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Based on A-stable one-leg methods and linear interpolations, we introduce four algorithms for
solving neutral differential equations with variable delay. A natural question is which algorithm
is better. To answer this question, we analyse the error behavior of the four algorithms and obtain
their error bounds under a one-sided Lipschitz condition and some classical Lipschitz conditions.
After extensively numerically experimenting, we give a positive conclusion.

1. Introduction

In this paper, we focus on establishing convergence properties of one-leg methods for the
numerical solution of the neutral differential equations with variable time delay (NDDEs).
These are equations of the form

vy =fty®),y(n®),y (n®)), tel=[0,T], (1.1)
yt)y=¢t), y@t)=¢'®), tel. =[-1,0], (1.2)

where —7 = infie,7(t), T > 0, T > 0, f and ¢ are complex smooth vector functions, and 7 is
scalar function with 7(t) < t for t € Iy. Variations of (1.1) include equations with multiple
time delays as follows:

v =fty®,ym®), . ...y@nm®),y'(m®),....y' (1)), tel,  (1.3)
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and equations with state-dependent time delay as follows:
y'(®) = fty®),y(mty®)).y (n(ty®))), tel. (14)

The initial-value problems for ordinary differential equations (ODEs) and delay
differential equations (DDEs) are special cases of (1.1)-(1.2).

Neutral delay differential equations has found applications in many areas of science
(see, e.g., [14]). The stability and convergence of numerical methods for NDDEs have drawn
much attention in the last decades. A number of authors have investigated the linear stability
of numerical methods for NDDEs (see, e.g., [5-12]). In 2000, based on a one-sided Lipschitz
condition and some classical Lipschitz conditions, Bellen et al. [13] discussed the contractivity
and asymptotic stability of Runge-Kutta methods for nonlinear NDDEs with special form.
Following this paper, the nonlinear stability of numerical methods for NDDEs of the “Hale’
form” [14, 15] and for NDDEs (1.1) [16-22] has been extensively examined.

On the other hand, as far back as the 1970s, Castleton and Grimm [23] investigated the
convergence of a first-order numerical method for state-dependent delay NDDEs. Jackiewicz
[24-28] and Jackiewicz and Lo [29, 30] investigated the convergence of numerical methods
for more general neutral functional differential equations (NFDEs) which contains problem
(1.1) as a particular case. Enright and Hayashi in [31] investigated the convergence of
continuous Runge-Kutta methods for state-dependent delay NDDEs. Baker [32] and Zennaro
[33] discussed the convergence of numerical methods for NDDEs. Jackiewicz et al. [34]
and Bartoszewski and Kwapisz [35] gave the convergence results of waveform relaxation
methods for NFDEs. Observe that these convergence results were based on the assumption
that the right-hand function f in (1.1) satisfies a classical Lipschitz condition with respect
to the second variable and the error bounds were obtained by using directly the classical
Lipschitz constant. Recently, Wang et al. [36] gave some new error bounds of a class of linear
multi-step methods for the NDDEs (1.1) by means of the one-sided Lipschitz constant; Wang
and Li [37] investigated the convergence of waveform relaxation methods for the NDDEs
(1.1) in which the right-hand function f satisfies a one-sided Lipschitz condition with respect
to the second variable.

The main contribution of this paper is that we introduce four algorithms for solving
NDDE:s (1.1) based on a one-leg method and present their convergence results. To accomplish
this, we in Section 2 consider applying a one-leg method to NDDEs (1.1) and introduce
two NDDEs numerical algorithms based on direct estimation. The convergence of the two
algorithms then is analysized in Section 3. Noting that this class of algorithms may create
some implementation problems, we introduce another two algorithms based on interpolation
and analyze their convergence in Section 4. The application of the four algorithms for NDDEs
is illustrated by means of two examples in Section 5. These numerical results confirm our
theoretical analysis. We end with some concluding remarks in Section 6.

