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We introduce hybrid and relaxed Mann iteration methods for a general system of variational inequalities with solutions being
also common solutions of a countable family of variational inequalities and common fixed points of a countable family of
nonexpansive mappings in real smooth and uniformly convex Banach spaces. Here, the hybrid and relaxed Mann iteration methods
are based on Korpelevich’s extragradient method, viscosity approximation method, and Mann iteration method. Under suitable
assumptions, we derive some strong convergence theorems for hybrid and relaxed Mann iteration algorithms not only in the setting
of uniformly convex and 2-uniformly smooth Banach space but also in a uniformly convex Banach space having a uniformly
Gateaux differentiable norm. The results presented in this paper improve, extend, supplement, and develop the corresponding

results announced in the earlier and very recent literature.

1. Introduction

Let X be a real Banach space whose dual space is denoted by
X". The normalized duality mapping J : X — 2% is defined
by
J(x) = {x* € X" {x,x*) = |xI° = ||x*||2}, Vx € X,
@

where (:,-) denotes the generalized duality pairing. It is an
immediate consequence of the Hahn-Banach theorem that
J(x) is nonempty for each x € X. Let C be a nonempty
closed convex subset of X. A mapping T : C — C is called
nonexpansive if [Tx — Ty|| < |lx — y| for every x,y € C.
The set of fixed points of T is denoted by Fix(T"). We use the
notation — to indicate the weak convergence and the one —
to indicate the strong convergence. A mapping A : C — X
is said to be

(i) accretive if for each x, y € C there exists j(x — y) €
J(x — y) such that

(Ax - Ay, j(x-y)) =0 )

(ii) a-strongly accretive if for each x, y € C there exists
j(x =) € J(x — y) such that

(Ax - Ay, j(x - y)) = afx - y|’, (3)

for some « € (0, 1);

(iii) B-inverse strongly accretive if, for each x, y € C, there
exists j(x — y) € J(x — y) such that

(Ax = Ay, j(x - y)) = BlAx - Ay|’, (4)

for some f3 > 0;

(iv) A-strictly pseudocontractive [1] (see also [2]) if for
each x, y € C there exists j(x — y) € J(x — y) such
that

(Ax = Ay, j(x=p)) < |x = y|* = Mx - y - (Ax - 4p)|’
(5)

for some A € (0,1).



It is worth emphasizing that the definition of the inverse
strongly accretive mapping is based on that of the inverse
strongly monotone mapping, which was studied by so many
authors; see, for example, [3-5]. LetU = {x € X : ||x|| = 1}
denote the unite sphere of X. A Banach space X is said to be
uniformly convex if, for each € € (0, 2], there exists § > 0
such that, forall x, y € U,

||x—y||26=>x—sl—5. (6)

It is known that a uniformly convex Banach space is reflexive
and strict convex. A Banach space X is said to be smooth if
the limit

lim ||x + ty" — llxIl )
t—0 t

exists for all x, y € Us; in this case, X is also said to have a
Gateaux differentiable norm. X is said to have a uniformly,
Gateaux differentiable norm if, for each y € U, the limit
is attained uniformly for x € U. Moreover, it is said to be
uniformly smooth if this limit is attained uniformly for x, y €
U. The norm of X is said to be the Frechet differential if for
each x € U, this limit is attained uniformly for y € U. In the
meantime, we define a function p : [0,00) — [0, c0) called
the modulus of smoothness of X as follows:

1
p@ =sup {3 (Jx+y]+ =y -1:xy e X,
(8)
Il =1 Iyl = 7}

It is known that X is uniformly smooth if and only if
lim_ _, ,p(7)/7 = 0. Let g be a fixed real number with 1 < g <
2. Then, a Banach space X is said to be g-uniformly smooth if
there exists a constant ¢ > 0 such that p(7) < cr? forall 7 > 0.
Aspointed out in [6], no Banach space is g-uniformly smooth
for g > 2. In addition, it is also known that J is single valued
ifand only if X is smooth, whereas if X is uniformly smooth,
then the mapping J is norm-to-norm uniformly continuous
on bounded subsets of X. If X has a uniformly Gateaux
differentiable norm, then the duality mapping J is norm-to-
weak” uniformly continuous on bounded subsets of X.

Recently, Yao et al. [7] combined the viscosity approx-
imation method and Mann iteration method and gave the
following hybrid viscosity approximation method.

Let C be a nonempty closed convex subset of a real
uniformly smooth Banach space X, T C - Ca
nonexpansive mapping with Fix(T)#0,and f : C — C
a contraction with coefficient p € (0, 1). For an arbitrary
x, € C, define {x,} in the following way:

In = 0%y, + (1 - (Xn) Txn’
Xn+1 = ﬁnf (xn) + (1 - ﬁn) Yo

where {a,} and {f3,} are two sequences in (0, 1).
They proved under certain control conditions on the
sequences {a,} and {f,} that {x,} converges strongly to

(YCY)
Vn >0,
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a fixed point of T Subsequently, under the following control
conditions on {a,,} and {f,}:

(i) 1 < B, <1 - p,forall n > n, for some integer n, > 1,

(ii) Y020 B, = 00,

(iii) 0 < liminf, |, Je, <limsup, , &, <1,
(IV) hmn—)oo(ﬁn+l/(1 - (1 - ﬁn+1)(xn+1) - ﬁn/(l - (1 -
Bn,) = 0.
Ceng and Yao [8] proved that
Xy /(4 == ﬁn (f (xn) - xn) — 0, (9)

where g € Fix(T) solves the variational inequality problem
(VIP):

(q-f(q),J(q-p)) <0, V¥peFix(T).  (10)
Such a result includes [7, Theorem 1] as a special case.

Let Cbe anonempty closed convex subset of a real Banach
space X and f € E. with a contractive coeflicient p € (0,1),
where B is the set of all contractive self-mappings on C. Let
{T,}2, be a sequence of nonexpansive self-mappings on C

and {A,,};2, a sequence of nonnegative numbers in [0, 1]. For
any n > 0, define a self-mapping W,, on C as follows:

U,

n.n+

Un,n = AnTnUn,nJrl + (1 - /\n) I’

1 =1

Un,n—l = An—lTn—IIJn,n + (1 - /\n—l) I’

Upk = MTUpper + (1= A T, (CY)

Upgeer = Mcd T U + (1= Ay) L

Uy = MTU,, + (1-A)1,

W, =U,o=2A,ToU,; +(1-21,) L

Such a mapping W, is called the W-mapping generated by
T,T, 1,....Tp,and A, A,_;,..., Ay; see [9].

In 2008, Ceng and Yao [10] introduced and analyzed the
following relaxed viscosity approximation method for finding
a common fixed point of an infinite family of nonexpansive
mappings in a strictly convex and reflexive Banach space with

a uniformly Gateaux differentiable norm.

Theorem 1 (see [10]). Let X be a strictly convex and reflexive
Banach space with a uniformly Gateaux differentiable norm,
C a nonempty closed convex subset of X, {T,}°, a sequence of
nonexpansive self-mappings on C such that the common fixed
point set F := (.2, Fix(T,,) #0, and f € B with a contractive
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[ee)

coefficient p € (1/2,1). For any given x, € C, let {x,},, be the
iterative sequence defined by

Yn = (1 - Yn) Xy + Yanxw

Vn >0,
(11)

Xn1 = (1 &, = ﬁn) X, + ‘an (yn) + ﬂanyw

where {a,} and {B,},°, are two sequences in (0, 1) with a,, +
B, <1 (n=0),{y,),2, is a sequence in [0, 1], and W, is the
W-mapping generated by (CY). Assume that

(i) hmn—»oo‘xn 0, ZZZO Xy =
liminf, _, o B, <limsup, , B, <L

0o and 0 <

(i) lim,, _, o1y, = Vu1l = 0 and limsup,, _, .y, < 1.
Then, there hold the following:

(1) limnaoo||xn+1 - xn” = 0;
(ii) the sequence {x,},, converges strongly to some p €

F which is the unique solution of the variational
inequality problem (VIP)

(I-f)aT(q-p)) <0, VfeEcpeF (12)
provided lim
B e(0,1).

On the other hand, Cai and Bu [11] considered the
following general system of variational inequalities (GSVI)
in a real smooth Banach space X, which involves finding
(x*,y") € C x C such that

= 0 and 8, = fB for some fixed

n—>oan

By " +x" = y", J(x-x")) 20, VxeC,
(13)

(Byx" +y" —x",J (x=y")) 20, VxeC,
where C is a nonempty, closed, and convex subset of X,
B,,B, : C — X are two nonlinear mappings, and y, and y,
are two positive constants. Here, the set of solutions of GSVI
(13) is denoted by GSVI(C, By, B,). In particular, if X = H,
a real Hilbert space, then GSVI (13) reduces to the following
GSVI of finding (x*, y*) € C x C such that

(mBy +x"—y",x-x") >0, VxeC,
(14)

(Byx" +y" —=x",x-y") >0, VxeC,
in which y; and y, are two positive constants. The set of
solutions of problem (14) is still denoted by GSVI(C, B, B,).
In particular, if B, = B, = A, then problem (14) reduces to
the new system of variational inequalities (NSVT), introduced
and studied by Verma [12]. Further, if x* = y* additionally,
then the NSVI reduces to the classical variational inequality

problem (VIP) of finding x* € C such that

(Ax",x-x") >0, VxeC. (15)
The solution set of the VIP (15) is denoted by VI(C, A).
Variational inequality theory has been studied quite exten-
sively and has emerged as an important tool in the study of

a wide class of obstacle, unilateral, free, moving, equilibrium
problems. It is now well known that the variational inequal-
ities are equivalent to the fixed point problems, the origin
of which can be traced back to Lions and Stampacchia [13].
This alternative formulation has been used to suggest and
analyze projection iterative method for solving variational
inequalities under the conditions that the involved operator
must be strongly monotone and Lipschitz continuous.

Recently, Ceng et al. [14] transformed problem (14) into a
fixed point problem in the following way.

Lemma 2 (see [14]). For given X,y € C, (x,y) is a solution
of problem (14) if and only if X is a fixed point of the mapping
G : C — Cdefined by

G (x) = Pc [P (x — 4y Byx) — 4y B, P (x — 4, B x)]
Vx € C,

(16)

where y = Po(X — pu, B,x) and P, is the projection of H onto C.

In particular, if the mapping B; : C — H is f;-inverse
strongly monotone for i = 1,2, then the mapping G is
nonexpansive provided y; € (0,2f3;) fori = 1,2.

In 1976, Korpelevi¢ [15] proposed an iterative algorithm
for solving the VIP (15) in Euclidean space R™:

Yn = PC (xn - TAxn)’

17)
xn+1=PC(xn_TAyn)’ nz0
with 7 > 0 a given number, which is known as the extragradi-
ent method (see also [16]). The literature on the VIP is vast
and Korpelevich’s extragradient method has received great
attention given by many authors, who improved it in various
ways; see, for example, [3,11,13,17-33] and references therein,
to name but a few.

In particular, whenever X is still a real smooth Banach
space, B, = B, = Aand x* = y", then GSVI (13) reduces to
the variational inequality problem (VIP) of finding x* € C
such that

(Ax*,J(x—x")) =0, VxeC, (18)
which was considered by Aoyama et al. [34]. Note that VIP
(18) is connected with the fixed point problem for nonlinear
mapping (see, e.g., [35]), the problem of finding a zero point
of a nonlinear operator (see, e.g., [36]), and so on. It is clear
that VIP (18) extends VIP (15) from Hilbert spaces to Banach
spaces.

In order to find a solution of VIP (18), Aoyama et al. [34]
introduced the following Mann-type iterative scheme for an
accretive operator A:

X1 = 0%, + (1 —o,) o (x, — A,Ax,), Vn=1, (19)
where I1- is a sunny nonexpansive retraction from X onto
C. Then, they proved a weak convergence theorem. For the
related work, see [37] and the references therein.

Let C be a nonempty convex subset of a real Banach space

X. Let {Ti}f:_]1 be a finite family of nonexpansive mappings of



Cintoitselfand let A4, ..., A be real numbers such that 0 <
A; < lforeveryi =1,...,N. Define a mappingK : C — C
as follows:

U =MT,+(1-1))1
U, = L, TL,U, +(1-1,) Uy,

Us = A;T5U, + (1= 15) Uy,
(20)

Un-1 = AnoiTnoiUnog + (1= Aysy) Uy
K =Uy = ANTyUnoy + (1= Ay) Uy

Such a mapping K is called the K-mapping generated by
T),....,Tyand Ay,..., Ay

Very recently, Kangtunyakarn [38] introduced and ana-
lyzed an iterative algorithm by the modification of Mann’s
iteration process for finding a common element of the set of
solutions of a finite family of variational inequalities and the
set of fixed points of an #-strictly pseudocontractive mapping
and a nonexpansive mapping in uniformly convex and 2-
uniformly smooth Banach spaces.

Theorem 3 (see [38]). Let C be a nonempty closed convex
subset of a uniformly convex and 2-uniformly smooth Banach
space X. Let Il be a sunny nonexpansive retraction from X
onto C. Let A; : C — X be an a;-inverse-strongly accretive
mapping for each i = 1,...,N. Define the mapping G, :
C — CbyG;, = IIo(I - MA)) fori = 1,...,N, where
A; € (0,04/«%) and « is the 2-uniformly smooth constant of
X.Let B: C — C be the K-mapping generated by G,,...,Gy
and py,..., px» where p; € (0,1), foralli =1,...,N -1, and
pn € (0,1]. Let f : C — C a contraction with coefficient
p € (0,1). Let V: C — C be an n-strictly pseudocontractive
mapping and S : C — C be a nonexpansive mapping such
that F = Fix(S)nFix(V) N (ﬂfil VI(C, A))) #0. For arbitrarily
given x, € C, let {x,} be the sequence generated by

X1 = & f (x,) + Bux, + y,Bx, +6,S((1 —a) [ +aV) x,,,
Vn=0,
(21

where « € (O,n/xz). Suppose that {a,}, {B,,}, {y,}, and {8,} are
the sequences in [0,1], &, + B, + y, + 8, = 1 and satisfy the
following conditions:
(i) lim,, _, &, =0and Y > «, = 00;
(ii) {y,}, {6,} < [c, d] for some c,d € (0, 1);
(111) zﬁlﬂﬁn - ﬁn—l' + h)n - Yn—ll + |6n - an—ll) < 005
(iv) 0 < liminf,_, B, <limsup, _, 8, < L.

Then, {x,} converges strongly to q € F, which solves the
following VIP:

(9-f(q).J(a-p)) <0, VpeF (22)
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Beyond doubt, it is an interesting and valuable problem
of constructing some algorithms with strong convergence
for solving GSVI (13) which contains VIP (18) as a special
case. Very recently, Cai and Bu [11] constructed an iterative
algorithm for solving GSVI (13) and a common fixed point
problem of a countable family of nonexpansive mappings
in a uniformly convex and 2-uniformly smooth Banach
space. They proved the strong convergence of the proposed
algorithm by virtue of the following inequality in a 2-
uniformly smooth Banach space X.

Lemma 4 (see [39]). Let X be a 2-uniformly smooth Banach
space. Then,

e+ P < Ix1” +2 (3. T ) +2fiy]’s Vx,y e X, (23)

where x is the 2-uniformly smooth constant of X and ] is the
normalized duality mapping from X into X*.

Define the mapping G : C — C as follows:

G(x):=TIc (I - 4 B)) o (I - 4,B,) x, V¥xe€C. (24)
The fixed point set of G is denoted by Q. Then, their strong
convergence theorem on the proposed method is stated as
follows.

Theorem 5 (see [11]). Let C be a nonempty closed convex
subset of a uniformly convex and 2-uniformly smooth Banach
space X. Let Il be a sunny nonexpansive retraction from X
onto C. Let the mapping B; : C — X be [5;-inverse-strongly
accretive with 0 < p; < B,/«* fori = 1,2. Let f be a contraction
of C into itself with coefficient 8 € (0,1). Let {T,}>>, be a
countable family of nonexpansive mappings of C into itself such
that F = (2, Fix(T;) N Q # 0, where Q) is the fixed point set of
the mapping G defined by (24). For arbitrarily given x, € C,
let {x,} be the sequence generated by

Xp+1 = ﬁn'xn + (1 - ﬁn) Snyn’

In = (an (xn) + (1 - “n) Zy»
(25)
Zy = 1_[C (un - n"llBlun) >
u, = U (x, — wByx,), Vn=>1.
Suppose that {«,} and {f,} are two sequences in (0,1)
satisfying the following conditions:

(i) lim,,_, &, = 0and Y 2, a, = 00;
(ii) 0 < liminf, _, 3, <limsup,_, B, < 1.
Assume that Y72 sup, pl|T,,,,;x—T,x| < co for any bounded
subset D of C and let T be a mapping of C into X defined by
Tx = lim, , T, x for all x € C and suppose that Fix(T) =
Moy Fix(T,,). Then, {x,} converges strongly to q € F, which
solves the following VIP:

(9-f().J(q-p)) <0, VpeF (26)
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It is easy to see that the iterative scheme in Theorem 5
is essentially equivalent to the following two-step iterative
scheme:

Yn = (an (xn) + (1 - (Xn) Gxn’
Xpt1 = ﬁnxn + (1 - ﬁn) Tnyn’

For the convenience of implementing the argument
techniques in [14], the authors of [11] have used the following
inequality in a real smooth and uniform convex Banach space
X.

(27)
Vn>1.

Proposition 6 (see [40]). Let X be a real smooth and uniform
convex Banach space and let v > 0. Then, there exists a strictly
increasing, continuous, and convex function g : [0,2r] — R,
g(0) = 0 such that

g(lx=y]) <=l =2¢x.] (»)) +|y|°. Vx.yeB,
(28)

where B, = {x € X : ||lx| < r}.

Let C be a nonempty closed convex subset of a real
smooth Banach space X. Let I1 be a sunny nonexpansive
retraction from X onto C and f : C — C a contraction
with coeflicient p € (0,1). Motivated and inspired by the
research going on this area, we consider and introduce hybrid
and relaxed Mann iteration methods for finding solutions
of the GSVI (13) which are also common solutions of a
countable family of variational inequalities and common
fixed points of a countable family of nonexpansive mappings
in X. Here, the hybrid and relaxed Mann iteration methods
are based on Korpelevich’s extragradient method, viscosity
approximation method, and Mann iteration method. Under
suitable assumptions, we derive some strong convergence
theorems for hybrid and relaxed Mann iteration algorithms
not only in the setting of uniformly convex and 2-uniformly
smooth Banach space but also in a uniformly convex Banach
space having a uniformly Gateaux differentiable norm. The
results presented in this paper improve, extend, supplement,
and develop the corresponding results announced in the
earlier and very recent literature; see, for example, [8, 10, 11,
14, 33, 38].

2. Preliminaries

We list some lemmas that will be used in the sequel.

Lemma 7 (see [41]). Let {s,} be a sequence of nonnegative real
numbers satisfying

Spe1 < (L—0,) s, + 0, B, + v,y YN0, (29)
where {a,}, {B,,}, and {y,} satisfy the following conditions:

(i) {o,} € [0,1] and ¥,2 e, = 00;

(i) limsup, , B, < 0;

(iii) y, > 0, foralln > 0, and Y.y, < co.

Then, limsup,,_, s, = 0.

The following lemma is an immediate consequence of the
subdifferential inequality of the function (1/2)] - 1%

Lemma 8 (see [42]). Let X be a real Banach space X. Then,
forallx,y e X

@) [lx + yll2 < ||x||2 +2(y, j(x + y)) for all j(x + y) €
J(x + y);

(i) lx + yI* = lxl? + 2y, j(x)) for all j(x) € J(x).

Let D be a subset of C and let IT be a mapping of C into
D. Then, IT is said to be sunny if

T[T (x) +t(x—TI(x))] =T (x), (30)

whenever II(x) + t(x — II(x)) € Cforx € Candt > 0. A
mapping IT of C into itself is called a retraction if IT* =

a mapping IT of C into itself is a retraction, then Il(z) = z for
every z € R(IT) where R(IT) is the range of II. A subset D of
C is called a sunny nonexpansive retract of C if there exists a
sunny nonexpansive retraction from C onto D. The following
lemma concerns the sunny nonexpansive retraction.

