐷𝐿
𝑥

𝑓 (𝑥, 𝑡) = 𝐷
𝛼

𝑡
𝑓 (𝑥, 𝑡) ,

𝑓 (0, 𝑡) = 𝑔 (𝑡) ,
(3)

in the half plane 𝑡 > 0, with analytic boundary condition 𝑔(𝑡)
such that the conditions of Theorem 1.1 (Theorem M.-R.) are
satisfied. The operatorial solution of BVP (3) is given by

𝑓 (𝑥, 𝑡) =
∞

∑
𝑘=0

𝑥𝑘𝐷𝛼𝑘
𝑡

(𝑘!)2
𝑔 (𝑡) , (4)

where 𝐷𝐿
𝑥

is the Laguerre derivative and 𝐷𝛼
𝑡
denotes Caputo

fractional derivative. On the basis of the previous result, Garra
proved (Example 1 in [1]) that if 𝑔(𝑡) = 𝑡𝑚, 𝑚 ∈ N, then the
analytic solution of the BVP (3) is given by

𝑓 (𝑥, 𝑡) =
∞

∑
𝑘=0

𝑥𝑘𝐷𝛼𝑘
𝑡
𝑡𝑚

(𝑘!)2
=
[𝑚/𝛼]

∑
𝑟=0

Γ (𝑚 + 1)

Γ (𝑚 + 1 − 𝛼𝑟)
⋅
𝑥𝑟𝑡𝑚−𝛼𝑟

(𝑟!)2
,

(5)

where Γ(𝛼) = ∫∞
0
𝑒−𝑡𝑡𝛼−1𝑑𝑡.

Motivated by the results, in the present note, we extend
Garra’s results to the general case.

2. Preliminaries

Definition 1 (see [3]). For every positive integer 𝑛, the
operator𝐷𝑛𝐿

𝑥

:= 𝐷𝑥, . . . , 𝐷𝑥𝐷𝑥𝐷 (containing 𝑛+1 ordinary
derivatives) is called the 𝑛-order Laguerre derivatives and the
𝑛𝐿-exponential function is defined by

𝑒𝑛 (𝑥) :=
∞

∑
𝑘=0

𝑥𝑘

(𝑘!)𝑛+1
. (6)
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In [4], the following result is proved.

Lemma 2. Let 𝑎 be an arbitrary real or complex number. The
function 𝑒𝑛(𝑎𝑥) is an eigenfunction of the operator 𝐷𝑛𝐿

𝑥

; that
is,

𝐷𝑛𝐿
𝑥

𝑒𝑛 = 𝑎𝑒𝑛 (𝑎𝑥) . (7)

For 𝑛 = 0, we have 𝐷0𝐿 := 𝐷. Thus, (7) leads to the
classical property of the exponential function𝐷𝑒𝑎𝑥 = 𝑎𝑒𝑎𝑥.

Similarly, the spectral properties can be obtained [3] by
using the general Laguerre derivatives

𝐷1𝐿 + 𝑚𝐷 = 𝐷 (𝑥𝐷 + 𝑚) (8)

(here 𝑚 is a real or complex constant) or more generally the
operator

𝐷(𝑥𝐷 + 𝑚)
𝑛 =
𝑛

∑
𝑘=0

(
𝑛
𝑘
)𝐷𝑘𝐿𝑚

𝑛−𝑘 (9)

(𝑛 ∈ N) and the corresponding eigenfunctions

∞

∑
𝑘=0

𝑥𝑘

𝑘! (𝑘 + 𝑚)!
(10)

or
∞

∑
𝑘=0

𝑥𝑘

𝑘!((𝑘 + 𝑚)!)𝑛
. (11)

Throughout this paper, we use the Caputo fractional
derivatives as in [1].

Definition 3 (see [5]). The Caputo derivative of fractional
order 𝛼 of function 𝑓(𝑡) is defined as

𝐷𝛼𝑓 (𝑡) :=

{{{{
{{{{
{

1

Γ (𝑚 − 𝛼)
∫
𝑡

0

𝑓(𝑚) (𝜏)

(𝑡 − 𝜏)𝛼+1−𝑚
𝑑𝜏, 𝑚 − 1 < 𝛼 < 𝑚

𝑑𝑚𝑓

𝑑𝑡𝑚
, 𝛼 = 𝑚,

(12)

where𝑚 := ⌈𝛼⌉.