2. One-Leg Methods Discretization

Let h > 0 be a fixed step size, and E be the translation operator Ey, = yu.1. The one-leg k-step
method gives

p(E)yn = hf(0(E)ty,0(E)yn), n=0,1,..., (2.1)
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for ODEs will be said to be determined by “the method (p, 0),” where p and ¢ are defined by
k ' ko
plx) = Z“jx]/ o(x) = Zﬁjx]; lao| + |fo| >0, ax#0, a;, i €R, (2.2)
j=0 j=0

with the additional requirements that p(x) and o(x) are coprime polynomials and
p()=0, PO =o()=1 (2.3)
The application of the method (p, o) to (1.1) yields

P(EYyn = hf (0(E)tn, 0(E)yn, y" (n(0(E)t)), Y (n(0(E))), m=0,1,...,  (24)

where y"(n(c(E)t,)) and Y"(n(c(E)t,)) are approximations to y(n(c(E)t,)) and
y' (n(o(E)ty,)), respectively. For -m < n < 0, y, = ¢(t,). When -t < 5(o(E)t,) < 0,
y((0(E)ta)) = $p(n(o(E)ty, and v/ (n(0(E)t)) = ¢/ ((o(E)t,)); when 0 < n(o(E)ty) < T,
y(n(o(E)t,)) is obtained by a specific interpolation, and y'(1(c(E)t,)) is obtained by a
specific approximation at the point t = n(c(E)t,).

Therefore, the NDDEs method (2.4) is determined completely by the method
(p, o), the interpolation procedure for y"(n(c(E)t,)) and the approximation procedure for

Y"(1(0(E)tn)).

2.1. The First Class of Algorithms Derived from
the Direct Evaluation: OLIDE

Now we consider the different interpolation procedures for y"(17(c(E)t,)) and the different
approximation procedures for Y"((c(E)ty,)). It is well known that any A-stable one-leg
method for ODEs has order of at most 2. So we can use the linear interpolation procedure
for y"(7(c(E)t,)). Let us define

12w =t, V) =n),...,q00 = n(n""” (t)>, S (2.5)
and suppose that
1 (o(E)t) = (m)) + 67 ), (2.6)

where mg )is an integer such thatt o > -7, 63 ) e [0,1). Then define

6 Y1 + (1=60)y,0, L0 +651>0,

m

where y; = ¢(jh) for j <0.

2.7)
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In approximating nonneutral DDEs with constant delay, another interpolation pro-

cedure is used to approximate y"(n(c(E)t,)) (see, e.g., [38]). Slightly modifying this inter-
polation procedure, we have

; =@ =@ )
yh (Tl()((j(E)i’j)> = 6]~ G(E)yj—ﬁ;i)ﬂ + (1 - 6]- >G(E)yj—ﬁ;i)’ 0<j<n, (2.8)
provided

o(E); -1 (0(E),) = (m}@ - 5]@>h, (2.9)

where ﬁ](.i) > 0is an integer, 3](-1) € [0,1).

For Y"(17(c(E)t,)), we first consider the direct evaluation:

Y (' @(B)t) = f (0 (@(E)ta), ¥ (1 (0 (ED) ),

(2.10)
y" (10BNt ), Y (™D (0 (E)t) ) ).

Then we can obtain two algorithms for solving NDDEs: one is (2.4)—(2.7)—(2.10), which is
simply denoted by OLIDE(I), the other is (2.4)-(2.8)—(2.10), which is simply denoted by
OLIDE(II). In [18], Wang et al. have shown that the algorithm OLIDE(II) have better stability
properties than the algorithm OLIDE(I) for DDEs with constant delay. It is interesting to
prove that the methods OLIDE(I) and OLIDE(II) have the same convergence properties.

3. Convergence Analysis of Algorithms OLIDE
3.1. A General Assumption

In the current section, we shall consider the convergence of the algorithms OLIDE for NDDEs
(1.1)-(1.2). To do this, we always make the following assumptions unless otherwise stated:

(+#1) There exist constants, a, 9, , and y for which the following inequalities hold:

(3.1)

Re(y1 -y, f (ty1,u,0) = f(L,y2,1,0)) < ally - va|°
”f(t/y/ulrvl) - f(t/y/ MZ,UZ)” < ﬁHul - uZH + Y”'Ul - UZHI (32)
£ty u, f(nt), w1, 0,w)) = f(ty, w2, f(nt), w2, v,w)) || < Qllur — w2, (3.3)

7

where (-,-) is the inner product in complex Euclid space with the corresponding
norm || - |.

(#42) ap = max{a,0} and ¢/ (1 - y) are of moderate size.
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(#3) We assume the existence, uniqueness, and stability of solutions to the
mathematical problems under consideration. For example, it is required that y < 1
(see, e.g., [31]). This restriction ensures that when 7(f) = t, the matrix

of
[I - a_y'] ley@ .y o (3.4)

is full rank so that y'(t) is uniquely determined as a function of ¢ and y(t) at this
point.