Lemma 9 (see [43]). Let C be a nonempty closed convex subset
of a real smooth Banach space X. Let D be a nonempty subset
of C. Let I1 be a retraction of C onto D. Then, the following are
equivalent:

(i) II is sunny and nonexpansive;

(i) ITI(x) = TP < (x — »,J(T(x) - TI(y))), for all
x,y €GC;

(iil) (x - II(x), J(y = II(x))) < 0, forall x € C, y € D.

It is well known that if X = H a Hilbert space, then
a sunny nonexpansive retraction Il is coincident with the
metric projection from X onto C; that is, IIo = P.. If C
is a nonempty closed convex subset of a strictly convex and
uniformly smooth Banach space X and if T : C — Cis
a nonexpansive mapping with the fixed point set Fix(T') # 0,
then the set Fix(T') is a sunny nonexpansive retract of C.

Lemma 10. Let C be a nonempty closed convex subset of a
smooth Banach space X. Let Il be a sunny nonexpansive
retraction from X onto C and let B, B, : C — X be nonlinear
mappings. For given x*,y* € C, (x*,y") is a solution of
GSVI (13) if and only if x* = Uc(y™ — u, B, y"), where y* =
I (x" — pyByx™).

Proof. We can rewrite GSVI (13) as

(x* =" -wBy"),J(x=x")) 20, VxeC, .
31
(" = (x" —wByx"),J (x=y")) =20, VxeC,
which is obviously equivalent to
x"=Tc(y" —mBy’),
. . i (32)
y"=Te(x" = mB,x"),
because of Lemma 9. This completes the proof. O



In terms of Lemma 10, we observe that

x" =Te [T (x" = By x") =y BT (x7 - M232X*)]() )
33

which implies that x* is a fixed point of the mapping G.
Throughout this paper, the set of fixed points of the mapping
G is denoted by Q.

Lemma 11 (see [44]). Let X be a uniformly convex Banach
space and B, = {x € X : ||x|| < r}, r > 0. Then, there
exists a continuous, strictly increasing, and convex function
g :10,00] — [0,00], g(0) = 0 such that

lox + By + yz|” < allxl + Blly|” + vlzl - aBg (| x - y])
(34)

forallx,y,z € B, and alla, B,y € [0, 1] witha + S +7y = 1.

Lemma 12 (see [45]). Let C be a nonempty closed convex
subset of a Banach space X. Let S, S,,... be a sequence of
mappings of C into itself. Suppose that Y >, sup{[|S, x-S, x| :
x € C} < 00. Then for each y € C, {S, y} converges strongly
to some point of C. Moreover, let S be a mapping of C into
itself defined by Sy = lim,_, S,y for all y € C. Then
lim, _, ., sup{Sx — S,x[| : x € C} = 0.

Let C be a nonempty closed convex subset of a Banach
space X and T : C — C a nonexpansive mapping with
Fix(T) # 0. As previous, let E. be the set of all contractions
onC.Fort € (0,1)and f € E, let x, € C be the unique fixed
point of the contraction x +— tf(x) + (1 — t)Tx on C; that is,

x, = tf (%) + (1 - ) Tx,. (35)

Lemma13 (see [35,46]). Let X be a uniformly smooth Banach
space, or a reflexive and strictly convex Banach space with a
uniformly Gateaux differentiable norm. Let C be a nonempty
closed convex subset of X, T : C — C a nonexpansive mapping
with Fix(T) # 0, and f € E. Then, the net {x,} defined by x, =
tf(x,)+ (1 —t)Tx, converges strongly to a point in Fix(T'). If we
define a mapping Q : Ec — Fix(T) by Q(f) := s —lim, _, ox,,
forall f € B, then Q(f) solves the VIP:

((I-1)Q(f).J(Q(f)-p))<0, VfeEc peFix(T).

(36)

Lemma 14 (see [47]). Let C be a nonempty closed convex
subset of a strictly convex Banach space X. Let {T,}>> be
a sequence of nonexpansive mappings on C. Suppose that
(Moo Fix(T,,) is nonempty. Let {A,,} be a sequence of positive
numbers with Y >0 A,, = 1. Then, a mapping S on C defined by
Sx = Y020 A, T,x for x € C is defined well; nonexpansive and
Fix(S) = (2, Fix(T,,) holds.

Lemma 15 (see [39]). Given a number v > 0, A real
Banach space X is uniformly convex if and only if there exists
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a continuous strictly increasing function g : [0,00) — [0, 00),
g(0) = 0, such that

[ + (= 0y < Al + (1= ) o)

~A1=)g(|x-y])

forall A € [0,1] and x, y € X such that |x|| < r and ||y|| < r.

37)

Lemma16 (see [48, Lemma 3.2]). Let C be a nonempty closed
convex subset of a strictly convex Banach space X. Let {T,},°,
be a sequence of nonexpansive self-mappings on C such that
Moo Fix(T,) #0 and let {A,}2, be a sequence of positive
numbers in (0,b] for some b € (0,1). Then, for every x € C
and k 2 0, the limit lim,, , U, ; x exists.

Using Lemma 16, one can define a mappingW:C — C
as follows:

Wx = nli_)n&) W,x = nango U,0X (38)

for every x € C. Such a W is called the W-mapping generated
by the sequences {T,}7> and {A,,}72. Throughout this paper,
we always assume that {1,}°, is a sequence of positive
numbers in (0, b] for some b € (0, 1).

Lemma 17 (see [48]). Let C be a nonempty closed convex
subset of a strictly convex Banach space X. Let {T,}>> be
a sequence of nonexpansive self-mappings on C such that
Moo Fix(T,) #0 and let {A,}.2, be a sequence of positive
numbers in (0,b] for some b € (0,1). Then, Fix(W) =
(oo Fix(T,).

Let y be a continuous linear functional on I*° and s =
(ag, ay,...) € I°°. One writes y,(a,) instead of u(s). p is called
a Banach limit if y satisfies |ull = u,(1) = 1 and p,(a,,,) =
u(a,) forall (ay, ay,...) € 1. If wis a Banach limit, then, there
hold the following:

(i) foralln > 0, a, < ¢, implies u,(a,) < u,(c,);
(ii) u,(a,,,) = w,(a,) for any fixed positive integer r;

(iii) lim inf a, < p,(a,) <

n—-o0"'n

(ag,ay,...) €1%.

limsup, _, 4, for all

Lemma 18 (see [49]). Let a € R be a real number and a
sequence {a,} € 1% satisfy the condition y,(a,) < a for
all Banach limit w. If limsup, _, (a,,, — a,) < O, then
limsup,_, a, <a.

In particular, if r = 1 in Lemma 18, then we immediately
obtain the following corollary.

Corollary 19 (see [50]). Let a € R be a real number and
a sequence {a,} € 1% satisfy the condition y,(a,) < a for
all Banach limit . If limsup, _, (a,., — a,) < 0, then,
limsup,, _, 4, < a.

Lemma 20 (see [51]). Let {x,} and {z,} be bounded sequences
in a Banach space X and let {3,} be a sequence of nonnegative
numbers in [0, 1] with 0 < liminf, _, B, < limsup, , B, <
1. Suppose that x,,, = B,x, + (1 — B,)z, for all integers
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n>0andlimsup,_, (12,1 — 2./l = lx,41 — x,1l) < 0. Then,
lim, _, o llx, —z,ll = 0.

Lemma 21 (see [34]). Let C be a nonempty closed convex
subset of a smooth Banach space X. Let T be a sunny
nonexpansive retraction from X onto Cand A : C — X an
accretive mapping. Then for all A > 0,

VI(C, A) = Fix (I (I - MA)). (39)

Lemma 22 (see [11]). Let C be a nonempty closed convex
subset of a real 2-uniformly smooth Banach space X. Let the
mapping B; : C — X be B;-inverse-strongly accretive. Then,
one has

"(I - w:B;) x (I - wB;) J’”Z

< |lx =yl + 26 (® = B;) |Bix = Byy|’,  (40)

Vx,y €C,

fori = 1,2 where y; > 0. In particular, if 0 < p; < B;/xc*, then
I — w;B; is nonexpansive fori = 1,2.

Lemma 23 (see [11]). Let C be a nonempty closed convex
subset of a real 2-uniformly smooth Banach space X. Let Tl
be a sunny nonexpansive retraction from X onto C. Let the
mapping B, : C — X be [;-inverse-strongly accretive for
i=1,2.LetG:C — C be the mapping defined by

Gx =1Ilg [HC (x - ptszx) - B 11 (x - ptszx)] >
Vx € C.

If0 < w; < B/ fori = 1,2, then G : C — C is nonexpansive.

3. Hybrid Mann Iterations and
Their Convergence Criteria

In this section, we introduce our hybrid Mann iteration
algorithms in real smooth and uniformly convex Banach
spaces and present their convergence criteria.

Theorem 24. Let C be a nonempty closed convex subset of a
uniformly convex and 2-uniformly smooth Banach space X.
Let I1; be a sunny nonexpansive retraction from X onto C.
Let {p,},2, be a sequence of positive numbers in (0, b] for some
b e (0,1)and A; : C — E an &;-inverse strongly accretive
mapping for eachi = 0, 1,.... Define a mappingG; : C — C
byo(I - AMA)x =Gx forallx € Candi = 0,1,..., where
A; € (0,&;/x%], « is the 2-uniformly smooth constant of X. Let
B, : C — C be the W-mapping generated by G,,,G,,_;, ..., G,
and p,,p,_1s--->py- Let the mapping B : C — X be p;-
inverse strongly accretive fori = 1,2. Let f : C — Cbea
contraction with coefficient p € (0,1). Let {S;};5, be a countable
family of nonexpansive mappings of C into itself such that F =
(N2 Fix(S)) n QN (N2, VI(C, A;))) # 0, where Q is the fixed
point set of the mapping G = I1o(I — p; B))II-(I — u,B,) with

0 < w; < B,/i* fori = 1,2. For arbitrarily given x, € C, let
{x,,} be the sequence generated by

yn = ﬁn'xn + YHann + SHSVIG'XH’
(42)
Xp+1 = “nf (xn) + (1 - “n) Yo vn 20,
where {a,}, {B,}, {y,}, and {8,,} are the sequences in [0, 1] such
that B, + vy, + 6, = 1 for all n > 0. Suppose that the following
conditions hold:

(i) Y2oa, =coand0 < a, < 1- p, foralln > ny for
some integer ny = 0;

5, >0;

n—-oo-n

(ii) liminf, | v, > 0 and lim inf,

(iii) hmn—»oo(l‘xnﬂ/(l - (1 - “n+1)ﬂn+1) - “n/(l - (1 -
“n)ﬁn” + |8n+1/(1 - ﬁn+1) - (Sn/(l - ﬁn)l) =0;

(iv) 0 < liminf,_, 8, <limsup, B, < 1.

Assume that Y20 sup, plS,1x = S,xll < oo for any
bounded subset D of C and let S be a mapping of C into itself
defined by Sx = lim, _, S,x for all x € C and suppose that
Fix(S) = (:2, Fix(S;). Then, there hold the following:

(I) 1imn—>oo"'xn+l - 'x‘rl” = 0’
(I x, - g & «,(f(x,) —x,) — 0 provided 5, = p for

some fixed 3 € (0, 1), where q € F solves the following
VIP:

(9-1(9),J(q-p)) <0, VpeF. (43)
Proof. First of all, since 0 < A; < &/«x* fori = 0,1,..., it is
easy to see that G; is a nonexpansive mapping for each i =
0,1,....Since B, : C — C is the W-mapping generated by
G, G, 1»...,Gyand p,, p,_1>- .., Py by Lemma 16 we know
that, for each x € C and k > 0, the limit lim,, _, .U, ;. x exists.
Moreover, one can define a mapping B: C — C as follows:

Bx = nleréo B,x = nli—{%o U,.0% (44)

for every x € C. That is, such a Bis the W-mapping generated
by the sequences {G,},,”, and {p,} . According to Lemma 7,
we know that Fix(B) = ﬂ?:o Fix(G;). From Lemma 15 and
the definition of G;, we have Fix(G;) = VI(C, A;) for each
i=0,1,.... Hence, we have

Fix(B) = [ |Eix(G) = [ |VI(GA).  (45)
i=0 i=0

Next, let us show that the sequence {x,} is bounded.
Indeed, take a fixed p € F arbitrarily. Then, we get p = Gp,
p=B,p,and p =S, p forall n > 0. By Lemma 23 we know
that G is nonexpansive. Then, from (42), we have

1y, = pll < Bullxa = ol + v |1Buxs = £ + 8, [S,Gox,, - p
= ﬁn ”xn - P" TV "xn - P” + 8n “Gxn - P”
B ﬁn “xn —P" + VY "xn —P” +8n “xn —P"

=[x £l
(46)



and hence

”xn+l - P" s ay "f(xn) - P" + (1 - “n) "yn - P“
<, (|f () = £ (P)] + 1 (p) - pll)

+(1=a,) [y, -l
<a, (plx, - pl+ £ (p) -2l
+(1-a,) |x, - pf (47)

= (1-a,(1-p)) %, - pl

If (p) - Pl
+a, (1-p) T,

gmax{”xn_ ol If (p) P||}

l-p

By induction, we obtain
x, — p|| < max {|x, - p||, =L, Ym0, (48
. SNUGEES "

Thus, {x,} is bounded, and so are the sequences {y,},
{Gx,} and { f(x,)}.
Let us show that

lim |x,,, - x,| = 0. (49)

n— 00

As a matter of fact, puto,, = (1-e,,)f3,, foralln > 0. Then,
it follows from (i) and (iv) that

Zo-n:(l_“n)ﬁnz(1_(1_p))ﬁnzpﬁn’ VnZHO’

(50)
and hence
0 <liminfo, < lirrlrlsolip o, <L (51)
Define
X1 = Oy + (1 - 0,) 2, (52)
Observe that
Zn+1l T Zn
_ X2 T Oni1Xnel _ Xnrl T OnXn
1 =0, 1 -0,

“n+1f(xn+l) + (1 B (xn+1) Ynt1 ~ One1%Xn+1

1- On+1

‘xnf (xn) + (1 - (xn) Yn =~ OnXn

1-o0,
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(if () af ()
( )

1_0n+1 l_an

(1 - an) [ﬁnxn + Yanxn + 8nSnGxn] — 0%y
1-o0,

+ (1 - ‘xn+1) [ﬁn+1xn+1 + yn+an+lxn+1

+ 6n+lsn+1Gxn+l]

-1
~ Opi1¥p1 X (1 - an+1)

_ (‘xnﬂf(xnﬂ) _ “nf (xn)) + 1_“n+1

1_O-n+1 l_on

x (Yn+an+1xn+1 + 8n+lsn+lGxn+1)

- i_ (y,B,x, +9,S,Gx,,)
— ‘Xn+1f(xn+1) _ ‘xnf (xn)
1- Ol 1- 0y

(1 B ‘xn+1) (1 B ﬁnﬂ)

I- Opv1

+

x |:Yn+an+1xn+1 + 6n+lsn+lGxn+l

1- ﬁnJrl

Yanxn + (SnSnGxn
1- [;n
+ (1 B (xn+1) (1 - ﬁ?’ﬁ’l) _ (1 - ‘xn) (1 - ﬁn)
1- Ol 1- 0y
v Yanxn + 8nSnGxn
1- ﬁn
= B (f (0) - £ (x)
n+1
s R
() )
+ (1 B “n+1) (1 B ﬁn+1)
1 =0,
Yn+1
2ol e — (Bn Xp+l — ann)
|:Yn+1 + 8n+1 H
Va1 Va )
+ - B,x,
( Yn+1 + 8n+1 2 + 8
b Om (S,11G%, — S,Gx,,)
Yn+1 + 6n+1 n+l1 n+l n n
+( Ous1 O >s Gx ]
Yn+1 + 6n yn + 6
_ ( X1 _ Xy ) Vanxn + ‘SnsnGxn
1_O-n+1 1_Gn Yn+6n



Abstract and Applied Analysis

o (f Cer) = f (%))

Opt1

(04 (29
+< n+1 _ n )
1_0-n+1 1_0n

Bux, +6,5,Gx,,
x (£ -2 )

“l-0,

Yat 0,
1 =0y — iy
1- Oni1
Yn+1
x [ 5 (Bn+1xn+1 - Bn‘xn)
Yn+1 + n+1

Vt1 Vi )
+ B,x,
( Yn+1 + 8n+1 Yn + 8

6
n+l
+ y +9 (Sn+1Gxn+1
n+1 n+1

+< Onst On )s Gx ]
yn+1 + 6n+1 Yn + 6

-S,Gx,,)

(53)

and hence

”Zn+1 - zn”

Sl I|f (1) = f (x,)]

Xpv1 ) YnB Xn + (SnSnGxn
1- Opt1 1 - Yut 8n
1 =01 = %y
1- On+1
Yn+1
X | ——— (B, ,;X,.,; — B,x
Yn+1 + 8n+1 ( n+1-n+1 n n)
Va1 Va >
+ B,x,
<Vn+1 + 6n+1 Yn + 6
L (S,.,G -8,Gx,,)
Vorr +4 B n+1 9% 41 n Xy
n+ n
+< Ot _ O )s Gx,
Yn+1 + 8n+1 + 8
< P N Y BN

1= Opt1 “ s 1- Out1 1- 0y

X (L7 Gl + [1Buxall + 118, Gxa)

1- Ont1 ~ Knyl
1- Opnt1
X [L ||Bn+1xn+l - ann”
Yn+1 + 8n+1
Ya+1
- B, x
Ya+1 + 6n+1 + 6 “ ”

9
+L"S Gyt — S,Gx,|
yn+1 + 8n+1 n+1 n+1 n n
6n+1 6 ]
+ S,Gx
Yut1 + 6n+1 Y + 6 | "
(54)
On the other hand, we note that, for alln > 0,
"Sn+1Gxn+l - SnG'xn"
< |lSn+1Gxn+1 - Sn+1Gxn|| + “Sn+1G‘xn - SnGxn" (55)
< |Gxpa1 = Gx,|| + [1S01 G,y — S, G|
< | %per = %l + [1Sp1Gx, — S| -

Furthermore, by (CY), since G; and
we deduce that for eachn > 0

U, ; are nonexpansive,

||Bn+1xn+1 - ann”
< ||Bn+1xn+1 - Bn+1xn" + "Bn+1xn - ann"
< ”xn+1 - xn" + ||Bn+1xn - ann"
= ||Xn+1 - xn" + ||/\0G0Un+1,1xn - /\oGoUn,lxn”
< (%1 = Xl + A0 U160 = Ui
= ||9anr1 X || + A ||A G U, 10X, /\lGlUn)an”
(56)
< ||9anrl X || + AogA || i 12%n U)zan

- x||+(na>|| B~

n
< ||x,,Jrl - xn" + MOHAi,

i=0

for some constant M, > 0. Utilizing (54)-(56), we have

||Zn+l - Zn"
pan+1 _ Xpi1 _ &,
1= O+l "xn+1 xn” " 1- Opt1 1- 0y
X (1f Gl + 1Bucal| + [1S,Goxall)
+ 1- Ons1 ~ Xty
1- Op+1
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Vsl 1 where sup,_o{ll f (x ) +1B,x, [ +S,Gx,[l+My} < M for some
X [ Vorr ++5n+1 (”xnﬂ X " + MOHAI‘> M > 0. So, from (Sré), conr(llitrion (i;li), arild the assumption on
=0 {S,}, it follows that (noting that 0 < A, < b < 1, for all i > 0)
+ Yn+1 ” )
Yn+1 T 6n+1 Pnt 5 hyrlllsolip ("Zn+1 - Zn" - "xn+1 - xn") <0. (59)
1
+ ﬁ (s = 2]l + 841G, = 8,Gx, ) Consequently, by Lemma 20, we have
e son tim e, =0 =
YnJrl + 8n+1 + 8
( ) It follows from (51) and (52) that
_1_0n+1_an+1 l_P _
i, ol Jim b = = lim (1-0,) |z, - %] =0. (o)
N (x,,; i +[|B,x,|| + [1S:Gx.)) From (42), we have
" Yn+1 -
1- Ont1 ~ Ky Xn+1 — Xp = &y (f (xn) - xn) + (1 - (xn) (yn - xn) > (62)
1- Opv1 : 3 i
which hence implies that
Yn+1
M,| A
[M ] ol -l = (1= (1=p)) Iy - x|
5, < (1=a,) [y = |
_:3 ||Sn+1Gxn - SnG'xn” " (63)
Vu1 ntl = ||xn+1 — Xy Ty (f (xn) - 'xn)”
8n+1

= ||xn+1 - xn" + "(xn (f (xn) - xn)” .