Lemma 4 (see [5]). Let 𝑓(𝑡) = 𝑡𝜆 for some 𝜆 ≥ 0. Then

𝐷𝛼𝑓 (𝑡)

=

{{{
{{{
{

0, 𝑖𝑓 𝜆 ∈ 0, 1, . . . , 𝑚 − 1,
Γ (𝜆 + 1)

Γ (𝜆 + 1 − 𝛼)
𝑡𝜆−𝛼, 𝑖𝑓 𝜆 ∈ N, 𝜆 ≥ 𝑚 𝑜𝑟

𝜆 ∉ N, 𝜆 > 𝑚 − 1,

(13)

where𝑚 =: ⌈𝛼⌉.

Lemma 5. Let 𝜆 > 0. Let 𝛼 > 0, 𝛽 > 0, and 𝛼 + 𝛽 ≤ 𝜆. Then

𝐷𝛼+𝛽𝑡𝜆 = 𝐷𝛼𝐷𝛽𝑡𝜆 (𝑡 > 0) . (14)

Proof. This follows immediately from Lemma 4.

Remark 6. In general, for 𝛼, 𝛽 > 0, 𝐷𝛼𝐷𝛽 = 𝐷𝛼+𝛽 is not true.
For example,

𝐷0.6𝐷0.6𝑡 =
Γ (2)

Γ (0.8)
𝑡−0.2, (15)

but

𝐷0.6+0.6𝑡 = 𝐷1.2𝑡 = 0. (16)

Lemma 7. Suppose 𝛼 > 0, and let 𝑔(𝑡) = ∑∞
𝑘=0
𝑎𝑘𝑡
𝑘 have a

radius of convergence 𝑅 > 0 and 0 < 𝑋 < 𝑅. If [𝛼𝑘] = ⌈𝛼(𝑘 +
1)⌉ − 1 for some 𝑘 ∈ N, then

𝐷(𝑘+1)𝛼𝑔 (𝑡) = 𝐷
𝛼𝐷𝑘𝛼𝑔 (𝑡) . (17)

Proof. Let ⌈𝛼(𝑘 + 1)⌉ = 𝑚. Then𝑚 − 1 < 𝛼(𝑘 + 1) ≤ 0.
By lemmas 4 and 5, we have

𝐷(𝑘+1)𝛼𝑔 (𝑡) = 𝐷
(𝑘+1)𝛼(

∞

∑
𝑙=0

𝑎𝑙𝑡
𝑙)

= 𝐷(𝑘+1)𝛼(
∞

∑
𝑙=𝑚

𝑎𝑙𝑡
𝑙) .

(18)

Since [𝛼𝑘] = ⌈𝛼(𝑘 + 1)⌉ − 1 = 𝑚 − 1, together with
Definition 3, we have

𝐷𝛼𝐷𝛼𝑘(
𝑚−1

∑
𝑙=0

𝑎𝑙𝑡
𝑙) = 0, (19)

and therefore (18) implies that

𝐷(𝑘+1)𝛼𝑔 (𝑡) = 𝐷
𝛼𝐷𝛼𝑘(

∞

∑
𝑙=0

𝑎𝑙𝑡
𝑙) = 𝐷𝛼𝐷𝛼𝑘𝑔 (𝑡) . (20)

This completes the proof.

3. Main Results

We first study the following BVP in the plane 𝑡 > 0:

𝐷𝑛𝐿
𝑥

𝑓 (𝑥, 𝑡) = 𝐷
𝛼

𝑡
𝑓 (𝑥, 𝑡) ,

𝑓 (0, 𝑡) = 𝑔 (𝑡) .
(21)

Theorem 8. Let 𝑔(𝑡) = 𝑡𝜆 with 𝜆 > 0 and assume that 𝜆/𝛼 is a
positive integer. Then the operatorial form solution of BVP (21)
is

𝑓 (𝑥, 𝑡) =
𝜆/𝛼

∑
𝑘=0

𝑥𝑘𝐷𝛼𝑘𝑡𝜆

(𝑘!)𝑛+1

=
𝜆/𝛼

∑
𝑘=0

Γ (𝜆 + 1)

Γ (𝜆 + 1 − 𝛼𝑘)
⋅
𝑥𝑘

(𝑘!)𝑛+1
𝑡𝜆−𝛼𝑘.