Since x,,,; — x, — Oand «,(f(x,) —x,) — 0, we get

|1B,50+ Is.65.0)

Yn+l+(S y+8

(xn
1-o0,

TS S

1- Ont1

< ||xn+1 - ‘xn“ +

lim |y, - x,[ = 0. (64)

n— oo

n
+ MH’\i + nSnHGxn - SnGxn" Next, we show that [|x,, - Gx,,|| —» 0asn — oo.

=0 Indeed, for simplicity, put g = IIo(p — w,B,p), u, =
8,41 o e(x, — 4u,B,x,) and v, = I1-(u, — 4, Byu,). Then, v, = Gx,,
Vst + 0,1 - for all n > 0. From Lemma 22, we have
n+ n+
2 2
= "xVH-l - xn” ”un - q“ = ”HC (xn - ["ZBan) - 1_IC (P - MZBZP)"

TS S
l1-0,, 1-o0

< ”xn — P~y (Byx, - sz)"2

" < ”xn - P"2 -2y, (ﬁz - Kz#z) ”Bzxn - BzP"2>
+ H/\,-) (65)
“Vn - P“Z = ”Hc (u, = Byu,) =Tl (g - .“1]51‘1)"2

(57) < |t~ q -, (B, — B,q)|’

+M (
+ 8n+1 _ 8n
Yn+1 + 8n+1 Yn + 571

+ ||Sn+1Gxn - SnGxn" ,

which hence yields < 1t - alf* - 260, (B: - K1) | Bty — Bua]-

"zn+1 - Zn" - "xn+1 - xn” (66)

o

Xpt1 _ X

1_O-n+1 l_on

+ 841 _ J, Substituting (65) for (66), we obtain
Yn+1 + 8n+1 yn + 8n

v, - P”2 < |[x, - P“2 -2 (ﬁz - Kzﬂz) |Bx,, - sznz

=2 <B1 - KZ.”l) B4, - Bl@||2~
(58) (67)

+H)L,-) + [S,11Gx,, — S,Gx,||»

i=0
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From (42) and (67), we have
I = 2l
< ﬁn”xn - p"2 + Vn"ann - p"2 + 8n||SnGxn - p"2
< ﬁn”xn - P"2 + yn"xn - P”2 + (Sn"Vn - p"2
< ﬁn”xn - P"Z + Yn"xn - P”2

+96, [“xn - P"2 =2 (Ez - Kzﬂz)

(68)
x |B,x, - B,p|’
-2y (,gl - "2.“1) “Blun - 31‘1"2]
= lxu - 2l
- 26, [142 (Bz - Kzﬂz) IB,x,, — BzP||2
+2i (Bl - "2.“1) “Blun - B1‘1"2] >
which hence implies that
2, [Mz (Bz - Kzﬂz) |B,x,, - B,p|
+uy (B, - <*w) |Byu, - Byq’] ()

<Jxu = pI” = Iy - 2l
< ("xn - p” + “yn - P”) "xn - yn” :

Since 0 < y; < E,»/KZ fori = 1,2, and {x,}, {y,} are
bounded, we obtain from (64), (69), and condition (ii) that
Jim |[B,x, - By p| =0, Jim |[Byu, - Byq| = 0. (70)

Utilizing Proposition 6 and Lemma 9, we have

s, —al’
= |Tc (%, = tByx,,) = T (p - MszP)HZ
< (%, = By, = (P = t:B,p) . (1, — q))
= (%, = p.J (uy = Q) + 14 (Bop = B,x,., ] (, — q))

< > [ = 27 + ot = al” = 90 (b = - (- @)

+ 2 [Bop = By, — 4]
(71)

which implies that

2 2
u, —q|” < |x,— - X, — U, —(p—
= all” < I = 2l = 91 (] o=al)

+ 2#2 "BZP - Bzxn“ “un - q" .

1

In the same way, we derive

v, - oI’

= |11 (u, — g1 By,) — Tl (q - 1 Big) |
-(q-B9).J (v, - p))
= (uy =, J (v, = p)) + 1y (B1q = B4, ] (v, = p))

< (u, - th B u,

1
< 2 [l —al + I oI

~ 9 (“un “Vat (P - q)")]

T ”qu - Blun” ”Vn - P” 4

(73)

which implies that
v = pl* < s = all” = 9> (= v + (P = 9)]) .

+2p,|Biqg = By || v, - p -
Substituting (72) for (74), we get
v - oI
< %, - pl* - 91 (%~ — (P - D)

~— 92 (”un —Vy t (P - q)") (75)

+ 24 | Bop = By, |, — al
+ 241 [Big = By | v, - |-

By Lemma 8(i), we have from (68) and (75)

Iy, - oI’
< Bullx = oI + vl = 21 + 8, = 2l
< Bullx = plI* + vullx — I’
0, [l = 2l = 91 (% . = (- )
= 92 (|lun = v + (p = Q) + 2112 | Bap — By,
% [l = qll + 2441 | B, = By | = ]
< %, - 2l
=8, (91 (Ixs — = (P - )])
+, (|1 = v + (P = )|)]
+ 245 |B,p = Byx, |, — dl

+ 2 |Big = By | v - p»
(76)
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which hence leads to

S (g1 (=1, = (P = D) + g2 (1 = v + (P~ D)|)]
< xu = I =y = £l + 2642 |Bop = By, | s, — al
+2p |Biq — By || v, - pll
< (Jxn = 2l + 1w = 1) 1 = 2
+ 2t |Bop = By, || |, —

+2u, |Big - By, || v, — p| -
(77)

From (70), (77), condition (ii), and the boundedness of
{x,} {y,.}> {u,}, and {v, }, we deduce that

Jim g, (x, —u, - (p-9q)]) =0,

(78)
Jim g, (Ju, = v, + (p-q)) =
Utilizing the properties of g, and g,, we deduce that
Jlim fx, —u, — (p-q)| =0,
(79)

lim ||u -V, + p q||

n— oo

From (79), we get

||xn - Vn" < “xn Uy = (p - q)"

+”un_vn+(p_q)||_)0 as n — 0.

(80)
That is,
Jim|lx, - Gx, || = 0. (81)
Next, let us show that
Jim [[B,x, = x,| =0, lim |$x,-x,[|=0. (82)

Indeed, utilizing Lemma 15 and (42), we have

Iy - ol

ﬁnxn + Yanxn _ p>

= 5n(SnGxn_p)-"(/';n-"yn)( ﬁ +9,

< 8,8,Gx, ~ plI* + (B, + 1)

2
% ﬁnxn + Vanxn _

B+t Va
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= 8,08,Gx,, = pI* + (Bu + )
B, Vn
X x,—p)+—5——(B,x,
ﬁnwn( P) ﬁnwn(

< 8,|Gx,, = p|* + (By + 1)

X, = B,x, -
e e L
Br¥n
_(ﬁ iy )293 ("x ann”)
< 8ﬂl|xn - pllz + ﬁn“'xn - p"2 + Yn”xn - P"2
- g (Jx, - By )
=l = 52 (= By ).
(83)
which immediately implies that
ﬁn)/ng3 (“xn - ann")
BrVa
S5 9 ("xn - ann”)
ﬁn + Yu (84)

<Jxu = pI” = Iy - 2l
< ("xn - p“ + “yn - p") "xn - yn" :

So, from (64), the boundedness of {x,}, {y,}, and conditions
(ii), (iv), it follows that

tim g, (|, -

n— oo

x[) = 0. (85)
From the properties of g5, we have
nlLrIgO ||xn - ann” =0. (86)

Taking into account that

Yn = %Xn ="V (ann - xn) + 5n (SnGxn - xn) > (87)
we have
é, ”SnGxn - x,,"
= ||yn Xy "V (ann - xn)"
(88)
< ”yn - xn” T Vn ”ann - xn"
< [y = x|l + 1B, = x| -
From (64), (86), and condition (ii), it follows that
Jim [S,Gx,, - x,|| = 0, Jim [S.Gx,, - B,x,| = 0.
(89)
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Note that

[ — S,
< [, = $,Gaxy | + [1S,Gx, = Sy |
+ [[S,x, = Sx, | (90)
< [ = $uGaxy || + |Gx,y = 6,

+ ||Snxn - anH .
So, in terms of (81), (89), and Lemma 12, we have
nleréo ||xn - anH =0. (91)

Suppose that 3, = B for some fixed 3 € (0, 1) such that § +
Y, + 0, = 1forall n > 0. Define a mapping Vx = (1 - 0, —
0,)Sx + 6, Bx + 0,Gx, where 0,,0, € (0, 1) are two constants
with 0, + 6, < 1. Then, by Lemmas 14 and 17, we have that
Fix(V) = Fix(S) n Fix(B) N Fix(G) = F. For each k > 1, let
{pi} be a unique element of C such that

1 1
Pr = Ef (px) + <1 - %)Vpk' (92)

From Lemma 13, we conclude that p, — g € Fix(V) = F as
k — 00. Observe that for every n, k

1y = Bwl
= ||B (x = Bpie) + v (B, = Bpy) + 8, (S,Gx, — Bpye) |
< B, = Bl + v, [B.x, — Bp
+0, ([[S,Gx,, = B, | + | B,x, — Bpe)
= Bllx, — Bpell + (1 = B) [B,x, — Bpy|
+8, [8,Gx,, - B,x,|

>

(93)
and hence

%01 = Bpi
<, £ () = Bpell + (1 = ) |3, = Bpu|
< o, (| f (x0) = x| + 12 = Bpil))
+(1=a,) [y, — By
< o, || f (x0) = x| + o, [, = Bpe| + (1 - a,)
x [Blx, — Bpx|
+ (1= B)[B.x, = Bpel| + 8, [1S,Gxy = B

13

< o || f () = x| + et [, = Bpi| + (1= ox,)
x [Blx, — Bpx|
+ (1= B) (IByx, = Bpill + 1B o — Bpil)
+8, [8,Gx, = B,x, ]
< o || f () = x| + et |1, — Bpi|
+ (1= a,) [Bllx, = Bpy
+ (1= B) (|x, = pill + |B.pi = Bpil))
+8,, [[S,Gx,, = B,x, ]
= o, [|f () = x| + (B+ et (1= B))
x [, = Bpie|| + (1 = at,) (1= B) [, —
+(1=0,,) [(1 = B) |Bupx = Brx
+8, [8,Gx, — B,x, ]
<o, || f () = x| + (B + e, (1= B))
X (It = a0 = B)
+ (1= a,) (1= B) ([l = X | + %01 = 2e]))
+ (1= a,) [(1 = B) [|Bpi — Box
+8, [[S,Gx,, = B,x, | ]
= a, || f (x,) = x| + (B+ e, (1= B))
X %1 = Bpiell + (1 = a,) (1= B) s —
+(1=0,,) [(1 = B) |Bupi = Brx
+8, [18,Gx = B[] + [, = x4 -

(94)

So, it immediately follows from 0 < a,, < 1 — p, for all n > n,
that

%1 = Bpx
1
< ||xn+1 - pk" + "Bnpk - Bpk" + (1 — )(1 _ ﬁ)
% (I G = F Gea)l+ % = i)

0

+ _"ﬁ ||SnGxn - ann"

1 (95)

< Jouir = pell + B — Box|
1
+8,Gx,, - B,x,| + ———
| b oa-p
X (”(Xn (xn - f (xn))” + ”xn - xn+1")

= ||xn+1 - Pk" +0,, Vn=n,,
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where 0, = |B,pr — Bpell + 1IS,Gx,, — B,x, |l + (1/p(1 -

BNty (x5, = FCoDI + 12, — %1 1)- Simce lim, o, 1B, py —

Bpill =lim,, , JIIS,Gx,,—B,x,| = lim, _, Jlle, (x,— f(x,)] =

lim, _, . llx,, — x,.1 = 0, we know that 8, — 0asn — oo.
From (95), we obtain

e = Boel” < i = 2l

+ en (2 ||xn+1 - Pk" + en) >

(96)
Vn > ny.

For any Banach limit g, from (96), we derive

‘un"xn - Bpk"2 = [’ln”xrﬁl - Bpk“2
(97)
2 2
< [’lnnxnﬂ - pk" = [’lnnxn - pk" .
In addition, note that
<, = Goil”
< |x, - Gx,, + Gx,, - ka"2
< (s = G + 1 = pll)’
= lxu = el + 0 - G, |
x (2 lx, = pill + [, = Gx,])
) (98)
. = Spil

< |, - S, + Sx, - Spy |
< (s = Sall + I = £il))?
=l = pill” + 16 = S

x (22, = pell + [l = S, ]) -

It is easy to see from (81) and (91) that

Aun”xn - ka"2 < [’tn“xn - pk"2’
(99)

.un”xn - Spk"2 < ["n“xn - Pk"2'
Utilizing (97) and (99), we deduce that
Aun"xn - Vpk“2
= Uy “(1 - 01 - 02) (xn - Spk)
+61 (xn - Bpk) + 62 (xn - (;pk)"2
X (100)
< (1 - 61 - 62) nun"'xn - Spk“
+ ell’ln”xn - Bpk”2 + 62Al’£n||xn - kanz
2
< [’lnnxn - Pk" :

Also, observe that

%= pe= 1 (5= £ () +(1- 1) (6, - VB (10D

Abstract and Applied Analysis
that is,
1 1
(1-3) =V =50 = pe= 3 (= £ (). (102)
It follows from Lemma 8 (ii) and (102) that
1 2
(1-2) b= vaul?
2
> |x, - Pk“2 % (%n = Pt i = (Pi) > T (0 = i)

= (1 - %) = pull” + % (f(p) = P T (% = i) -

(103)
So by (100) and (103), we have
1 2
(1- %) - pil?
> (1-2) b - 2ul? (104)

+ 200 (7 () = PooT (5= ).

and hence

1 2
Pun"xn - pk"2 2 E!"n <f (Pk) - pk’] (xn - pk)> . (105)

This implies that

1
st = 2l = 0, (F (PO = o T (e = ) - (106)

Since p, — g € Fix(V) = Fask — 00, by the uniform
Frechet differentiability of the norm of X we have

. (f (@) -] (x,—q)) <O0. (107)

On the other hand, from (49) and the norm-to-norm uniform
continuity of ] on bounded subsets of X, it follows that

Jim [(f (q) =] (x1 = 9)) = (f (@) - T (x, —q))| = 0.
(108)

So, utilizing Lemma 18 we deduce from (107) and (108) that
lim sup ( (q) = 4. (x, —q)) <0, (109)

which together with (49) and the norm-to-norm uniform
continuity of J on bounded subsets of X, implies that

limsup (f () = q. ] (xu1 = 4)) < 0. (110)
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Finally, let us show that x, — gasn — oo. Utilizing
Lemma 8 (i), from (42) and the convexity of || - 1%, we get
2
1yl
= ﬁn“xn - q"2 + Vn"ann - quz

+ 6n||SnGxn - q"2

an)
< Bullxa — all” + vallx. - gl
+8, %, —al’
= %, —al"
%1 —all
= Jlew, (f (x0) = £ () + (1 - @) (¥, — )
o, (f (@) - g’
< ot (f () = £ (@) + (1 - ) 0 = I
+20, (f (9) = @ T (%01 = 9))
<a,|lf (o) = f @I + (1= a,) |y, — gl
+ 20, (f (@) = @] (%01 — 9)) 112)

< (an“xn - q"2 + (1 - “n) "xn - quz

+ 20, (£ (9) = ¢ T (%11 = 9))
= (1 -y (1 - P)) "xn - q"2

+2a, (f(9) = @ (%1~ 9))
= (1 - &y, (1 - P)) "xn - q"2
2(f(@)-aJ (w1 -9))

1-p '

Applying Lemma 7 to (112), we obtain that x, — qasn —
0.

Conversely, if x, — g € Fasn — 00, then from (42) it
follows that

Iy, -l

+(Xn(1_p)

< Bl = all + . |B.xn ~ dl
+8,8,Gx, - 4| (113)
< Bullxn = all + vulxu = all + 84 1% - d
=|x,-q|| — 0 asn— oo,
thatis, y, — g. Again from (42) we obtain that
CACACHEEM]

= ”xn+1 —Xp T (1 - ‘xn) (yn - xn)"

< ”xn+1 - xn" + (1 - (xn) "yn - xn"

15
< %1 =4l + %, — 4l
+(1=a,) (I, —all + %, - al)
< %1 = qll + 2%, =l + |7, — 4l -
(114)

Since x,, — gqand y, — g, wegeta,(f(x,)-x,) — 0.This
completes the proof. O

Corollary 25. Let C be a nonempty closed convex subset of a
uniformly convex and 2-uniformly smooth Banach space X. Let
[ be a sunny nonexpansive retraction from X onto C. Let
{patoc, be a sequence of positive numbers in (0,b] for some
b e (0,1)and A; : C — E an &;-inverse strongly accretive
mapping for each i = 0, 1,.... Define a mappingG; : C — C
by II-(I - M;A)x = Gix forallx € Candi = 0,1,..,
where A, € (0,&;/x*] and « is the 2-uniformly smooth constant
of X. Let B, : C — C be the W-mapping generated by
G,,G,_1»-..,Gy and p,, pp_1>--->pp- Let Vi C — C be
an a-strictly pseudocontractive mapping. Let f : C — C
be a contraction with coefficient p € (0,1). Let {S;};°) be a
countable family of nonexpansive mappings of C into itself such
that F = (5, Fix(S;)) N Fix(V) n (N2, VI(C, A;)) # 0. For
arbitrarily given x,, € C, let {x,} be the sequence generated by

Vo = BpX, + VuBox, +6,S, (1 -1D)I1+1V)x,,
(115)
Xyl = ‘xnf (xn) + (1 - “n) V> Vn >0,
where 0 < 1 < a/x>, {o, 1, 1B} v}, and {8,,} are the sequences
in [0, 1] such that B, + vy, + 6, = 1 for all n > 0. Suppose that
the following conditions hold:

i) Y2pa, =00and0 < «, < 1-p, foralln > ny for
some integer ny > 0;

5, >0;

n—-oo-n

(ii) liminf, | v, > 0 and lim inf,

(111) hmn_m)o(larﬁl/(l - (1 - (xn+1)ﬁn+l) - (Xn/(l - (1 -
(xn)ﬁn” + |8n+1/(1 - Bn+1) - 871/(1 - ﬂn)l) =0;

(iv) 0 < liminf, _, B, < limsup, _, B, < 1.

Assume that Y20 sup. pllS,.1x = S,x| < co for any bounded
subset D of C and let S be a mapping of C into itself defined
by Sx = lim,,_, S, x for all x € C and suppose that Fix(S) =
Moy Fix(S;). Then, there hold the following:

(I) limnaoo"xn+1 - xn” = 0;

(I) x, » g © o, (f(x,) —x,) — 0provided 3, = f3 for
some fixed 3 € (0, 1), where q € F solves the following
VIP

(a-f(a),J(@-p)) <0, VpeF. (116)
Proof. In Theorem 24, weput B, =1 -V, B, =0,and y; =1,
where 0 < I < a/x%. Then, GSVI (13) is equivalent to the VIP
of finding x* € C such that

(B;x",J(x-x")) 20, VxeC. (117)
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In this case, B, : C — X is a-inverse strongly accretive.
It is not hard to see that Fix(V) = VI(C, B,). As a matter of
fact, we have, for [ > 0,

ueVI(C B)
> (Biu,J(y-u))=0 VyeC
= (u-1Bu-u,J(u-y))=0 VyeC
e u=1I(u-1Bu)
= u =1 u-Ilu+lVu) (118)
= (u-lu+lVu-u,J(u-y)) >0 VyeC
= (u-Vu,J(u-y)) <0 VyeC
—u=Vu
— u € Fix (V).
Accordingly, we know that F = (3, Fix(5;)) n Q n
(N VI(C, A))) = (N Fix(8,) nFix(V) n (N5, VI(C, A))),
and
e (I - B)) e (I - 1,B,) x,,
=Tc (I - wBy) x,

=M ((1-1)x, +1Vx,)

(119)

=((1-DI+1V)x,

So, the scheme (42) reduces to (115). Therefore, the desired
result follows from Theorem 24. O

Here, we prove the following important lemmas which
will be used in the sequel.