(22)
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Proof. Let 𝜆/𝛼 = 𝑚. By Lemmas 4 and 5, we have

𝐷𝑛𝐿
𝑥

𝑓 (𝑥, 𝑡) =
𝑚

∑
𝑘=1

𝑘𝑛+1𝐷𝛼𝑘
𝑡
𝑡𝜆

(𝑘!)𝑛+1
=
𝑚

∑
𝑘=1

𝑥𝑘−1𝐷𝛼𝑘
𝑡
𝑡𝜆

[(𝑘 − 1)!]𝑛+1

=
𝑚−1

∑
𝑘=0

𝐷𝛼(𝑘+1)
𝑡

𝑡𝜆

(𝑘!)𝑛+1
= 𝐷𝛼
𝑡
(
𝑚−1

∑
𝑘=0

𝑥𝑘𝐷𝛼𝑘𝑡𝜆

(𝑘!)𝑛+1
)

= 𝐷𝛼
𝑡
(
𝑚

∑
𝑘=0

𝑥𝑘𝐷𝛼𝑘𝑡𝜆

(𝑘!)𝑛+1
) = 𝐷𝛼

𝑡
𝑓 (𝑥, 𝑡) .

(23)

In the fifth previous equality, we use the fact that

𝐷𝛼
𝑡
(
𝑥𝑚𝐷𝛼𝑚𝑡𝜆

(𝑘!)𝑛+1
) = 𝐷𝛼

𝑡
(
𝑥𝑚𝐷𝜆𝑡𝜆

(𝑘!)𝑛+1
) = 0. (24)

Remark 9. We point out that the result of Example 1 in [1] is
incorrect. A counterexample is as follows. Let 𝑔(𝑡) = 𝑡 and
𝛼 = 0.6. By Lemma 5, we have

𝐷𝐿
𝑥

(
[1/0.6]

∑
𝑘=0

𝑥𝑘𝐷𝛼𝑘
𝑡

(𝑘!)2
𝑡)

= 𝐷𝑥𝑥𝐷𝑥 (𝑡 +
𝑥𝐷0.6
𝑡

(1!)2
𝑡) = 𝐷0.6

𝑡
(𝑡) .

(25)

On the other hand, we have

𝐷0.6
𝑡
(
[1/0.6]

∑
𝑘=0

𝑥𝑘𝐷𝛼𝑘
𝑡

(𝑘!)2
𝑡)

= 𝐷0.6
𝑡
(𝑡 +

𝑥𝐷0.6
𝑡

(1!)2
𝑡) = 𝐷0.6

𝑡
(𝑡) + 𝑥𝐷

0.6

𝑡
(𝐷0.6
𝑡
𝑡) .

(26)

Note that by Remark 6, we have

𝐷0.6+0.6
𝑡

𝑡 = 0,

𝐷0.6
𝑡
𝐷0.6
𝑡
𝑡 =

1

Γ (0.8)
𝑡−0.2 ̸= 0.

(27)

Hence,

𝐷𝐿
𝑥

(
[1/0.6]

∑
𝑘=0

𝑥𝑘𝐷𝛼𝑘
𝑡

(𝑘!)2
𝑡) ̸=𝐷0.6

𝑡
(
[1/0.6]

∑
𝑘=0

𝑥𝑘𝐷𝛼𝑘
𝑡

(𝑘!)2
𝑡) . (28)

Theorem 10. Let 𝑔(𝑡) satisfy the assumptions of Lemma 7. If
[𝛼𝑘] = ⌈𝛼(𝑘 + 1)⌉ − 1, (𝑘 = 1, 2, . . .), then the operatorial form
solution of BVP (21) is given by

𝑓 (𝑥, 𝑡) = 𝑒𝑛 (𝑥𝐷
𝛼

𝑡
) 𝑔 (𝑡) =

∞

∑
𝑘=0

𝑥𝑘𝐷𝛼𝑘
𝑡

(𝑘!)𝑛+1
𝑔 (𝑡) . (29)

Proof. By Lemmas 2 and 7, we have

𝐷𝑛𝐿
𝑥

𝑓 (𝑥, 𝑡) = 𝐷𝑛𝐿
𝑥

(𝑒𝑛 (𝑥𝐷
𝛼

𝑡
) 𝑔 (𝑡))

= 𝐷𝛼
𝑡
𝑒𝑛 (𝑥𝐷

𝛼

𝑡
) 𝑔 (𝑡) = 𝐷

𝛼

𝑡
𝑓 (𝑥, 𝑡) .

(30)

This completes the proof.

The following generalization of the Theorem 10 can be
proved similarly.