Lemma 26. Let C be a nonempty closed convex subset of a
smooth Banach space X and let the mapping B, : C — X

be A;-strictly pseudocontractive and o;-strongly accretive with
o; +A; > 1 fori=1,2. Then, for y; € (0,1] one has

”(I —w:B;) x — (I - wB;) )’"

1-q 1
e a-w (e ) ot o

Vx,y €C,

fori=1,2.Inparticular, if 1-(A;/(1+A,))(1-/(1 — a;)/A;) <

Y; < 1, then I — w;B; is nonexpansive fori = 1,2.

Proof. Taking into account the A;-strict pseudocontractivity
of B;, we derive for every x, y € C

/\i”(l _Bi)x - (I_ Bi) )’"2
<((I-B)x=(I-B)yJ(x-y))
<|(1-B)x—(I-B)y|x- |

(121)
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which implies that
1
||(I—Bi)x—(I—Bi)y||sx”x—y”. (122)

Hence,

|Bix = B.y| < |(I = B;)x = (I-B,) y| +[x -y

<(1+3 )k
< 1, x=y|.

Utilizing the «;-strong accretivity and A;-strict pseudocon-
tractivity of B;, we get

(123)

/\i“(l ~B;)x~(I-B) )’“2

<=y = (Bx =By T (x - ) (124)
<(1-a) |-y
So, we have
1-o;
-8yl s o 02

Therefore, for y; € (0, 1] we have
I(T - eB;) x = (I - u;B;) ]|

<|(I-B)x~(I-B;)y|+(1-w)|Bx-By|

e Al (RS oS

1

A a-w (e )bl
(126)

Since 1 — (A;/(1 + A))(1 — /(1 —e;)/A;) < y; < 1, it follows
immediately that

1_(X"+(1— )(l+i><l
py AT

This implies that I — y;B; is nonexpansive fori = 1,2. [

(127)

Lemma 27. Let C be a nonempty closed convex subset of a
smooth Banach space X. Let Il be a sunny nonexpansive
retraction from X onto C and let the mapping B; : C — X
be A;-strictly pseudocontractive and o;-strongly accretive with
oa;+A; > 1fori=1,2.LetG: C — C be the mapping defined
by

G (x) = I [¢ (x = 4, Byx) =y By T (x = py B,x) ]

Vx € C.
(128)

F1-(\,/(1+4,) (A=A —a)/A,) < g < 1, thenG : C — C

is nonexpansive.
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Proof. According to Lemma 26, we know that I — y;B; is
nonexpansive for i = 1,2. Hence, for all x, y € C, we have

IGx) -G ()|

= |Tc [Te (x = gy Byx) = iy By e (x = py Byx)]
~Tc [He (v = 12Byy) = B Tlc (v — 1:B,9)]|

= |Tc (I - B,) N (I - 1, B,) x
~Te (I-wB) e (I - 1,B,) |

<|(I = mB) e (I - u,B,) x
~(I=wBy) e (I - 1,B,) |

< |l (I - 1,B,) x =T (I - ,By) ¥

< (1 - pBy) x = (I -, B,) ¥

< [ =yl
(129)

This shows that G : C — C is nonexpansive. This completes
the proof. O

Theorem 28. Let C be a nonempty closed convex subset of
a uniformly convex Banach space X which has a uniformly
Gateaux differentiable norm. Let I1- be a sunny nonexpansive
retraction from X onto C. Let {p,}_ be a sequence of positive
numbers in (0,b] for some b € (0,1) and A; : C — X
be &;-strictly pseudocontractive and &;-strongly accretive with
& +a;>1foreachi=0,1,.... DefineamappingG;:C — C
by IIc(I - M;A))x = Gx forallx € Candi = 0,1,..,
where 1 — (&;/(1 + &)1 - V(1 -&)/&) < A, < 1 forall
i=0,1,.... Let B, : C — C be the W-mapping generated
by G,,G,_1»...,Gy and p,, p,_1>--.» py- Let the mapping B; :
C — X {-strictly pseudocontractive and B;-strongly accretive
with {; + B = 1fori = 1,2.Let f : C — Cbea
contraction with coefficient p € (0, 1). Let {S;}:°, be a countable
family of nonexpansive mappings of C into itself such that F =
(N2 Fix($)) n QN (N2, VI(C, A,)) # 0, where ) is the fixed
point set of the mapping G = I1-(I — pu, B))II-(I — u,B,) with

- G/ + ) =\ =B)/G) < w < 1fori = 1,2 For

arbitrarily given x,, € C, let {x,} be the sequence generated by
y?l = ﬁnxn + Vanxn + 87181’1Gx7l’

Vn >0,
(130)

Xn+1 = ‘xnf (xn) + GnGxn + (1 -0, = Gn) Y

where {o,}, {0}, {B,} {y,}, and {3,} are the sequences in [0, 1]
such that 3,+vy,+06, = land a, +0, < 1 foralln > 0. Suppose
that the following conditions hold:

(i) Yo, =00and0 < a, +0, <1-p, foralln > n,
for some integer ny > 0;

(ii) lim inf 0, liminf > 0 and

lim inf

o, >
8, > 0;

n— 00 VIHOO‘}/H

n— 00
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(iii) Timy, _, o (lety /(1= 1=,y =041) Bir) = (o, /(1= (1=
(xn_o.n)ﬁn))|+|o'n+1/(1_(l_an+1 _0ﬂ+l)ﬁn+l)_(0n/(1_
(1=a, =0,) B #1041 /(1= Briy1) =8,/ (1= B,)I) = 0;

(iv) 0 < liminf, _, B, < limsup, _, B, < L.

Assume that Y20 sup..pllS,.1x = S,x|l < co for any bounded
subset D of C and let S be a mapping of C into itself defined
by Sx = lim,, _, .S, x for all x € C and suppose that Fix(S) =
Moy Fix(S;). Then there hold the following:

() lim,, , %, — x,ll = 0;

I x, —» g «a,(f(x,) —x,) — 0provided 8, = 8 for
some fixed 3 € (0, 1), where q € F solves the following
VIP

(g-f@).J(a-p)) <0, (131)

Vp e F.
Proof. First of all, take a fixed p € F arbitrarily. Then we
obtain p = Gp, p = B,pand S,p = pforalln > 0. By
Lemma 27, we get from (130)

Iy = £l
< Bullx = Il + v |Bux = o + 6, 8,Gx,, - | )
< Bullxn = ol + v I = pll + 8, %, = 1
=[x, - pl»
and hence
%1 =
< o [[f (xa) = pll + 0, |G, -
+(1-a,-0,) [y, - 1l
<o, (1f Ge) = £ (N +1f (p) - P
+ 0y x, = pll+ (1 - &, = ) [, = Pl
<, (plx, = pl+ 11 (p) - £l
+0, %, - pl + (1 -, = 0,) |x, -
=(1-a,(1-p)) x, = pll + e, | f (p) - Pl
(1=, (1= ) - 1) L2
< max { s, - L2
(133)
By induction, we have
b= ol < max - o, L2 v
(134)

which implies that {x,,} is bounded and so are the sequences
{yuh {Gx,}, and {f(x,)}.
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Let us show that % [Yn+1Bn+1xn+1 +0,111541GXpp
I- ﬁn+1
nll,n‘olo "xn+1 xn” =0. (135)
YHann + 6nSnGxi’l
As a matter of fact, put 0, = (1 -, — 9,)3,,, foralln > 0. 1-5,

Then, it follows from (i) and (iv) that

ﬁnzenz(l_an_an)ﬁn2(1_(1_P))ﬁnzpﬁn’

i (1 %y 0n+1) (1 B ﬂnﬂ)
1_6;1+1

(136)
Vn = n,,
0 _(l_an_on)(l_ﬁn)]
and hence 1-0,
0< llnrr_l)lorcl)f Bn < lim sup Gn <1. (137) x Vanxn + (SnSnGxn
n— 00 1_/3n
Define a,
=S ((x,) - £ ()
Xy = 0,x, +(1-0,) z,. (138) Onea
n+1
G G
Observe that Tty 1-6,., (Gx,py — Gx,,)
Zn+1 - Zn + < ‘Xn+1 _ (xn >f(x )
1- 6n+1 1- 6n "
— Xny2 — 9n+1xn+1 _ Xn+1 9 Xn
1-0, 1-6, +< Opnt1 Op >G
; 1-6,, 1-6, T

= (“n+1f (xn+1) + 0n+lGxn+1

(1 — K1 — 0n+1) (1 B :8n+1)

+(1 LTS _Un+l)yn+l _0n+1xn+1) + 1-6
-1
X (1 - 6ﬂ+1) Y,
X [fl—ﬂ (Bn+1xn+1 - ann)
(an (xn) + UnGxn + (1 -0, — an) Vn — 6n'xn Y1 T 8n+1
1-0,
+ ( Yn+l y )B x
_ an+1f ('xn+1 + Un+1Gxn+1) _ “nf (xn) + GnGxn Yn+l + 871 YH + 8
1- 0n+1 1= en 5
+—L (5 Gx,,, -S,Gx
_ (1 -0, an) [ﬁnxn + Vanxn + 8nSnGxn] B enxn Vo1 T 8n+1 ( i i n)
1-0, s 5,
n+1
+ (1= g = 0ppy) +<yn+1+8n+1 Y, + 96, >SGx]
X [ﬁn+1xn+1 + VYur1Bus1 X + 8n+lsn+1Gxn+1] ~ <0‘n+1 +0p1 At o‘n> V.B.x, +96,S,Gx
- 0n+1xn+lx (1 - 6n+1)_1 - 6n+1 - en Yu 5;«,
_ (Xn+1f(xn+1) +0n+lGxn+1 _ (an (xn) +GnGxn = 1 _n+1 (f (xn+1) f(x ))
1- 0n+1 1- en n+1
l-a,, -0, + I (G, - Gx
% (Yn+1Bn+1xn+1 + 6n+lsn+lGxn+1) 1- 9n+1 ( m n)
n+l
1- «, —0, < Xyi1 > < Yanxn + 5nSnGxn )
____n n +
1 _ en (YHann + (SnSnGxn) 1 _ 9n+1 1 _ f ('x ) Yn + 871
_ n+1f (xn+1) +0 +1Gxn+1 ‘xnf (xn) + anGxn < Oni1 Oy > < Yanxn + 8nSnGxn)
- - w2 O )Gy, -
1_011+1 1_9n 1_9n+1 l_en yn+8n
+ (1 — Kyl n+1)( ﬁn+1) + 1- Xpt1 ~ Opyl — 6n+1
1-0,, 1-6,,,
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Vu
X [m (Bu1 %1 = Byx,,)

Yn+1 y
B,
+<yn+1+6n yn+6 ) o

é
+ n (Sn+1Gxn+1 - SnG‘xn)

Y1 T 6n+1
6
+< il O >s Gx ]
Yn+1 + 671 Yn 871

(139)

and hence
“Zn+1 - Zn“

n+1 "f (xn+1) f(xn)"

1
e s G,y — Gx,|
n+1
+ Xnt1 _ Xy f (x ) _ )/anXn + 8nSnGxn
1_6n+1 1_6n " Vn+8n
+ Ont1 _ Un Gx. — Yanxn + 8nSnGxn
1_en+1 l_en " Yn+8n
L= =0y — 6n+1
I- 9n+1
Yn+1
X | ————— ||B,;1%,.1 — B, x
|:Yn+1 + 6n+1 " n+1-vn+1 n n"
Ya+1 “
yn+1 + 6n+1 yn + 8
+ L ||Sn+1Gxn+1 - SnGxn”
Vi1 T 8n+1
8n+1 6

sl

On the other hand, repeating the same arguments as those of
(55) and (56) in the proof of Theorem 24, we can get

YH+1 + 8 Yn + 8
(140)

||Sn+1Gxn+1 - SnGxn“ < "xn+1 - xn" + ||Sn+1Gxn - SnGxn” >

n
"Bn+1xn+1 - ann" < ”xn+1 - xn" + MOH/\i’
i=0
(141)

for some constant M, > 0. Utilizing (140)-(141), we have

||Zn+1 - Zn"
X1

1- 0n+1

o

n+1

1- 0n+1

P "xn+1 - xn"

“xn+1 - xn”
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B L/
1- 0n+1 1- On
< (If Gell + IBuxall + 1S,Gx,ll)

Ot %
1_en+1 1_0n

X (G| + 1Bl + [18,Gxall)

+

1- Xpt1 ~ Optl — 9n+1

+

1- 9n+1
Y;Hl _ - )
P R R
Ya+1 _ ”
yn+1 + 5n+1 + 5
+ L(ux s+ 180G — S,Gx)
Vi1 +6n+1 n+l n n+1 n n n
é\n+1 ‘
! YH+1 + 671 V + 6 ”S o "

_ 1_‘Xn+1 (1—p)—9n+1 "
1-60

Xp1 — Xy "
n+l

1- X1 ~ Opy1 — 6n+1

1-0,.,
X[Vm%ri?m 01_0[?& " Vn+1"1:1$n+1 Vn(in&,
% (1Bl + 118,66l
s, ,Gx, - 5,65, ]
i 1(1%—(;;+1 - 1?0"

(1 Gea)ll+ 1Bl + 1S,G, )

On+1

1-0

Oy

" T 1-6

n+1 n

X (|G, | + [Bx ]| + [1S,Gx.)
= “xnﬂ - xn”

(HA +

n+1 871

:Bn+1 1- /jn

g,

n+1 _ Gn

1_6n+1 l_en

Xpi1 _ Xy

+
1_en+1 l_en

)

(142)

+ ”S,,HGxn - SnGxn" ,
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where sup,.o{ll f (x,)Il + 1Gx, || + [|B,x, || + 1IS,Gx,|l + My} <
M for some M > 0. So, from (142), condition (iii), and the
assumption on {S,} it follows that (noting that 0 < A; <b < 1,
foralli > 0)

lim sup (||Zn+1 - Zn" - "xn+1 - xn”) <0. (143)
n— 00
Consequently, by Lemma 20, we have

lim |z, - x,| = 0. (144)

It follows from (137) and (138) that

x,| = lim (1-6,) |z, - x,] =0. (145)

lim |x,,, - Jim

n— 00

Next, we show that | x,, — Gx,|| = 0asn — oo.
Indeed, in terms of Lemma 11, from (130), we have

7. - oI’
< ﬁn”xn - p"2 + Yrt"ann - P||2
+ (Sn“SnG‘xn - p"2

= ﬁn”xn - p"2 + Yn"xn - P”z + 5n"‘xn - pHZ
= | - 2l
%1 = I

= ||, (x4 = p) + 0, (Gx,, — p)
+(1-a,~0,) (¥~ p)
0, (f (%) = )|
-p)+0,(Gx,—p)+(1-
o, (f () = %))
= |l (x4 = p) + 0, (Gx,, — p) +
+ Jlog, (f (x) = %)
x [2]|e, (x, = p) + 0, (Gx, — p)
+ (1=, = 0,) (0 = P + et (f () = )]

Xy (xn_p)+(1 _‘xn)

Xy — Un) (yn - p)"

< [l (s

(1 &, = an) (yn - P)”z

2
l-«a, -0

: (3, )|

n

o, ~
x [l—an(Gx" p)+

+ "(xn (f (xn) - xn)"

1-«,
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X [2 “‘xn (xn - p) + 0y, (Gxn - P)
+ (1 0 Gn) (yn - p)“
+||Ocn (f ('xn) _xn)”]

< ‘Xn"xn - P”2
O,
+(1_“n) 1_n“ (Gxn_P)+ 1— .
n n

+ e, (f () = x,)|
x [2 (e, |x, = || + 0, |Gx,, — P
+ (1 -0, an) ||yn - P”) * "(Xn (f (xn) - xn)"]

2
l-a,-0

(yn _P)

< an"xn - P”Z + (1 - an)

o, AT l-«a,-o0, T
| T2t -l s LB, -
Gn(l_(xn_an)
SIS Ol g (|G -
+ Jlo, (f () = %)

X [2 &y ||xn_P“+Un "xn_P” +(1—(Xn—(fn) "xn_p”)

+ "‘xn (f (xn) - xn)"]
< “n"xn - P”Z + (1 - an)

l-a,-0, 2
L S L

o, _ 2
|2l ol

2y o, - )

o, (F Ge) = ) (2 [ = Il + o (F () = .)1)
e pft = T (Lo 3 -
_”xn P" 1-a, g(“Gxn yn")
# o (F Gen) = ) 2 [l = Pl + s (F () = 1) -
(146)
Then, it immediately follows from 0 < «, + 0, < 1-p, for

all n > n, that

P99 (”Gxn - yn”)

o,(1-a,-0,)

< T ita Y (IGx, = yall)

< = oI = Itus = I
+ "(xn (f (xn) - xn)" (2 ||xn - p" + "(xn (f (xn) - xn)")
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< (o = 2l + xnis = 21D e = %
+ "“n (f (xn) - xn)"

x (2], = pll + flo, (f () = )]
(147)

for all n > n,. Since |«,(f(x,) — x,)I — 0 and {x,} is
bounded, we deduce from (145) and condition (ii) that

lim g (”Gxn - yn") =0.

n— 00

(148)
Utilizing the properties of g, we have
nleréo [Gx,, = »,| = 0. (149)

Also, from (130) we have

X X

n+l

=&y (f (xn) - xn) +0, (Gxn - xn)

+(1 _“n_an) (yn_xn)

n

=y (f (xn) - xn) +0, (Gxn “Ynt Vn— xn) (150)
+ (1 - _Gn) (yn - xn)
=y (f (xn) - xn) +0, (Gxn - yn)

(1= a,) (%),
which hence leads to
pllyn =l
<(1-a,-0,) |y, - x|
< (1= a,) [y, = x|
= (%1 = % = 0, (f (x) = %) = 0, (G, = )|
< s = 2l + o (f () = x| + 0, [Gx,y = 72

< ||xn+1 - xn" + "(xn (f (xn) - xn)“ + “Gxn - yn" .
(151)

So, it is easy to see from (145), (149), and ||ev,,(f (x,) — x, )| —
0 that

nhl%o ”yn - xn” =0. (152)
We note that
||Gxn - xn” < ||Gxn - yn” + ||yn - xn” . (153)
Therefore, from (149) and (152) it follows that
lim |Gx, - x,| = 0. (154)

n— oo

Repeating the same arguments as those of (86), (89), and
(91) in the proof of Theorem 24, we can obtain

Jim |, = B,x,|| = Jim [$,Gx,, — B,x,|

' (155)
= nILngO [[x, = Sx,,|| = 0.
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Suppose that 3, = 8 for some fixed 3 € (0,1) such that 8 +
Y, + 0, = 1forall n > 0. Define a mapping Vx = (1 - 6, —
0,)Sx + 6,Bx + 0,Gx, where 0,,0, € (0, 1) are two constants
with 0, + 6, < 1. Then, by Lemmas 14 and 17, we have that
Fix(V) = Fix(S) N Fix(B) N Fix(G) = F. For each k > 1, let
{pi} be a unique element of C such that

1 1
Pr = Ef (px) + (1 - E)Vpk' (156)

From Lemma 13, we conclude that p, — g € Fix(V) = F as
k — o00. Observe that for every n, k

1y = Bl
< Bl = Bpell + v, | B.x — Bpi|
+ 8, (1S,Gx,, = B,x, | + [|B,x, — Bpy)
= Bllx. = Bl + (1 - B) | B,x, — Box|
+8,[18,Gx, = B, |

(157)

and hence

%1 = Bpi
< a, | f (x,) = Bpi|| + 0, | Gx,, = Bpy |
+ (1=, = 0,) |y, — Bpi
< o, (| f (%) = ]| + 1, = Bpi)
+ 0, (|G, = x| + |, = Bpe) + (1 -, = 03,)
x [B %, = Bpi| + (1 = B) |B,x,, — Bpy|
+0,[8,Gx,, = B, ]
< ot (I () = 2]l + 1, = Bpe])
+ 0, (|G, = x| + [, = Bp) + (1 -, = 03,)
x [Blx. — Bpx|
+ (1= B) (IBu = Bupill + B = Brwl)
+0,[18,Gx, = B, ]
<ty (|1 f () =l + 1, = Bpi])
+ 0, (|G = x| + | = Bpe) + (1 -, = 03,)
x [Bllxn = Bpil + (1= B) (% = pill + |Bupic — Bpil))
+0,[8,Gx,, = By, ]
= o, | f () = %] + 0, | Gx,, = x|
+[B+ (o +0,) (1= B)] |x, — Bpe
+(1-a,-0,) (1= B) |, = puf + (1 -, = )

x [(1 - ﬁ) "Bnpk - Bpk" + 6n "SnGxn - ann“]
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< a, | f () = %, ]| + 0, |G, — x|
+[B+ (a, +0,) (1= B)]
% (It = %erll + %0 = Bpel) + (1 = e, = 0,) (1 = B)
X (1 = et | + %01 = 2l) + (1 - &, = 3,,)
[(1 = B) B,k — Bpi| + 8, |IS,Gx,, - B, []
= o || f (30) = x| + 0, |Gt = x|
+[B+ (o +0,) (1= B)] %1 — Bl
+ (1= a, =0,) (1= B) |1 = pul + (1 -~y = 0,)
x [(1= B)|B,px = Byl + 8, |S,Gx,, = B,x, ]

+ “xn - xn+1|| .

X

(158)

So, it immediately follows from 0 < «,, < 1 — p, for all n > n,
that

%1 = Bpx]
< %1 = pill + |B.pi — Boxl
. 1
(l_an_an)(l_ﬁ)
X ("“n (xn - f (xn))" + 0, "Gxn - xn“

1)
+ |2, = X []) + ﬁ IS,Gx,, — B,x,|

(159)
< [xer = pill + 1B.pk = Bpx

_

p(1-p)

x ("“n (xn - f (xn))"

+ ”Gxn - xn“ + “xn - xn+1|| )

+ ||SnGxn - ann” +

= "xn+1 - Pk” +1,, Vn>ng,

where 0, = |B,pr — Bpell + 1IS,Gx,, — B,x, |l + 1/(p(1 -

B)le,(x,, = flxe ) + 1Gx,, = x,ll + llx,, = x,,4111). Since

limnﬂoo"Bnpk - BPk” = limnﬂoo"SnGxn - ann”

lim, , e, (x, — fCe DI = lim, lIGx, — x,l

lim, _, llx, — %,411l = 0, we know that 7, — Oasn — oo.
From (159), we obtain

"xn+1 - Bpk"2 < “xn+l - pk"2 + 7T, (2 "xn+1 - pk” + Tn) >

Vn 2 ny.
(160)

For any Banach limit g, from (160) we derive

tall % = Bl = 1 = Bl
(161)

< ‘un”xnﬂ - pk“2 = ‘un”xn - pk“z'

Abstract and Applied Analysis

Repeating the same arguments as those of (99), in the proof
of Theorem 24, we can get

.un"xn - ka|l2 < A"in"xn - pk||2’

5 5 (162)
nun"xn - Spk” < ."in"xn - pk” .
Utilizing (161) and (162), we deduce that
tall e = Vil
< (1 - 61 - 62)#71”9‘71 - Spk"2
(163)

+ 01[/["||xn - Bpk"2 + 62!’ln"xn - ka"2

< Aun"xn - Pk||2~

Also, observe that

(1-2) o= V) = %= = 1 (50— £ (p0))- (160

Repeating the same arguments as those of (106) in the proof
of Theorem 24, we can get

1
St = pell 2 1, (PO = pioT (= 1)) - (169)

Since p — g € Fix(V) = Fask — 00, by the uniform
Gateaux differentiability of the norm of X, we have

. (f (@) -aT(x,—q)) <o0. (166)

On the other hand, from (135) and the norm-to-weak”
uniform continuity of J on bounded subsets of X, it follows
that

tim [(f(q) =] (x,u1 - q)) = (f (@) T (x, —q))| = 0.
(167)

So, utilizing Lemma 18, we deduce from (166) and (167) that

lirrlrlsolip (f(@)-a,J(x,-q)) <0, (168)

which, together with (135) and the norm-to-norm uniform
continuity of J on bounded subsets of X, implies that

tim sup (£ (4) = 4. J (X1 = 4)) < 0. (169)
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Finally, let us show that x, — gasn — oo. Utilizing
Lemma 8 (i), from (130) and the convexity of || - 1%, we get

I =l < Bl = all + vl B, - al” a70)
+8,18,Gx, = ql* < 1%, - al
s —al”
= Jlot, (f (x0) = £ (@) + 0, (Gx,, - q)
+(1-0,-0,) (B -q) +,(f (@) -q) |’
< oty (f (%) = £ (9)) + 0, (Gx,, - q)
+(1-a,=0,) (-
+20, (f(9) — 4T (%01 —9))
< |l f (x,) = £ @ + 0, Gx, - ql”
+(1-a,-0,) |y, - ql
+ 20, (f(9) =9, ] (%01 — q))
< a,plx, —al + 0%, —al’
+(1-a,-0,) |x, - ql’
+20, (f(9) — 4T (%01 —9))
= (1-a,(1-p)) %, 4l
+20, (£ (q) = @] (%01 — 9))
= (1-a,(1-p)) x, -4l

+a, (1 _ P) 2 <f (q) _lq’_]ﬁxnﬂ B q)>

171)

Applying Lemma 7 to (171), we obtain that x, — gqasn —
0.

Conversely, if x, — g € Fasn — 00, then from (130) it
follows that

”yn - q" < B. ”xn - q" *Vn ”ann - q”
(172)
+08,|1S,Gx, —q|| < |x,—q] — 0
asn — oo; thatis, ¥, — ¢. Again from (130) we obtain that

e, (f () = %)l
= %1 = %0 = 04 (G = %) = (1 =@, = 0,) (9, = x,)|
< [ = %l + 0, G2 = x| + (1= 0t = 0,) 13 = %
< [0 = all + [lx, — al + 0, (|Gx, — g + |, - 4]})
+(1-a, =0,) (|3 —all + x, - al)
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< %1 = all + % — gl + 0 (Ix, = gl + [, —4ll)
+(1-a,-0,) (|y,—al + x. - 4l)
< %1 —all + 3%, — gl + |y, —4ll-
(173)

Sincex, — gand y, — g, wegeta,(f(x,)—x,) — 0.This
completes the proof. O

Corollary 29. Let C be a nonempty closed convex subset of
a uniformly convex Banach space X which has a uniformly
Gateaux differentiable norm. Let I1- be a sunny nonexpansive
retraction from X onto C. Let {p,}" be a sequence of positive
numbers in (0,b] for someb € (0,1) and A; : C — X&;-
strictly pseudocontractive and &;-strongly accretive with &; +
a; > 1 foreachi = 0,1,.... Define a mappingG; : C — C
byIo(I-AA)x =Gxforallx e Candi=0,1,..., where
1-&/A+EN1-(1 —a;) /&) < A; < 1foralli=0,1,.... Let
B, : C — C bethe W-mapping generated by G,,,G,,_, ..., G,
and p,, Pu_1>--->py- Let Vi C — C be a self-mapping such
that 1 -V : C — X is A-strictly pseudocontractive and o-
strongly accretive with « + A > 1. Let f : C — Cbea
contraction with coefficient p € (0,1). Let {S;};5, be a countable
family of nonexpansive mappings of C into itself such that F =
(N2 Fix(S)) N Fix(V) n (N2, VI(C, A))) # 0. For arbitrarily
given x, € C, let {x,} be the sequence generated by

Yy = BpXpy + VuBpX, + 6,8, (1 -DI+1V)x,,
Xy = 0 f (x,) + 0, (L=DI+IV)x,+(1-a,—0,) Y

Vn >0,
(174)

where 1 — (A/(1 + M))(1 — VA -a)/A) <1 < 1 and {0,},
{a,}, 1B} {y,), and {8,} are the sequences in [0, 1] such that
Bu+y,+0, =landa, +0, < 1foralln > 0. Suppose that the
following conditions hold:

(i) Yo, =00and0 < a, +0, <1-p, foralln > n,
for some integer n, > 0;

(ii) lim inf o, > 0, liminf > 0 and

n—-oo-n
liminf, | &, > 0;

(iii) hmn—»oo(l“nﬂ/(l_(l %1 _Un+1)ﬁn+l)_“n/(1_(1 -
(xn_aﬂ)ﬁn)|+|Gn+1/(1_(1_(Xn+1_0-n+1)ﬁn+l)_o'n/(1_
(1 -, _Gn):Bn)l + |6n+1/(1 _ﬁnJrl) _8n/(1 _:Bn)l) =0;

(iv) 0 < liminf, _, B, < limsup, _, B, < 1.

n—>oo)/n

Assume that Y2 sup,.pllS,.1x = S,xll < co for any bounded
subset D of C and let S be a mapping of C into itself defined
by Sx = lim,, , .S, x for all x € C and suppose that Fix(S) =
Nioy Fix(S;). Then there hold the following:

(I) 1imn—>oo||xn+1 - ‘xn” = 0;

I x, —» g «a,(f(x,) —x,) — 0provided 3, = 3 for
some fixed 3 € (0, 1), where q € F solves the following
VIpP

(175)

(g-f(),/(g-p)) <0, VpeF.
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Proof. In Theorem 28, weput B, =1 -V, B, = 0,and y; =1,

where 1 — (A/(1 + 1))(1 = /(1 —a)/A) <1 < 1. Then, GSVI
(13) is equivalent to the VIP of finding x* € C such that
(B;x",J (x=x")) >0,

Vx € C. (176)

In this case, B, : C — X is A-strictly pseudocontractive
and a-strongly accretive. Repeating the same arguments
as those in the proof of Corollary 25, we can infer that
Fix(V) = VI(C, B). Accordingly, F = [, Fix(S5;) N Q@ n
(NS VI(C, A)) = N2, Fix(S;) N Fix(V) N (N2, VI(C, A))),
and

Gx,=((1-DI+IV)x,,

Vn > 0. 177)

So, scheme (130) reduces to (174). Therefore, the desired result
follows from Theorem 31. O

Remark 30. Our Theorems 24 and 28 improve, extend,
supplement and develop Ceng and Yao’s [10, Theorem 3.2],
Cai and Bu’s [11, Theorem 3.1], Kangtunyakarn’s [38, The-
orem 3.1], and Ceng and Yaos [8, Theorem 3.1], in the
following aspects.

(i) The problem of finding a point g € (.5, Fix(S;)) N
Qn (N5, VI(C, 4))) in our Theorems 24 and 28 is
more general and more subtle than every one of the
problem of finding a point g € ()2, Fix(T}) in [10,
Theorem 3.2], the problem of finding a point g €
N2, Fix(T;) N Q in [11, Theorem 3.1], the problem of
finding a point g € Fix(S) N Fix(V) N (ﬂf\zjl VI(C, A)))
in [38, Theorem 3.1], and the problem of finding a
point g € Fix(T) in [8, Theorem 3.1].

(ii) The iterative scheme in [8, Theorem 3.1] is extended
to develop the iterative schemes (42) and (130) in
our Theorems 24 and 28 by virtue of the iterative
schemes of [11, Theorem 3.1] and [10, Theorems 3.2].
The iterative schemes (42) and (130) in our Theorems
24 and 28 are more advantageous and more flexible
than the iterative scheme of [8, Theorem 3.1] because
they can be applied to solving three problems (i.e.,
GSVI (13), fixed point problem and infinitely many
VIPs), and involve several parameter sequences {«,,},

B} {va}> 18, (and {a),}).

(iii) Our Theorems 24 and 28 extend and generalize Ceng
and Yao [8, Theorem 3.1] from a nonexpansive map-
ping to a countable family of nonexpansive mappings,
and Ceng and Yao’s [10, Theorems 3.2], to the setting
of the GSVT (13) and infinitely many VIPs, Kangtun-
yakarn [38, Theorem 3.1], from finitely many VIPs to
infinitely many VIPs, from a nonexpansive mapping
to a countable family of nonexpansive mappings and
from a strict pseudocontraction to the GSVI (13).
In the meantime, our Theorems 24 and 28 extend
and generalize Cai and Bu’s [11, Theorem 3.1], to the
setting of infinitely many VIPs.

(iv) The iterative schemes (42) and (130) in our Theorems
24 and 28 are very different from every one in [10,
Theorem 3.2], [11, Theorem 3.1], [38, Theorem 3.1],
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and [8, Theorem 3.1] because the mappings G and
T, in [11, Theorem 3.1] and the mapping T in [8,
Theorem 3.1] are replaced with the same composite
mapping S, G in the iterative schemes (42) and (130)
and the mapping W,, in [10, Theorem 3.2] is replaced
with B,,.

(v) Cai and Bu’s proof in [11, Theorem 3.1] depends on
the argument techniques in [14], the inequality in 2-
uniformly smooth Banach spaces (see Lemma 4), and
the inequality in smooth and uniform convex Banach
spaces (see Proposition 6). Because the composite
mapping S, G appears in the iterative scheme (42) of
our Theorem 24, the proof of our Theorem 24 depends
on the argument techniques in [14], the inequality in
2-uniformly smooth Banach spaces (see Lemma 4),
the inequality in smooth and uniform convex Banach
spaces (see Proposition 6), the inequality in uniform
convex Banach spaces (see Lemma 15 in Section 2 of
this paper), and the properties of the W-mapping and
the Banach limit (see Lemmas 16-18 in Section 2 of
this paper). However, the proof of our Theorem 28
does not depend on the argument techniques in [14],
the inequality in 2-uniformly smooth Banach spaces
(see Lemma 4), and the inequality in smooth and
uniform convex Banach spaces (see Proposition 6).
It depends on only the inequality in uniform convex
Banach spaces (see Lemma 15 in Section 2 of this
paper) and the properties of the W-mapping and the
Banach limit (see Lemmas 16-18 in Section 2 of this
paper).

(vi) The assumption of the uniformly convex and 2-
uniformly smooth Banach space X in [11, Theo-
rem 3.1] is weakened to the one of the uniformly
convex Banach space X having a uniformly Gateaux
differentiable norm in our Theorem 28. Moreover, the
assumption of the uniformly smooth Banach space
X in [8, Theorem 3.1] is replaced with the one of the
uniformly convex Banach space X having a uniformly
Gateaux differentiable norm in our Theorem 28. It is
worth emphasizing that there is no assumption on the
convergence of parameter sequences {a,}, {5,}, {y,.},
and {6,} (and {o,}) to zero in our Theorems 24 and
28.

4. Relaxed Mann Iterations and
Their Convergence Criteria

In this section, we introduce our relaxed Mann iteration
algorithms in real smooth and uniformly convex Banach
spaces and present their convergence criteria.

Theorem 31. Let C be a nonempty closed convex subset of a
uniformly convex and 2-uniformly smooth Banach space X.
Let TI, be a sunny nonexpansive retraction from X onto C.
Let {p,}2,, be a sequence of positive numbers in (0, b] for some
be(0,1)and A, : C — X an a;-inverse strongly accretive
mapping for each i = 0, 1,.... Define a mappingG; : C — C
by II-(I - L;A)x = Gix forallx € Candi = 0,1,..,
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where \; € (0,&;/x*] and k is the 2-uniformly smooth constant
of X. Let B, : C — C be the W-mapping generated by
G,,G,_1>---,Gy and p,, py_1>-..>py Let the mapping B; :
C — X be B;-inverse strongly accretive for i = 1,2. Let f :
C — C be a contraction with coefficient p € (0,1). Let {S;};5,
be a countable family of nonexpansive mappings of C into itself
such that F = (N2, Fix(S;)) N QN (N2, VI(C, A;)) # 0, where
Q is the fixed point set of the mapping G = I1o(I —p; B))II-(I-
1,B,) with 0 < p; < B;/x* fori = 1,2. For arbitrarily given
xo € C, let {x,,} be the sequence generated by

Vn=0,
(178)

Xnt1 = ‘xnf (xn) + :ann + Vanxn + 6nSnGxn’

where {a,}, {B,}, {y,}, and {8,,} are the sequences in (0, 1) such
that o, +f3,+v,+6, = 1 foralln > 0. Suppose that the following
conditions hold:

(i) lim =0and 2, a, = 00;
(ii) {y,}, 16,} c [c,d] for some c,d € (0,1);
(iif) limn—wo(lﬁn - ﬁn—l' + h/n - Yn—ll + |6n - 871—1') =0;

(iv) 0 < liminf, _, B, < limsup, _, B, < L.

n—»oo“n

Assume that ¥ o2 sup, pllS,x = S,_1 x|l < co for any bounded
subset D of C and let S be a mapping of C into itself defined
by Sx = lim,, _, ..S,x for all x € C and suppose that Fix(S) =
oy Fix(S;). Then, there hold the following:

(I) limn—>oo||xn+1 - xn” = O;

(IT) the sequence {x,},°, converges strongly to some q €
F which is the unique solution of the variational
inequality problem (VIP)

((1-1f)aT(a-p)) <0,

Vp e F, 179)

provided B, = f3 for some fixed f3 € (0, 1).