Theorem 11. Let 𝑚 be a real or complex constant and 𝑛 ∈ N.
Consider the following BVP:

𝐷𝑥(𝑥𝐷𝑥 + 𝑚)
𝑛
𝑓 (𝑥, 𝑡) = 𝐷

𝛼

𝑡
𝑓 (𝑥, 𝑡) ,

𝑓 (0, 𝑡) = 𝑔 (𝑡) ,
(31)

in the half plane 𝑡 > 0, with analytic boundary condition 𝑔(𝑡)
such that the conditions of Lemma 7 are satisfied. If [𝛼𝑘] =
⌈𝛼(𝑘 + 1)⌉ − 1, (𝑘 = 1, 2, . . .), then the operatorial solution of
BVP (31) is given by

𝑓 (𝑥, 𝑡) =
∞

∑
𝑘=0

𝑥𝑘𝐷𝛼𝑘
𝑡

𝑘!((𝑘 + 𝑚)!)𝑛
𝑔 (𝑡) . (32)

Proof. Using spectral properties of Laguerre derivative,
together with Lemma 7, we have

𝐷𝑥(𝑥𝐷𝑥 + 𝑚)
𝑛
𝑓 (𝑥, 𝑡) = 𝐷𝑥(𝑥𝐷𝑥 + 𝑚)

𝑛

× (
∞

∑
𝑘=0

𝑥𝑘𝐷𝛼𝑘
𝑡

𝑘!((𝑘 + 𝑚)!)𝑛
𝑔 (𝑡))

=
∞

∑
𝑘=1

𝑘(𝑘 + 𝑚)𝑛𝑥𝑘−1𝐷𝛼𝑘
𝑡

𝑘!((𝑘 + 𝑚)!)𝑛
𝑔 (𝑡)

=
∞

∑
𝑘=0

𝑥𝑘𝐷𝛼(𝑘+1)

𝑘!((𝑘 + 𝑚)!)𝑛+1
𝑔 (𝑡)

= 𝐷𝛼(
∞

∑
𝑘=0

𝑥𝑘𝐷𝛼𝑘

𝑘!((𝑘 + 𝑚)!)𝑛
𝑔 (𝑡))

= 𝐷𝛼𝑓 (𝑥, 𝑡) .

(33)

This completes the proof.

Remark 12. Conditions [𝛼𝑘] = ⌈𝛼(𝑘 + 1)⌉ − 1 (𝑘 = 1, 2, . . .)
are very harsh. However, if we remove them,Theorems 10 and
11 no longer remain valid. It should be noted that the main
result in [1] (Theorem 1.2 in [1]) is incorrect in general case. A
counterexample is as follows. Let 𝑔(𝑡) = 𝑒𝑡 and 𝛼 = 0.6. One
has

𝐷𝐿
𝑥

(
∞

∑
𝑘=0

𝑥𝑘𝐷𝛼𝑘
𝑡
𝑒𝑡

(𝑘!)2
) = 𝐷𝑥𝑥𝐷𝑥 (

𝑥

(1!)2
𝐷0.6
𝑡
𝑒𝑡 +

𝑥2

(2!)2
𝐷1.2
𝑡
𝑒𝑡

+
𝑥3

(3!)2
𝐷1.8
𝑡
𝑒𝑡 + ⋅ ⋅ ⋅ )

= 𝐷0.6
𝑡
𝑒𝑡 +

𝑥

(1!)2
𝐷1.2
𝑡
𝑒𝑡

+
𝑥2

(2!)2
𝐷1.8
𝑡
𝑒𝑡 + ⋅ ⋅ ⋅ .

(34)
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On the other hand, we have

𝐷𝛼
𝑡
(
∞

∑
𝑘=0

𝑥𝑘𝐷𝛼𝑘
𝑡
𝑒𝑡

(𝑘!)2
)

= 𝐷0.6
𝑡
(𝑒𝑡 +

𝑥

(1!)2
𝐷0.6
𝑡
𝑒𝑡 +

𝑥2

(2!)2
𝐷1.2
𝑡
𝑒𝑡 + ⋅ ⋅ ⋅ ) .