Proof. First of all, since 0 < A; < [&,-/KZ] fori = 0,1,..., it
is easy to see that G; is a nonexpansive mapping for each i =
0,1,....Since B, : C — C is the W-mapping generated by
G,,G,_1>...,Gyand p,, p, 15 .. py by Lemma 16 we know
that, for each x € C and k > 0, the limit lim,, , .U, ;x exists.
Moreover, one can define a mapping B: C — C as follows:

Bx = nlLHéO B,x = nanéO U, 0x (180)
for every x € C. That is, such a Bis the W-mapping generated
by the sequences {G,,},°, and {p,}2. According to Lemma7,
we know that Fix(B) = (1.5, Fix(G;). From Lemma 21 and
the definition of G;, we have Fix(G;) = VI(C, A;) for each
i=0,1,.... Hence, we have

o0

Fix (B) = ﬁ Fix (G;) = [ VI(C, 4,).
i=0

i=0

(181)

Next, let us show that the sequence {x,} is bounded.
Indeed, take a fixed p € F arbitrarily. Then, we get p = Gp,
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p=B,p,and p =S, p forall n > 0. By Lemma 23, we know
that G is nonexpansive. Then, from (178), we have

%1 = 2l
< o, | f (x) = pll + B 1% — £
+ Y |Buxy = pl| + 8, [S,Gx,, - p|
<a, (If () = £ (P +1f (p) - Pl
+ Ballxa = ol + v %0 = pll + 6, [Gx,, - £
<a, (plx, =l + £ (p) - pl)
+ Bl =l + v %0 = 2l + 8, % - £

- (-, (- p) b~ e (1 p) A2

p
< max {“xn ~ ol I.f (IP_) ; ?l } .
(182)
By induction, we obtain
[, = pl| < max {leo -1l W}» , Wn>0.
(183)

Hence, {x,} is bounded, and so are the sequences {Gx,,} and

{f (x,)}

Let us show that

lim |x,,, - x,| = 0.

n— 00

(184)

As a matter of fact, observe that x,,, can be rewritten as
follows:

Xn+1 = ﬁnxn + (1 - :Bn) 2y (185)

where z,, = («, f(x,) + y,B,x,, +6,5,Gx,,)/(1 — f3,). Observe
that
“Zn ~ Zn1 “
‘xnf ('le) + Yan'xn + anSnGxn
1- ﬁn

_(Xn—lf (xn—l) + Yn—an—lxn—l + 6n—lsn—1Gxn—l

1- ﬁn—l

_ Xn+1 ~ ﬁnxn _ Xn — ﬁn—lxn—l
1- :Bn 1- ﬁn—l

Xn+1 ~ ﬁnxn _ Xn — ﬁn—lxn—l

l_ﬁn

Xn — :Bn—lxn—l

1_Bn

l_ﬁn

_ Xn — ﬁn—lxn—l

I- ﬁnfl
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Xnr1 ~ ﬁnxn X ﬁnflxnfl < ||xn - Xn_1|| + AO ||Un’1xn_1 - U,,_len_l “

1-8 1-8
’ ’ = “xn - xn—l” + Ao "AlGlUn,an—l - /‘lGlUn—l,Z'xn—lll
+ Xy — ﬁn—lxn—l _ Xp — IBn—lxn—l
1-p, 1-B,,4 < [, = 0| + Ao [Una Xt = Ui 20|
1
= 1_—ﬁn "xn+1 - ﬁnxn - (xn - ﬁnflxnfl)”
n—1
N L N T S e (.
1- ﬁn 1- ﬁn—l i=0
1 n—1
= —1 _ /3,1 ||xn+1 - /3nxn - (xn - :Brlflxnfl)” < “xn — ‘xn—lll + Mgki’

B = By (188)

+ [
(1 - /3n—1) (1 - ﬁn)
] for some constant M > 0. Taking into account 0 <
= q ||(xnf (x,) + y,B,x, +6,8,Gx, — o, f (x,_,) liminf, , B, < limsup,_ B, < 1,Awe may assume,
n without loss of generality, that {f8,} ¢ [, d]. Utilizing (186)-
(188), we have

- :Bn—lxn—l ”

- yn—an—lxn—l - 6n—15n—lGxn—1 "
|ﬁn - Bn—l'

X, — X Iz =zl
T f) (- P Bl 1
1 < q [‘xn "f (xn) - f(xn—l)"
< 1_—ﬁn [‘xn "f (xn) - f(xnfl)" n

T Vn “ann - anlxnflu
T Vn "ann - anlxnflll

+8,[18,Gx, = 8,-1Gx,p |
+ et = i [ 1f o)l
+ [V = V| |Bacr X |
10, = 8 [ [S4-1 G ]

|ﬁn_ﬁn—1| x. — X
OB (1= ) P B

+ 8, 4G,y = 801G, |
+ ot = i [ (00
+ ¥ = Vol [Baor 2 |
18, = 8| [1S5-1 G ]

|ﬁn_ﬁn—1| X .
t gy P Bl

n-1
L A S py
n i=0
On the other hand, we note that, for alln > 1, s [" “ “S G - l "]
T 0, [1%n = Xua || t {[PnGX -1 — 916X
||S Gx, - S, ,Gx ,1"
o 10, = et 1 e+ 1 = Yot B
< ||SnGxn - SnGxn_IH + ||S,,Gxn_1 -S,.1Gx,_, || (187)
< "Gxn - Gxn—lu + “SnGxn—l - Sn—lGxn—lll + l‘sn - 6n—1| "Sn—lGxn—ln }
< ||xn - xn_ln + HSnGxn_1 - Sn_lGxn_IH . |/3n : ﬁn—1|
Furthermore, by (CY), since G; and U, ; are nonexpansive, we ! (1-B,)(1-B,) I = B
deduce that for eachn > 1
1
I8,y = B 15, { (= Fu e (=D o =50
< ”ann - anrkl” + “annfl - anlxnflu MﬁA s ”S G s “
+7 it nIXp—1 = Op-10X
< ”xn - Xn—1|| + ”ann—l - Bn—lxn—lu " i=0 " " " '

= “xn - Xn—l" + ")LOGOUn,lxn—l - /\OGOUn—l,lxn—lu + |0‘n - ‘xn—ll ”f (xn—l)"



Abstract and Applied Analysis
+ |Vn - yn—l' "Bn—lxn—l”
+ |8n - 6n—1| "Sn—lGxn—l“ }

|/3n ﬁn 1|
(1_ﬂn 1)(

-S,..Gx,_, || +

“xn - ﬁn—lxn—lu

1

1- ﬁn

X [|(xn - “n—l' "f (xn—l)” + IYn - Yn—1| "Bn—lxn—ln
180l 511Gl

|ﬁn ﬁn 1|

Xn ﬁnf Xp—
OB (1= ) o B
n—1
< % = x| + MH)L,- +[8,Gxp_y = S, Gx, |
i=0
1
+ 1— ﬁ [lan - ‘xn71| "f (xnfl)” + h}n - Yn—1|
n
X “Bn—lxn—lll + |8n - 8n—1l ”Sn—lGxn—lu]
|ﬁn /3n 1|

(1 _Bn 1) (1 - ﬁn)
X "(Xn—lf (xn—l) + Yn—an—l‘xn—l + 8n—lsn—1G'xn—1"

s ”xn - xn—lll

n-1
+ M, H/\i + |ocn - ocn_1|

i=0

+ I)}n - Yn71| + |8n - 87171' + |lgn - /jnfll
+ ||SnGxn_1 - Sn_lGxn_IH ,
(189)

where sup,_o{(1/(1=d)*) (| f (x,) |+ B,x,, [ +1S,Gox, [l + M)} <
M, for some M, > 0. Thus, from (189), conditions (i), (iii) and
the assumption on {S,}, it follows that (noting that 0 < A; <
b< 1,foralli>0)

lim (”Z nflu - ”xn - xnflll) <0 (190)

n— 00

Since 0 < liminf,_, f, <limsup,_, f, < 1,by Lemma 20
we get

Jim [, =z, = (191)
Consequently,
lim |x,,, —x,| = lim (1-8,)|z,-x,]=0. (192

n— 00 n— 00
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Next we show that ||x,, — Gx, || — 0Oasn — oo.

Indeed, for simplicity, put g = IIo(p — ,B,p), u, =
e(x, — 4,B,x,) and v, = I1(u,, — 4, Byu,). Then, v, = Gx,,
for all n > 0. From Lemma 26 we have

- all
= "HC‘ (%, = yByx,,) = e (p = 2 B, ) “2
R (193)
< |x, = p = 12 (Byx, = Byp)|
= "xn - P”Z -2, (Bz - Kz.“z) "Bzxn - BzP”2>
v, -2l
= "HC (4, — i Byu,) — T (q - MlBﬂ)llz
(194)

< "”n -q - ph (Bu, - qu)uz

S "”n - q”2 =24 (51 - KZP‘I) "Blun - 31‘1"2-

Substituting (193) for (194), we obtain

v = 2I” < s = 2l = 2682 (B, = %°2) |B,x,, = Bup|”
=2 (31 - "zlf‘l) |By w4, ~ qu"2-
(195)

By Lemma 8, we have from (178) and (195)

s = oI
= [lev, (f (x,) = £ () + B (x, = p)
T Vu (ann - p) + 871 (SnGxn - p)

+a, (f(p)- P

< e, (f (x) = £ (p)) + B, (x,, = p)
+9n (Byx, — p) + 6, (S,Gx, - p)|*
+ 20, (f () = P ] (X1 = P))

<af (x P+ Bullx, - pl’
+3ulBux = I + 8,18, - o
+ 20, (f (p) = P, (%11 = P))

< o’ |x, = oI + Bullxa = ol
+Yallxu = I+ 8ulv - oI
+ 20, (f (p) = P, (%11 = P))
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< apllx, = I+ Bullxa = 21 + vl = oI’
+ 0, [“xn - P"2 =2t (ﬁz - KZ.“z) |1B,x,, - BzP"2
241 (B, — 1) | By, = Byql’]
+ 20, (f (p) = P, (%11 = P))
= (1-a,(1-p)) %, - oI’
-29, [.”2 (/§2 - KZ!/‘Z) |B,x,, - B,p|
1 (By =) | By, — Byq|’]
+ 20, (f (p) = P, (%11 = P))
< "xn - P”2 - 26, [!42 (Bz - Kz.uz) ”Ban - BzP"2
+ 4y (By — 1) By, — Byq|’]

+ 20, £ (p) = pll |61 - £l

(196)
which hence implies that
26, [Mz (Bz - Kzﬂz) IB,x,, — BzP||2
+i (B =) [Biu, - Byq’]
< %y = I = I%nes - 2l (197)

+ 20, | £ (P) = pll 61 — £
< (I = Pl + e = 1D 6 =

+ 20, | £ (p) = Pl |%0e1 — 2l -

Since ||lx, — x,,l = 0,0 < y; < Bi/KZ fori = 1,2, and {x,}
is bounded, we obtain from conditions (i), (ii) that

lim [B,x, - B,p|| =0, lim |B,u, — Biq| = 0. (198)

n— 00

Utilizing Proposition 6 and Lemma 9, we have

. - ql
= “Hc (%, = tByx,,) =T (p - #szp)”Z
< (%, = B, x, = (p = ,Byp) . T (4, — q))
= <xn - P’] (un - q)> T <BZP - Ban’] (un - q))
1
< L= ol + o -l
) (“xn U, - (P - q)") ]

+ “sz - Bzxn" "”n - qll >
(199)
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which implies that

"un - q"2 < "xn - p”Z ~—9 (“xn — U, (p - q)")

+ 24 | Bop = By - gl -

(200)

In the same way, we derive

Iv. - pl’
= "HC (”n - .”131”71) -1l (q - M1qu)“2
< (u, — i Byu, — (9 - ,B,9) . ] (v, — p))
= <un - q’](vn - p)> + i <B1q - Blun’](vn - p))
1
< 2 [y =al* + v, - I
~92 ("un —Va t (P - q)“) ]

+H "qu - Blun” ”Vn - p” >

(201)
which implies that
2 2
v, — <||lu, - - u, - v, +(p-
v = pl" < e = al” - 9. (] (r-al) 02)
+ 241 |Biq = Byu | v, - p|.
Substituting (200) for (202), we get
v - oI
< %= 2l = 91 (I = 1, = (P = @)
~ 9 ("un —Vy t (P - q)") (203)

+ 2 [Bop = By, [ - dl

+ 24 |Biq = Byuy| [|v, — pl-
By Lemma 8, we have from (196) and (203)
%01 - 2l

< 60", = Pl + Bl = Pl + vl — I

+ 8n||Vn - P"2 + 206,1 <f (p) - p’] (xn+1 - P)>
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< aupllxy = oI + Bullxu = oI + vallx, - 2l
+8, 1%, = ol - 91 (%, -, = (- 9)])
= 92 (s = va + (P = @)) + 2042 | Bop = By |
xJuy = qll + 201 |Big = By v, = 2]
+ 20, (f (p) = p.J (X1 = P))
< (1-a, (1-p)) %, - oI’
=8, (91 (|0 =, = (P 9)])
+ 92 ([t = v + (P = @))]
+ 2 |B,p = By, | |, — gl + 241 [Brq - By |
* [[va = pll + 20, | f (P) = Pl %01 — £
<l = 2I° =8, (91 (10 — s = (P - D))
+ 0 (= v+ (p = @)I)]
+ 2 |B,p = By, | |, — qll + 241 [Boq - By |

x v, = pll + 20, | £ (P) = Pl %011 = Pl
(204)

which hence leads to

8491 (¢ =1, = (P = D) + g2 (1t = v + (P~ D]
A
+ 2443 |B,p = By, | |, — al
+ 2 |Big = By v, - p
+2a, | £ (p) = pll %1 = Pl
< (2 = 2l + %1 = 21D 12 = X |
+ 2 | B,p = By, | |, - al
+2p B - By | v, - p

+ 20, £ (p) = Pl s = -
(205)

From (198), (205), conditions (i), (ii) and the boundedness of
{x,.}, {u,}, and {v,}, we deduce that

nh—>néog1 ("xn — Uy - (p - q)“) =0,
(206)
lim g, (|u, - v, + (p - q)|) = 0.

n— 00
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Utilizing the properties of g, and g,, we deduce that
nll,néo “xn U, - (p - q)” =0,
(207)
nll,ngo “un —Vp T (p - q)" =0.
From (207), we get
nxn - Vn" < “xn U, - (P - q)"
+u,—v,+(p-q)| — 0 asn — oo
(208)
That is,
Jim |lx, = Gx,,|| = 0. (209)

Next, let us show that

Jim [|S,Gx,, - x,[ =0, lim [|B,x, - x,[ =0. (210)

Indeed, observe that x,,,, can be rewritten as follows:

Xn+1 = (xnf (xn) + ﬁnxn + Yanxn + 8nSnGxn

= anf (xn) + ﬁnxn + (YH + 5}’l)
X Yanxn + 5nSnGxn (211)
Va8,

= (an (xn) + ﬂnxn + enzn’

where ¢, = 7, + 6, and 2, = (3,B,%, + 8,5,Gx,)/(3, + 8,).
Utilizing Lemma 11 and (211), we have
%1 - I
= Nl ( (%) = p) + Bo (0 = ) + €, B — D)
<a |\ f (x,) = ol + Bullx - oI’
+ ez, - pl* - Buends (2. - %)
= a,lf () = plI” + Bullxu - 2l

yan‘xn + 8nSnG‘xn
Va8,

= “n|lf (xn) - P”Z + ﬁn“xn - p"2 - ﬁneng3 ("271 - xn”)

Vu 3,
B —
yn+5n( w P)+Vn+5n

2

- ﬁneng3 (Hzn - xn") te,

2

+e (S,Gx,, — p)

n
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< ocn"f (xn) - P”Z + ﬁn”xn - p"2 - ﬁneng3 (llzn - xn")

Vn 1?2 8n 12
Ly, o + 15,6, o |

+e,

< ‘xn"f (xn) - P"2 + ﬁn”xn - P"2 - ﬁneng_’a ("2n - xn")

Va
L Vn + 0,

+e,

4, 2
5o = pll+ -G, - oF |

n

< ‘xn"f (xn) - p"2 + Bn”xn - P"2 - ﬁnenQS ("2n - xn")

%, - ol |
T

+e, y% ., - pll +
= a,[lf () = plI* + (1 - ) |, - I

= Buengs (|2, = x.l)
< |l f (x,) = oI+ s = I = Bueugs (12 = xal)

(212)
which hence implies that
/'gneng_’) (||2n - xn")
2 2 2
< | f (o) =PI+ I = 21 = 6nes = £
(213)

< a|f () = I+ (I = 2l + i1 = 1)

X "xn = Xp+1 “ .

Utilizing (184), conditions (i), (ii), (iv), and the boundedness
of {x,,} and {f(x,)}, we get

Jim g5 (12, - x,[) = 0. (214)
From the properties of g5, we have
lim [z, - x,[ = 0. (215)

n— 00

Utilizing Lemma 15 and the definition of Z,,, we have

Iz, - oI’

_ || vaBaXn + 8,8,Gx,, 2

- Ya + 6,

= (B,x, - p)+ Sy (,Gx, - )2

- Yn+8n nn P Yn+8n n n P
Va .S P

< o, -l o 5,6

VO

2 9a (”SnGxn - ann”)

(1 +5,)
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Va S,
< mﬂxn -pl + v+ IGx,, - p|
1’161’1
ey 8- Bl
Va S,
s m”xn -l + o+ 0 Ix. - p|°
n(sn
- ()/)}-I-—(S)zg4 (”SnGxn - ann")
1187!
=l oI - B0 (19,65, - B,
(216)
which hence yields
n6n
(}1)/4-—8)2!]4 (”SnGxn - ann")
(217)

2 ~ 2
< ||xn_p" _”zn_p”

< (lew = 2l + 120 = D %0 = 24

Since {x,} and {Z,} are bounded and [|Z, — x,[| = Oasn —
00, we deduce from condition (ii) that

lim g, (I S, Gx, - B,x, |I) = 0. (218)
From the properties of g,, we have
lim ||S,Gx, — B,x,| = 0. (219)

n— 00
On the other hand, x,,,; can also be rewritten as follows:

Xpt1 = (xnf (xn) + :ann + Yanxn + ansnGxn

f (xn) + 6nSnGxn
a,+9,

(04
= ﬁnxn + Yanxn + ((Xn + 871) :

= ﬁnxn + Yﬂann + dnzn’
(220)

whered, = a, + 0, and z,, = («,, f (x,) +6,S,Gx,)/(«, + 6,).
Utilizing Lemma 11 and the convexity of || - 1>, we have
%1 - 2l
= "ﬁn (xn - p) T Vu (ann - p) + dn (En - P)||2
< ﬂn"xn - P“z + YH"ann - P"2

+ dnllzn - p"2 - /jnyngs ("xn - ann”)



Abstract and Applied Analysis

= ﬁn"xn - pllz + Yn”ann - p"2

2

“ﬂf (‘xn) + anSnG‘xn
o, +0, P

- ﬁn’/ngs (”xn - ann")

= ﬁn"xn - p“2 + Yn“ann - P"2

+d

n

a, 6, ’
+dn a, +8n (f(xn) _p) + a, +8n (SnGxn _p)
- ﬁnYngS (”xn - ann")
< ﬁn"xn - p“2 + Yn“xn - p"2
a, T 0, R
ey [ 2 () = o + 515G~ o

- ﬁHYHgS (”xn - ann")

< ﬁn"xn - P“Z + Yn“xn - P"2

«, 2 6n _ 2
e A B e
- ﬁnYngS (”xn - ann")

< ﬁn"xn - P“Z + yn“xn - P"2

ey | 2 f () - +

Oy

Sp

o, +0,

Jx. - oI
- ﬁn’/ngs (”xn - ann")

= ‘xn“f (xn) - P“z + (1 - “n) "xn - P”Z
- ﬁnYngS (”xn - ann")

< “n“f (xn) - pllz + “xn - p"2 - ﬁnYngS (”xn - ann“) >
(221)

which hence implies that

ﬁnYngS ("xn - ann“)

< |l f (%) = ol + s = I = %00 - 2l
. (222)
< o, f (x) = o + (%0 = 2l + %01 — 2l

X ”xn - xn+1|l .

From (184), conditions (i), (ii), (iv), and the boundedness of
{x,} and { f(x,)}, we have

Jim g5 (|lx, = B,x,|[) = 0. (223)
Utilizing the properties of g5, we have
Jim %, = B,x,|| = 0, (224)
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which, together with (219), implies that

||SnGx,, - xn” < ||SnGxn - ann“ + Hann - xn" — 0

asn — 0o.
(225)
That is,
Jim IS, Gx,, - x, | = 0. (226)
We note that
[, x|

< |, = SuGx,|| + 1S,Gxy = S| + 1Sn% — Sx,|

< ||xn - SnGxn" + ||Gxn - xn" + ||Snxn - an" .

(227)
So, in terms of (209), (226), and Lemma 12, we have
Jimx, = Sx, | = 0. (228)

Suppose that 3, = 8 for some fixed 8 € (0, 1) such that e, +
B+7v,+08,=1foralln > 0. Define a mapping Vx = (1-0, -
0,)Sx + 60,Bx + 0,Gx, where 0,,0, € (0, 1) are two constants
with 8, + 0, < 1. Then by Lemmas 14 and 17, we have that
Fix(V) = Fix(S) n Fix(B) N Fix(G) = F. For each k > 1, let
{pi} be a unique element of C such that

1 1
pe=1f (pi) + (1 - §)Vpk. (229)

From Lemma 13, we conclude that p, — g € Fix(V) = F as
k — 00. Observe that for every n, k

%01 = Bpi
= Jlot, (f (x) = Bpi) + B (x,, = Bpy)
+ ¥ (ByX, = Bpy) + 8, (S,Gx,, — Bpy )|
< o, || f () = Bpll + B 1% = Bpill + 2 [ Box, - Bpi
+8, ([S,Gx,, - B,x,| +[|B,x, - Bpi|)
= o, || f (x0) = Bpil| + Bl — Bp
+ (v +6,) |B.x,, = Bpi| + 6, [[S,Gox,, - B,x, |
= o, || (x0) = Bpil| + Bl — B
+ (1= 0, = B) By = Bpil| + 8, 18,6, = By
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s "f (xn) - Bpk“ + ﬁ “xn - Bpk“ + (1 &, — ﬁ)
x ["ann - Bnpk" + ||Bnpk - Bpk"]
+46, ||SnGx,, - ann”
< o, "f (xn) - Bpk” + ﬁ ||xn - Bpk“
+ (1 &~ ﬁ) [”xn - pk“ + “Bnpk - Bpk”]
+6, ||SnGxn - ann”
<oy "f (xn) - Bpk“ + ﬁ “'xn - BPk“
+ (1= B) [l = pill + [Bupic = Bpell]
+96, ||SnGxn - B,,xn”

= 6, + Bllx, = Bpill + (1= B) [l = pu
(230)
where 0, = o,lf(x,) — Bpell + (1 — BIB,pr — Bpill +
0,1S,Gx,—B,x,ll. Sincelim,, _, &, = lim,,_, B, pr—Bpill =
lim, _, IS, Gx, — B,x,l = 0, we know that 6, — 0 as

n — oo.
From (230), we obtain

BN
< (Bllx = Boel + (1= B) % - pel))®
+0, [2(Blx, = Bpell + (1 = B) [lx = pill) +6,]
= Bl = Bpul + (1= Bl - el
+2B (1 = B) ||, = Boel 1%, = o]l + 7.
< Bllx, = Bpel* + (1= BY |l - il
+B(1=B) (% = Boul” + 1, - pil) + 7,

= :B“xn - Bpk”2 + (1 - ﬁ) ”xn - Pk||2 T T
(231)

where 7, = 0,[2(Bllx,, — Bpill + (1 = B)lx,, — pel) +6,] — 0

asn — 00.
For any Banach limit y, from (231) we derive

.un"xn - BPk"2 = [’ln“xn-f-l - Bpk”2 < ”n"xn - Pk”2~ (232)
In addition, note that
I, - Geel’
< |x, - Gx,, + Gx,, - Gpy||*
< ("xn - Gxn" + "xn - pk”)2
= il + - G|

X (2]l = pill + x4 = Gl
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% - Spill”
< ||xn - Sx, +Sx,, — Spk”2
< ("xn - an” + ”xn - pk“)z
=l = el + s = S,

X (2] = pill + [l = Sxa]) -

(233)
It is easy to see from (209) and (228) that
Aun"xn - ka”2 < Aun"xn - pk”2>
i i (234)
.un”xn - Spk" < [’ln“xn - pk" .
Utilizing (232) and (234), we deduce that
Aun"xn - Vpk”2
= Un ”(1 - 01 - 62) (xn - Spk)
+61 (xn - Bpk) + 62 (xn - ka)||2
(235)

< (1 - 91 - 92) Mn"xn - Spk”2
+ 6lAMn”xn - Bpk"2 + 62Al’ln||‘xn - GPk“Z

= [’ln”xn - pkllz'

Also, observe that

%= b= (e £ () + (12 7) (5, VR)s - 236)

that is,

(1-2) Vo) = %= = (5= £ (2). - 237)

It follows from Lemma 8(ii) and (237) that
1 2
(1-2) b vaul?
2
2 o= ol = L Gon = P pe— £ ()T (3 = )

= (1= 2 )= el + £ (F (PO = o (5= i)

(238)
So by (235) and (238), we have
1 2
(1-%) mllx. - pel?
> (1= 2 )b oul? (239)

+ 214,F (B) = T (%= )
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and hence

1 2
atalzn =2l 2 T (F (00) = o T (n = 1)) - (240)

This implies that

1
iun"xn - pk"2 2y <f (Pk) - pk’] (xn - pk)> . (241)

Since p, — q € Fix(V) = Fas k — 00, by the uniform
Frechet differentiability of the norm of X, we have

t (f(q) -] (x,—q)) <0. (242)

On the other hand, from (184) and the norm-to-norm
uniform continuity of J on bounded subsets of X, it follows
that

dim [(f(9) =T (1 = 9)) = (F (@) - 9T (xa —q))] = 0.
(243)

So, utilizing Lemma 18 we deduce from (242) and (243) that

lim sup (£ (q) ~4.J (x, —9)) <0, (244)

which, together with (184) and the norm-to-norm uniform
continuity of ] on bounded subsets of X, implies that

lim sup (£ (q) ~4.J (xp1 —q)) < 0. (245)

Finally, let us show that x, — gqasn — oo. Utilizing
Lemma 8 (i), from (178) and the convexity of || - 1%, we get

s —al’
= Jlow, (f (%) = £(@)) + B (x5 = @) + v (Byx,, — 9)
+8,(8,Gx, — )+, (f (@) -
< e, (f (x) = £ (@) + B (x, —9)
+ 9 (B, = q) + 6, (8,Gx, - )|’
+ 20, (f (@) = @ ] (%011 — )
<ol f () = £ @I + Bulxu—all’
+ ¥l B — gl + 8,]18,Gx, - al
+ 20, (£ (9) = 4] (X1 = 9))
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<a,|lf (%)= £ @I +Bullxu -4l
+ Y% = all* +8,1Gx, - al’
+ 20, (f (q) = 4] (%11 — 9))
< appllx, =gl + Bullx, = all” + vallx, - al’
+8, %, —al” + 20, (£ (9) = 4T (X1 — )
= (1-a,(1-p))|x, - ql’
+ 20, (f (q) = 4T (%11 —q))
= (1-a, (1-p)) |, -l

)2<f (@) =] (%501 —9))
1-p ’

+‘xn(1_p

(246)

Applying Lemma 7 to (246), we obtain that x, — gqasn —
00. This completes the proof. O

Corollary 32. Let C be a nonempty closed convex subset of a
uniformly convex and 2-uniformly smooth Banach space X. Let
1. be a sunny nonexpansive retraction from X onto C. Let
{patico be a sequence of positive numbers in (0,b] for some
be(0,1)and A; : C — X an &;-inverse strongly accretive
mapping for eachi = 0, 1,.... Define a mappingG; : C — C
by IIo(I — LjA))x = Gix forallx € Candi = 0,1,..,
where \; € (0,&;/x*] and « is the 2-uniformly smooth constant
of X. Let B, : C — C be the W-mapping generated by
G,,G,_1>--,Gy and p,, pp_15--->py- Let V.2 C — C be
an o-strictly pseudocontractive mapping. Let f : C — C
be a contraction with coefficient p € (0,1). Let {S;};°, be a
countable family of nonexpansive mappings of C into itself such
that F = (5, Fix(S;)) n Fix(V) n (N, VI(C, A;)) # 0. For
arbitrarily given x,, € C, let {x,,} be the sequence generated by

Xyl = (xnf (xn) + ﬁnxn + Yanxn

+6,S,(1-DI1+1V)x,,

(247)
Vn >0,

where 0 < 1 < a/«k* and {a,}, B} {v,), and {6,} are the
sequences in (0, 1) such that o, + 8, +7v,+0, = 1 foralln > 0.
Suppose that the following conditions hold:

(i) lim,, _, &, =0and Y2 o, = 00;

(ii) {y,}, {6,} < [c,d] for some c,d € (0, 1);
(iii) hmn—»oo(lﬁn - Bn—ll + |Yn - yn—l' + |6n - 8n—1|) =0;

(iv) 0 < lim inf,_, B, < lim sup, , .., < L.

Assume that ¥ sup,.pllS,x = S,_; x|l < co for any bounded
subset D of C and let S be a mapping of C into itself defined
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by Sx = lim,, _, .S, x for all x € C and suppose that Fix(S) =
oy Fix(S;). Then, there hold the following:

(I) hmnaoo”xrﬁrl - xﬂ“ = 0’

(IT) the sequence {x,},, converges strongly to some q €
F which is the unique solution of the variational
inequality problem (VIP)

(I-f)gJ(q-p)) <0, VpeF, (248)

provided B, = f3 for some fixed f3 € (0, 1).

Proof. In Theorem 31, we put B =1 -V, B, =0and y; =1
where 0 < I < a/«x*. Then GSVI (13) is equivalent to the VIP
of finding x* € C such that

(Bix",J(x-x")) >0, VxeC. (249)

In this case, B, C — X is a-inverse strongly
accretive. Repeating the same arguments as those in the
proof of Corollary 25, we can infer that Fix(V) = VI(C, B).
Accordingly, we know that F = (7% Fix(T,) n Qn A™'0 =
M52, Fix(T;) N Fix(V) N A™'0, and

e (I - //‘131) e (I - !"232) Xn

=T (I - By) x,
=M ((1-1)x, +1Vx,)

(250)

= (1 -DI+1V)x,

So, scheme (178) reduces to (247). Therefore, the desired
result follows from Theorem 31. O

Theorem 33. Let C be a nonempty closed convex subset of
a uniformly convex Banach space X which has a uniformly
Gateaux differentiable norm. Let I1- be a sunny nonexpansive
retraction from X onto C. Let {p,}r- be a sequence of positive
numbers in (0,b] for some b € (0,1) and A; : C — X§&;-
strictly pseudocontractive and &;-strongly accretive with &; +
a; > 1 foreachi = 0,1,.... Define a mapping G; : C — C
byll-(I - A A)x =Gx forallx e Candi = 0,1,..., where
1-(&/+E)N)A-(1 —a;)/&) < A; < 1foralli=0,1,.... Let
B, : C — C be the W-mapping generated by G,,,G,,_;, ..., G,
and p,, Pu_1> - - - Po- Let the mapping B; : C — X be (;-strictly
pseudocontractive and B;-strongly accretive with {; + B; > 1
fori=1,2.Let f: C — C be a contraction with coefficient
p € (0,1). Let {S;};5, be a countable family of nonexpansive
mappings of C into itself such that F = (.5, Fix(S;)) n
QN (N2 VI(C, A))) #0, where Q is the fixed point set of the
mapping G = TIo(I — u B)II(I — u,B,) with 1 — ({;/(1 +

(1 -y —Ei)/(i) < w; < 1fori = 1,2. For arbitrarily

given x, € C, let {x,} be the sequence generated by
Xne1 = anGxn + (1 - an)

Vn=0,
(251)

X [“Vlf (xn) + /jnxn + y}’lBlen + 6nSnGxn] >
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where {a,)}, {B,}, {y,}, 16,,}, and {0} are the sequences in (0, 1)
such that o, + B, + v, + 0, = 1 for alln > 0. Suppose that the
following conditions hold:

(1) hmnaoo(xn =0and ZEZO X = OO
(i) {y,} {6,,} € [c, d] for some c,d € (0, 1);

(111) Zil(lgn_an—ll+I‘xn_an—l|+|18n_ﬁn—l|+|Yn_yn—l|+
16, — 8,_11) < o0;

(iv) 0 < lim inf, _, B, < lim sup,_, B, < 1 and 0 <

lim inf,_, o, <lim sup,_, o, < 1.

Assume that ¥ sup,.pllS,x = S,_; x|l < co for any bounded
subset D of C and let S be a mapping of C into itself defined
by Sx = lim,,_, S, x for all x € C and suppose that Fix(S) =
Moy Fix(S;). Then, there hold the following:

(I) limnaoo"xn+1 - xn” = 0;

(IT) the sequence {x,},., converges strongly to some q €
F which is the unique solution of the variational
inequality problem (VIP)

((I-f)aJ(@-p)) <0, VYpeF,

(252)

provided 3, = 3 for some fixed 3 € (0, 1).

Proof. First of all, it is easy to see that (251) can be rewritten
as follows:

yn = ‘xnf ('xﬂ) + ﬁnxn + Vanxn + 6nSnGxn’
(253)

Xep1 =0,Gx,+(1-0,)y,, ¥Yn>0.

Take a fixed p € F arbitrarily. Then, we obtain p = Gp, p =
B,pand S, p = p for all n > 0. Thus, we get from (253)
Iy, -l
< oy, “f (xn) - p” + ﬁn ”'xn - p"
+Vn "ann - P" + 6n ”SnGxn - P”
(254)
< a, (p %= pl + £ (p) - £
+ Ballx = 2l + vl = 2l + 04 [l -

:(1_(xn(l_P))”xn_p"+“n||f(p)_p||’
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and hence
%01 =
< 0, [|Gx,, = pl| + (1 = 0,) [y, = Pl
<o, = pl+(1-0,)
* [(1=a, (1= p)) |, = pll + s | (p) - pl]
=(1-(1-0,)a,(1-p))[x, - p|

+(1-0,)a,|f(p)-pl
= (1 _(l_an)(xn l_p))"xn_P”

||f ) - Pl
p) ————— s

ol If (p) - pl (p PII }

+(1-0,) e, (1-

< max {”xn

(255)

By induction, we have

p",w}, Vu > 0.

b= ol < ma - o, 12

(256)

which implies that {x,} is bounded and so are the sequences

{y.}{Gx,.} and { f(x,)}.
Let us show that

lim |, -

n—00

x| = 0. (257)

As amatter of fact, observe that y, can be rewritten as follows:
In = ﬁnxn + (1 - ﬁn) Zp>

where z,, = («, f(x,,) + y,B,x, +96,5,Gx,)/(1 -
that

(258)

B,.). Observe

"Zn - Zn%"
“nf (xn) + yanxn + 8nsnGxn
1- ﬁn

_ “n—lf (xn—l) + yn—an—lxn—l + 6n—lsn—lGxn—1

1- ﬁn—l
Yn— /jnxn _ Yn-1— ﬁn—lxn—l

1- ﬁn 1- /3n—1
Yn — ﬁn'xn _ Yn-1— ﬁn—lxn—l
1- ﬁn 1- /3n
Yn-1— ﬁn—lxn—l _ Yn-1
1- Bn

B ﬁn—lxn—l

1- ﬁnfl

+
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Yn — /';nxn i1 T ﬁnflxnfl
I- :Bn 1- ﬁn
+ Yn-1— ﬁn—lxn—l _ Yn-1— ﬁn—l'xn—l

1- ﬁn 1- ﬁn—l
- /jnxn - (ynfl - ﬁnflxnfl)”

|
1- ﬁn 1- ﬁn—l n71
- lgnxn - (yn—l - :Bn—lxn—l)”

- /jn—lxn—l "

|/3n ﬁn ll ”)/
(1_[371 1)(1_ﬁn) "

= _—ﬁ "(an (xn) + Yanxn + SnSnGxn

17 I3n71xn71||

- ‘xn—lf (xn—l) - )/n—an—lxn—l
_an—lsn—lGxn—l H

|ﬁn ﬂn 1|
(l—ﬁn ) (-

o, || f (x,)

”yn—l - ﬁn—lxn—l "

IN

(xn—l ) “

T Vn "ann - anlxn—lu

+8,[8,Gx, = $,-1Gx, |
+ o = i [ (00
+ ¥ = Vol [Bacr 2 |
18, = 8| [1S5-1 G ]

|ﬁn ﬂn 1|
TR -

”yn—l - ﬁn—lxn—lll .

(259)

On the other hand, repeating the same arguments as those of
(52) and (54) in the proof of Theorem 24, we can deduce that
foralln > 1

||SnGxn -S,.1Gx,_, ||

< ”xn - xn—l" + "SnGxn—l - Sn—lGxn—IH > (260)
“Bn'xn - Bn—lxn—ln < "xn -

n—-1
x,H" + MH/\,-,
i=0

for some constant M > 0. Taking into account 0 <
liminf, , B, < limsup,_ B, < 1, we may assume,
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without loss of generality, that {8,} < [c, 67]. Utilizing (259)-
(260) we have

”Zn ~Zp-1 ”

1
1_ﬁn

<

n-1
Joten=sd ot il
i=0
+ 6n [“xn - xn—l" + "SnGxn—l - Sn—lGxn—IH]
+ |‘xn - (xn71| ||f (xnfl)” + IYn - Yn—1| ||Bn—1xn—1"
+ |6n - 8n71l ”SnflGxnflu }

|[3n - ﬁn—ll _ x
B 1 P el

_ 1
1_/3n

{ (1 - ﬂn -y (1 - P)) ||xn - xn—l”

n—-1
+ ynMHA,- +8, [18:Gx,1 = S,_1 G|
i=0

+ |“n - “n—ll ”f (xn—l)"
+ h)n - )}n—l| ”Bn—lxn—lu
+ |6n - 8n—1| ”Sn—lGxn—l" }

|[3n _ﬁnfll _ x
+ (1 _ﬁn_l) (1 _ ﬂn) “yn—l ﬁn—l n—l”

an(l—P)> ¥M
=|1-——— ) |x,— x| + A;
(550 el 2]

1~ 816X,y ”

n—

iprl R G R A

X ”Bn—lxn—l” + |6n - 871—1' ”Sn—lGxn—lu]

|ﬁn B Bn—l' _ X
+ (1-8,)0-8) ”yn—l Bt n—l”

_ n—1
< (1 _ M) I, = s + MT A,
1-B, i=0

1
+ ”S,,Gxn_l — Sn_lGxn_IH + 1——ﬁn

Abstract and Applied Analysis

x [Joty = oo [ f ()]
+ [ = Vuca | [Buca X |
1B, — Bl
(1=B.)(1-B,)
X flotyr f (1) + Vucr Buoa Xy + 8,118,166 |

<(1-2 )

+ |8n - an—ll “Sn—lGxn—l”] +

n—1
+ Ml [HAz + |0‘n - “n—1| + |:Bn - ﬁn—l' + h/n - yn—ll
i=0

16, -6, ] 8,1 — Sy 1G]
(261)

~2

where sup,.{(1/(1 = d) ) f(x )l + IB,x,[l + S,Gx,[l +

M)} < M, for some M, > 0. In the meantime, observe that
Xns1 — Xy = Oy (Gxn - Gxn—l) + (Gn - Gn—l) (Gxn—l - Zn—l)

+ (1 - Un) (Zn - Zn—l) .
(262)

This together with (261), implies that
1 = x|
< 0, |Gx,, = Gox s | + |0, = 0,4 | |Gty = 2
+(1-0,) |20 = 2o

< oy "xn - xn—l” + |Gn - Gn—1| ||Gxn—1 - zn—l"

a, (1-
t(1-a,) {(1- 1_—/5/)))||xn—xn1||
n—-1
+ Ml [HAI + I(Xn - (xn—ll + |ﬁn - ﬁn—l'
i=0
+ h/n - Yn—ll + Ian - 6n—1| :|

+ ||S,1Gxn,1 - Sn,lGx,H” }

<(1- Ul )

+ |on - Gn—1| "Gxn—l - anlll

n—-1
+ Ml |:le + |(xn - (xn—1| + lﬁn - ﬁn—ll

i=0

+ |Vn - Vn—1| + |6n - 8n—1| ]
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+ ||S,1Gxn_1 -S,.1Gx,_, ||

<(1- Ul

n—1
+M, [HA,. +0, = 0| + o, — ]

i=0
+ |ﬁn - /3n—1| + h}n - Yn—ll + |8n - 6n—1|

+ ||SnGx,,_1 -S,..Gx,_, || ,
(263)

where sup,.({M; + Gx,, - z,|l} < M, for some M, > 0. Since
Yoo, = coand (1-0,)a,(1-p)/(1-B,) = (1-0,)a,(1-p),
we obtain from conditions (i) and (iv) that Y o ((1-0,,)ex,, (1 -
p)/(1 - B,)) = oo. Thus, applying Lemma 7 to (263), we
deduce from condition (iii) and the assumption on {S,} that
(noting that 0 < A; < b < 1, foralli > 0)

nleréo "xn+1 - xn“ =0. (264)

Next, we show that [ x,, - Gx,[| - 0Oasn — oo.
Indeed, according to Lemma 8 we have from (253)

Iy - oI’
= flot, (f () = £ (P)) + Bu (% = P) + ¥ (Bux, = p)
+8,(8,Gx, = p) + 4, (f (p) - p)|
< floty (f () = £ (P)) + Bu (x — P)
+ Y (B, = P) + 8, (8,Gx, = )|
+2at, (f (p) = P, (%11 = P))
<o f () = f () + Bull, - oI
+ ¥l B = 2l +8,018,Gx, - ol
+ 20, (f (p) = p.J (X1 = P))
< aypllxs = I + Bullxa = 21 + vl = £l
+8, %, = plI* + 20, | £ (p) = pll 01 —
= (1-a, (1-p)) |, - £l
+2a, £ (P) = Pl %2 - P

< I = oI + 20, I £ (p) = Pl 01 = £l
(265)
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Utilizing Lemma 15 we get from (253) and (265)

|1 - I
= |0, (Gx, = p) + (1= 3,) (¥, - P)I
< 0,Gx, = plI* + (1= 0,) |y - I

~0,(1-0,) g (IGx, = yal)