(35)

Set 𝑥 = 1 in (34) and (35). By Definition 3 and Lemma 4,
we deduce that all terms in (34) are positive and cannot
contain negative exponent of variable 𝑡. For example,

𝐷0.6
𝑡
𝑒𝑡 = 𝐷0.6

𝑡
(1 + 𝑡 +

𝑡2

2!
+ ⋅ ⋅ ⋅ ) = 𝐷0.6

𝑡
(𝑡 +

𝑡2

2!
+ ⋅ ⋅ ⋅ )

=
1

Γ (1.4)
𝑡0.4 +

1

Γ (2.4)
𝑡1.4 + ⋅ ⋅ ⋅ ,

𝐷1.8
𝑡
𝑒𝑡 = 𝐷1.8

𝑡
(1 + 𝑡 +

𝑡2

2!
+ ⋅ ⋅ ⋅ ) = 𝐷1.8

𝑡
(
𝑡2

2!
+
𝑡3

3!
+ ⋅ ⋅ ⋅ )

=
1

Γ (1.2)
𝑡0.2 +

1

Γ (2.2)
𝑡1.2 + ⋅ ⋅ ⋅ ,

and so forth.
(36)

Similarly, all terms in (35) are also positive, except that
some terms contain negative exponent of variable 𝑡. For
example,

𝐷0.6
𝑡
𝐷0.6
𝑡
𝑒𝑡 = 𝐷0.6

𝑡
𝐷0.6
𝑡
(1 + 𝑡 +

𝑡2

2!
+ ⋅ ⋅ ⋅ )

= 𝐷0.6
𝑡
𝐷0.6
𝑡
(𝑡 +

𝑡2

2!
+ ⋅ ⋅ ⋅ )

=
1

Γ (0.8)
𝑡−0.2 + ⋅ ⋅ ⋅ ,

𝐷0.6
𝑡
𝐷6.6
𝑡
𝑒𝑡 = 𝐷0.6

𝑡
𝐷6.6
𝑡
(1 + 𝑡 +

𝑡2

2!
+ ⋅ ⋅ ⋅ )

= 𝐷0.6
𝑡
𝐷6.6
𝑡
(𝑡 +

𝑡2

2!
+ ⋅ ⋅ ⋅ )

=
1

Γ (0.8)
𝑡−0.2 + ⋅ ⋅ ⋅ ,

and so forth.

(37)

Thus, we conclude that

𝐷𝐿
𝑥

(
∞

∑
𝑘=0

𝑥𝑘𝐷0.6𝑘
𝑡
𝑒𝑡

(𝑘!)2
) ̸=𝐷0.6

𝑡
(
∞

∑
𝑘=0

𝑥𝑘𝐷0.6𝑘
𝑡
𝑒𝑡

(𝑘!)2
) . (38)

4. Conclusion and Discussion

In this paper, we point out that Garra’s results are incorrect
and give some necessary counterexamples. In addition, we

established three theorems (Theorems 8, 10, and 11) which
correct and extend the corresponding results of [1].

Different from integer-order derivative, there are many
kinds of definitions for fractional derivatives, including
Riemann-Liouville, Caputo, Grunwald-Letnikov, Weyl,
Jumarie, Hadamard, Davison and Essex, Riesz, Erdelyi-
Kober, and Coimbra (see [1, 6–8]). These definitions are
generally not equivalent to each other. Every derivative has
its own serviceable range. In other words, all these fractional
derivatives definitions have their own advantages and
disadvantages. For example, the Caputo derivative is very
useful when dealing with real-world problem, since it allows
traditional initial and boundary conditions to be included in
the formulation of the problem and the Laplace transform
of Caputo fractional derivative is a natural generalization
of the corresponding well-known Laplace transform of
integer-order derivative. So, the Caputo fractional-order
system is often used in modelling and analysis. However, the
functions that are not differentiable do not have fractional
derivative, which reduces the field of application of Caputo
derivative (see [1, 8, 9]).

When solving fractional-order systems, the law of expo-
nents (semigroup property) is the most important. Unlike
integer-order derivative, for 𝛼 > 0 and 𝛽 > 0, 𝛼 derivative of
the𝛽 derivative of a function is, in general, not equal to the𝛼+
𝛽 derivative of such function. About the semigroup property
of the fractional derivatives, under suitable assumptions of
fractional order, there have existed some studies, but only a
few studies provide valuable judgment methods (see [1, 9]).

Fortunately, if we define Ω as the class of all functions
𝑓 which are infinitely differentiable everywhere and are
such that 𝑓 and all its derivatives are of order 𝑡−𝑁 for all
𝑁, 𝑁 = 1, 2, . . ., then, for all functions of class Ω, Weyl
fractional derivatives possess the semigroup property [1].
This has brought us great convenience for studying Weyl
fractional differential equations.Wewill considered this topic
in a forthcoming paper.
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