<o, - pl* + (1-0,) (266)
x [, = pI* + 20, 1.f (p) = Pl 01 - 2]
-0, (1-0,) g (|Gx, = yul)

< %, = pl* + 20, | £ (£) = Pl [ %s1 - £

)s

-0, (1-0,) g(|Gx, ~ i
which hence yields
0, (1-0,) g (|Gx, = yl))
< xu = oI = I = £I°
+20, | (p) = pll %1 = Pl
< (o = 2l + 1% = 21D 0 = X |

+ 20, || £ (p) = Pl |%0e1 — 2l -

(267)

Since®,, — Oand |x,,; —x,|l — 0, from condition (iv) and
the boundedness of {x,,}, it follows that

Jim g (|Gex,, = y,])) = 0. (268)
Utilizing the properties of g, we have
,}Lngo “Gxn - yn" =0, (269)
which, together with (253) and (257), implies that
"xn - n"
s “xn - xnﬂ” + ||xn+1 - yn"
(270)
= “xn - xnﬂ” t 0y "Gxn - yn” —0
asn — 00.
That is,
,,ll,ngo ”xn - yn” =0. (271)
Since
"xn - Gxn“ S "xn - yn" + "yn - Gxn“ > (272)
it immediately follows from (269) and (271) that
Jim_lx, - Gx,[ = 0. (273)
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On the other hand, observe that y, can be rewritten as
follows:

yn = “Vlf (xn) + ann + Yanxn + 5nSnGxn
B, x, +6,S,Gx,

= f (%) + fox + (4 8,) P

(274)

= “nf (xn) + ﬁn'xn + enzn’

wheree, =y, + 6, and z,, = (y,B,x,, + 6,S,Gx,)/(y, + 6,).
Utilizing Lemma 11, we have

Iy, - oI’
= ot (f () = P) + By (5 = P) + €, 2 = DI
< a,|lf ()= plI” + Bullxu — 2l
+e,l2, = plI* - Bueagn (12, = %)
= a,lf (x,) = plI* + Bullxu — 2l
= Buengs (|2, = x.l)
YaBuXn + 6,8,Gx, |
VY + 0,
= a,lf (x,) = pI” + Bullxu - 2l
= Bueadr (|12, = xa]))

+e

n

2

Va ~ 5, B
+ en Yn + 6n (ann p) + yn + 6n (SnGxn p)
< “nnf (xn) - p“2 + ﬁn"xn - p”Z
_/';nengl (“2” _xn")
e[ B, - o565,
"Ly +o,n T Yat 8, "

< ‘xn"f (xn) - p"2 + ﬂn”xn - P"2
- ﬁnengl (||2n - xn")

e | Ll =l 22—
= a,|lf () = ol + (1 - ,) |, = oI’
B (= 5)
< | f () = oI + s~ o’

- ﬁnengl (Ilzn - xn") >
(275)
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which hence implies that
Brengr (12, = xa])
< ol f () = I + = 2l = 19— I
< a,|f () = I+ (I = 2l + 1 = 2D % = 2l -
(276)

Utilizing (271), conditions (i), (ii), (iv), and the boundedness
of {x,}, {y,} and { f(x,,)}, we get

lim g1 ("2n - xn“) =0.

n— 00

(277)
From the properties of g;, we have

Tim |2, - x,] = 0.

(278)
Utilizing Lemma 15 and the definition of Z,,, we have

2. - I

Yanxn + 6nSnGxn _ 2

Yt 0,

2

P Oy
B — —
Yn + 8,, ( nxn p) + yn + 5;/, (SHG‘xn p)

Yn _ 2 (Sn
= Yo+ 0, B, =l + Yot 0,

I5,Gx, - pIf

n8n
- y—ng (”SnGxn - ann")

(Va +6,)

nan
(yy_i_—(s)ng ("SnGxn - ann“) >

(279)

< Ju =l -

which leads to
YO
—— g, ([15:Gx,, — Byx|))
(3, +6,)°

< ”xn - P"2 - "271 - p"2
< ([l = 2l + 120 = 21D 1. - 24l -

Since {x,} and {Z,,} are bounded, we deduce from (278) and
condition (ii) that

(280)

Jim g, (|B,x, - $,Gx,[)) = 0. (281)
From the properties of g,, we have
Jim [|B,x, - S,Gx,[ =0. (282)

Furthermore, y, can also be rewritten as follows:
yn = “nf ('xn) + ﬁn'xn + YHann + 6nSnGxn

(xn) + 6nSnGxn

= ﬁnxn + Yanxn + (an + <S}’l) anf (xn + 6n

= ﬁ?lxi’l + ynBﬂxfl + dnzn’
(283)
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whered, = a, +9J, and Z,, = («, f(x,) +6,S,Gx,)/(«, + 6,).
Utilizing Lemma 11 and the convexity of || - 1%, we have

Iy, - ol
= 1B, (% = )+ (B, = p) + (2, - P
< Bullxa = 21" + vall B, - 2l
+dl1Z, = pI = Bavads (1%, = Bxa|)
= Ballxs = pI* + vl B, — 2l

“Vlf ('Xﬂ) + 8nSnGxn _
a,+9,

2

+d

n

- ﬁnYng3 (”xn - ann")

= Bullxu = 2l + vl Box, — pI

2

a, 6, B
+dn (xn+5n(f(‘xn)_p)+an+6n(SnG'xﬂ p)
- ﬁnYng3 (”Xn - ann")
< ﬁn“xn - p"2 + Yn”xn - p“2
o, 2. % 2
ey | | () pl e 21, G o

= Buvnds (%, = B,x, )
< |l f () = oI+ (Bo+v) I — 21
+ 8,1, = II” = Buyds (1% = Buxal)
= a,|lf (%) = plI* + (1= ,) |, — oI
= Ba¥ags (%, = Bux|)
<a|lf () = oI + %, - ol
= Buvugs (|0 = Bx,)

(284)
which hence implies that
ﬁnyng3 (”xn - ann")
< o, lf (o) = oI + e = I = = I
(285)

< (Xn"f (xn) - p"2 + ("xn - P“ + “yn - P")

X “xn - yn” :
Utilizing (271), conditions (i), (ii), (iv), and the boundedness
of {x,,}, {y,,} and { f(x,,)}, we get

nll,ngog3 (”xn - ann") = 0. (286)
From the properties of g5, we have
Jim %, = Bx,| = 0. (287)
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Thus, from (282) and (287), we get
"xn N SnGxn“ = ”xn - ann"
+ ||ann - S,,Gxn“ — 0 asn— oo.
(288)
That is,
Jim %, = S,Gx,| = 0. (289)

Therefore, from Lemma 12, (273), and (289), it follows that

“xn - an"
< |, = SuGx,|| + 1S,Gx,y = S| + 1S — Sx,|
< %, = SuGx,|| + |G, — x|

+[S,x, = Sx,| — 0 asn — co.
(290)

That is,

lim |x, - Sx,| = 0.

n—00

(291)

Suppose that 3, = f for some fixed 3 € (0,1) such that
a,+ B +7v,+96, =1foralln > 0. Define a mapping Vx =
(1 -6, —60,)Sx + 0,Bx + 0,Gx, where 0,,0, € (0,1) are two
constants with 0, + 0, < 1. Then, by Lemmas 14 and 17, we
have that Fix(V) = Fix(S) n Fix(B) N Fix(G) = F. For each
k > 1, let {p,} be a unique element of C such that

1 1
pe=1f (pi) + (1 - §)Vpk. (292)

From Lemma 13, we conclude that p, — g € Fix(V) = F as
k — o00. Repeating the same arguments as those of (81) in
the proof of Theorem 24, we can conclude that for every », k

Iy — Bowll
< a, | f (x,) - Bpe| + Bx, — Box|
(293)
+ 9, [B.x, — Bpe| + 6, |S,Gx,, — Bpy|
<0, + Bx, = Bp| + (1= B) |, — pil >
where 6, = a,|f(x,) - Bpll + (1 - P)IB,pe — Bpill +

0,18,Gx,,—B,x,|. Sincelim, _, &, = lim, _, IIB,p—Bpill =

lim,_, IS,Gx, — B,x,ll = 0, we know that 6, — 0 as
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n — oo. So, it immediately follows that

01 — Bpxl’

= Iy = Boill” + %1 = 22l
* [2 | = Bpe|l + %01 = 2all]

< (Bl = Bpill + (1= B) I, — pel))?
+0, [2 (Bllx, = Bpel| + (1= B) ||, = pil]) +6,]
%1 = Yall (210 = Boill + 1 = 2]

= Bl = Boel” + (1= B[, — il
+2B.(1 = B) |, = Boell 1% — picll + 7.

< Bllxw = Bpul” + (1= Bl - 2l
+ B(1=B) (I, — Boell + 1, - pil) + 7,

= ﬁ“xn - BPk“Z + (1 - ﬁ) ”xn - pk”2 T T
(294)

where 7, = 6, [2(Bllx,, — Bpi [l + (1= B)llx,, = pill) +6,,1+ 1,4, —
Yull 21y, = Bpell + 641 = yulll = Oasn — oo
For any Banach limit y, from (294), we derive

.Mn”xn - Bpk||2 = /’ln"xnﬂ - Bpk"2 < [’ln“xn - pk"2’ (295)

In addition, note that

I - Gpill

< |lx, - Gx, + Gx,, - Gpi |

< (e, = Gl + 1 = i)’

= s = 2ell” + % = G|

x (2], = pill + 1 = G
(296)

% = Spill”

< |, = Sx, + Sx,, = Spi”

< (e = Sxall + I = pel))”

= e = ell® + Il = S

x (2 “xn - pk" + "xn - an") :

It is easy to see from (273) and (291) that

Aun”xn - (;pk"2 < /’ln“'xn - pkllz’
(297)

Aun”xn - SPk"2 < Mn“xn - Pk"2'
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Utilizing (295) and (297), we deduce that

tall%n = Voul
= p, [|(1 = 6, - 6,) (x,, — Spx)
+6, (x, - Bp) + 6, (x, - Gpy) |
< (1-6, - 6)) 1, = Spiell” + 0144l — Bl
+ Ot %, = Gpiel”

2
< ."ln”xn - pk“ . ( )
298

Repeating the same arguments as those of (99) in the proof
of Theorem 24, we can obtain that

1
st = Pl 2 1, (F (D) = o T (u = 1)) - (299)

Since p, — gq € Fix(V) = Fask — 00, by the uniform
Gateaux differentiability of the norm of X we have

tn (f(q) — 4] (x,—q)) <0. (300)

On the other hand, from (257) and the norm-to-weak”
uniform continuity of J on bounded subsets of X, it follows
that

Jim [(f(q) = a.] (x1 = 9)) = (f (q) - . T (x, —q))| = 0.
(301)

So, utilizing Lemma 18, we deduce from (300) and (301) that

lirrlrlsolip (f@)-aJ(x,—q)) <0, (302)

which together with (271) and the norm-to-weak™ uniform
continuity of J on bounded subsets of X, implies that

limsup (£ (9) - 4. ] (y, - 9)) < 0. (303)

Finally, let us show that x, — gasn — oo. Utilizing
Lemma 8 (i), from (253) and the convexity of || - ||, we get

Iy, —alf
< Jlew, (f () = £ (@) + B (x5 = 9)
1 (Byx, = q) + 0, (8,Gx, — )|
+ 20, (f (9) =T (¥, —9))
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<alf (x,) = £ @I + Bullx, - al’
+ V| Bux, = af* + 8,]18,Gx, — ql|°
+ 20, (f (9) =T (¥, - 9))

< a,plx, —al* + Bullx, - al’
s —al + 8, %, —all’
+20, (f (@) =4 T (yu —q))

= (1=a, (1-p)) %, - ql’
+2a,(f (@)~ T (yu—a))>

(304)
and hence
%1 - al”
< Un"Gxn - ‘1"2 + (1 - On) ”yn - q"2
< anllxn - qHZ + (1 - an)
x [(1=a, (1= p)) %, - al’
+20, (f (@) =T (y,—9)) | (305)

= [1 - (1 - an) Xn (1 _P)] "xn - q"2
+2(1-0,) e, (f(@)-a](y.—q))
= [1 - (1 - 0'n) Xn (1 —P)] "xn - q"2

2(f (@) -9 (y,—q)
1-p '

+(1_O'n)ocn(1_/))

From conditions (i) and (iv), it is easy to see that Zzio(l -
0,)a,(1 — p) = co. Applying Lemma 7 to (305), we infer that
x, — qasn — oo. This completes the proof. O

Corollary 34. Let C be a nonempty closed convex subset of
a uniformly convex Banach space X which has a uniformly
Gateaux differentiable norm. Let I1- be a sunny nonexpansive
retraction from X onto C. Let {p,},°, be a sequence of positive
numbers in (0,b] for some b € (0,1) and A; : C — X§;-
strictly pseudocontractive and &;-strongly accretive with &; +
&; > 1 foreachi = 0,1,.... Define a mapping G; : C — C
byII-(I - M A)x =Gx forallx e Candi =0,1,..., where
1-(&/+E))Q-V(1 - a;)/&) < A; < 1foralli=0,1,.... Let
B, : C — C bethe W-mapping generated by G,,,G,,_,,...,Gy
and p,, Pu_1>--->py- Let Vi C — C be a self-mapping such
that I -V : C — X is {-strictly pseudocontractive and 0-
strongly accretive with @ + { > 1. Let f : C — C bea
contraction with coefficient p € (0, 1). Let {S;};°, be a countable
family of nonexpansive mappings of C into itself such that
F = (N Fix(S)) n Fix(V) n (N3, VI(C, A;)) #0. For
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arbitrarily given x, € C, let {x,} be the sequence generated
by

Xnt1

=0,(1-DI+IV)x,+(1-0,)
X [“nf (xn) + ﬁnxn + Yanxn + ansn ((1_l) I+ZV) xn] >

Vn >0,
(306)

where 1 = ({/(1+0))(1 - V(1 -0)/¢) <1 < 1 and {a,}, {B,},
Vb 16,,}, and {o,} are the sequences in (0, 1) such that o, + 3, +
Y, +6,, =1 for alln > 0. Suppose that the following conditions
hold:

(i) lim =0andy >, &, = 00;

(ii) {y,}, {6,} < [c,d] for some c,d € (0,1);

(111) Z;.lzl(lan_an—1|+Iocn_(xn—1|+|ﬁn_ﬂn—1|+|Yn_)}n—1|+
18, — 0,_11) < o0;

H—)OO(XH

(iv) 0 < liminf, _, B, < limsup,_, B, < land 0 <
lim inf

n—o o0y < limsup, | o, < 1.

Assume that ¥ o2 sup, pllS,x — S, x|l < oo for any bounded
subset D of C and let S be a mapping of C into itself defined
by Sx = lim,,_, .S, x for all x € C and suppose that Fix(S) =
oy Fix(S;). Then, there hold the following:

(I) 1imn—>oo"xn+l - 'x‘rl” = 0’

(IT) the sequence {x,},, converges strongly to some q €
F which is the unique solution of the variational
inequality problem (VIP)

((I-f)aT(g-p)) <0,

Vp e F, (307)

provided 3, = 3 for some fixed 3 € (0, 1).

Proof. In Theorem 33, weput B, =I -V, B, = 0and y; =1

where 1 — ({/(1 +{))(1 - /(1 -6)/{) <1 < 1. Then, GSVI
(13) is equivalent to the VIP of finding x* € C such that

(B;x",J(x=x")) >0, VxeC. (308)
In this case, B; : C — X is {-strictly pseudocontractive
and O-strongly accretive. Repeating the same arguments
as those in the proof of Corollary 25, we can infer that
Fix(V) = VI(C, B;). Accordingly, F = (7, Fix(5;)) n Q N
(N VIS, AY) = (N7 Fix($:) NFix(V) N (N5, VIC, A)),
Gx,=((1-DI+IV)x,, (309)

So, the scheme (251) reduces to (306). Therefore, the desired
result follows from Theorem 33. O

Remark 35. Our Theorems 31and 33 improve, extend, supple-
ment and develop Ceng and Yao’s [10, Theorem 3.2], Cai and
Bu’s [11, Theorem 3.1], Kangtunyakarn’s [38, Theorem 3.1],
and Ceng and Yao's [8, Theorem 3.1], in the following aspects.



(i) The problem of finding a point g € (ﬂ;fo Fix(§;)) N
Q n (N2, VI(C, A))) in our Theorems 31 and 33 is
more general and more subtle than every one of the
problem of finding a point g € (i, Fix(T}) in [10,
Theorem 3.2], the problem of finding a point q €
2, Fix(T;) N Q in [11, Theorem 3.1], the problem of
finding a point q € Fix(S) N Fix(V) n (N, VI(C, A,))
in [38, Theorem 3.1], and the problem of finding a
point g € Fix(T) in [8, Theorem 3.1].

(ii) The iterative scheme in [38, Theorem 3.1] is extended
to develop the iterative scheme (178) of our Theo-
rem 31, and the iterative scheme in [11, Theorem 3.1] is
extended to develop the iterative scheme (251) of our
Theorem 33. Iterative schemes (178) and (181) in our
Theorems 31 and 33 are more advantageous and more
flexible than the iterative scheme of [11, Theorem 3.1]
because they both are one-step iteration schemes and
involve several parameter sequences {a,}, {8}, {y,.}>

{6,}, (and {0,,}).

(iii) Our Theorems 31 and 33 extend and generalize Ceng
and Yao’s [8, Theorem 3.1] from a nonexpansive map-
ping to a countable family of nonexpansive mappings,
and Ceng and Yao's [10, Theorems 3.2] to the setting
of the GSVI (13) and infinitely many VIPs, Kangtun-
yakarn’s [38, Theorem 3.1] from finitely many VIPs to
infinitely many VIPs, from a nonexpansive mapping
to a countable family of nonexpansive mappings and
from a strict pseudocontraction to the GSVI (13). In
the meantime, our Theorems 31 and 33 extend and
generalize Cai and Bu’s [11, Theorem 3.1] to the setting
of infinitely many VIPs.

(iv) The iterative schemes (178) and (251) in our Theorems
31 and 33 are very different from every one in [10,
Theorem 3.2], [11, Theorem 3.1], [38, Theorem 3.1],
and [8, Theorem 3.1] because the mappings G and
T, in [11, Theorem 3.1] and the mapping T in [8,
Theorem 3.1] are replaced with the same composite
mapping S,G in the iterative schemes (42) and (130)
and the mapping W, in [10, Theorem 3.2] is replaced
by B,,.

(v) Cai and Bu’s proof in [11, Theorem 3.1] depends on
the argument techniques in [14], the inequality in 2-
uniformly smooth Banach spaces (see Lemma 4), and
the inequality in smooth and uniform convex Banach
spaces (see Proposition 6). Because the composite
mapping S, G appears in the iterative scheme (178) of
our Theorem 31, the proof of our Theorem 31 depends
on the argument techniques in [14], the inequality in
2-uniformly smooth Banach spaces (see Lemma 4),
the inequality in smooth and uniform convex Banach
spaces (see Proposition 6), the inequalities in uniform
convex Banach spaces (see Lemmas 11 and 15 in
Section 2 of this paper), and the properties of the
W-mapping and the Banach limit (see Lemmas 16,
17, and 18 in Section 2 of this paper). However, the
proof of our Theorem 33 does not depend on the
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argument techniques in [14], the inequality in 2-
uniformly smooth Banach spaces (see Lemma 4), and
the inequality in smooth and uniform convex Banach
spaces (see Proposition 6). It depends on only the
inequalities in uniform convex Banach spaces (see
Lemmas 11 and 15 in Section 2 of this paper) and the
properties of the W-mapping and the Banach limit
(see Lemmas 16-18 in Section 2 of this paper).

(vi) The assumption of the uniformly convex and 2-
uniformly smooth Banach space X in [11, Theo-
rem 3.1] is weakened to the one of the uniformly
convex Banach space X having a uniformly Gateaux
differentiable norm in our Theorem 33. Moreover, the
assumption of the uniformly smooth Banach space
X in [8, Theorem 3.1] is replaced with the one of the
uniformly convex Banach space X having a uniformly
Gateaux differentiable norm in our Theorem 33.
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