(#4) The unique true solution y(t) of problem (1.1)-(1.2) is also sufficiently
differentiable on the interval [-7,T], and all its derivatives used later are
continuous and satisfy

<M, -T<t<T. (3.5)

diy(t)
At

Remarks. (1) In general, the regularity assumption («#4) does not hold for NDDEs (1.1)-(1.2).
Even if the functions f and ¢ are sufficiently smooth, the solution has low regularity at the
discontinuity points (see, e.g., [11]). This problem has attracted some researchers’ attention.
Some approaches to handling discontinuities have been proposed, for example, discontinuity
tracking [39, 40], discontinuity detection [27, 30, 31, 41, 42], perturbing the initial function
[43]. Since the main purpose of this paper is to present some convergence results but not to
discuss the treatment of discontinuities, we will think that the regularity assumption (<#4)
holds.

(2) The regularity assumption («##4) does not hold for general NDDEs (1.1)-(1.2) but
holds for NDDEs (1.1)-(1.2) with proportional delay, that is, r7(t) = gt, g € (0.1), also holds
for NDDEs (1.1)-(1.2) with #(t) = £, that is, implicit ODEs.

(3) For the case that

C1 the function 7(t) satisfies such conditions that we can divide the time interval I
into some subintervals Iy = [¢k-1,&k] for k > 1, where & = 0 and ¢k, is the unique solution
of 17(¢) = ¢k, then the analysis of the error behaviour of the solutions can be done interval-
by-interval since the regularity assumption (+#4) generally holds on each subinterval I;. For
example, the function 7(t) satisfies (C1) if it is continuous and increasing and there exists a
positive constant 7y such that 7(t) =t —7(t) > 7o, for all t € Iy,

The aim of this section is to derive theoretical estimates for the errors generated by the
algorithms OLIDE(I) and OLIDE(II). To obtain the theoretical results, we need the following
definition.

Definition 3.1. The one-leg method (p, o) with two approximation procedures is said to be
EB-convergent of order p if this method when applied to any given problem (1.1) satisfying
the assumptions (<#1)—(<#4) with initial values yo, y1, ..., k-1, produces an approximation
{yn}, and the global error satisfies a bound of the form

ly(tn) = ya|| < C(tn) (h’” + Oglg_(l”y(ti) - yi”), n>k, he(0,h], (3.6)
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where the function C(t) and the maximum step-size hy depend only on the method, some of
the bounds M;, the parameters a and ¢/ (1 - y).

Proposition 3.2. EB-convergence of the method (2.4) implies B-convergence of the method (p, o).

Remark 3.3. For nonneutral DDEs, Huang et al. [44] introduced the D-convergence of one-leg
methods. Obviously, when an EB-convergent NDDEs method is applied to nonneutral DDEs,
itis D-convergent.

3.2. Convergence Analysis of OLIDE(I)

First, we consider the convergence of the algorithm OLIDE(I). For this purpose, let us
consider

p(E)Yn + axen, = hf <0'(E)tn,0'(E)yn + ﬁken,yh(q(o(E)tn)),Yh (TI(G(E)tn))>, n=0,1,...,

(3.7)
where

Yn=y(tn) + Clhzy"(tn)/ (3.8)

. y(nP(o(E)tn)), if n9(0(E)ty) < tusk-1,

7'(neEr) =17 o . v

O (]/n+k + en) + (1 -6y >y(tn+k—1)/ if tpapo1 < ﬂ(l)(G(E)tn) < tusk,
(3.9)
¥ (19 0(®0) = £ (1@ E), 7 (17 0B,

(3.10)

7 (10 @E)), T (1 0(®)) ),
2
15 . ko1&
€= _§Z<ﬂi - %“1’)]2 - Z_i]%]ﬁj *3 <j§]ﬂj> ) (3.11)

It can be seen that for n > 0, when the step-size h satisfies certain conditions, e, is defined
completely by (3.7).

For any given k x k real symmetric positive definite matrix G = [g;;], the norm || - || is
defined as

1/2
k
Ul = <Zgij<ui/ uj>> , YU = [ug,u,...,us] € CNk. (3.12)

ij=1
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Lemma 3.4. If the method (p, o) is A-stable, then the numerical solution produced by the algorithm
OLIDE(]) satisfies

lennlle < (1+ dﬁ)g}%llsillzc +doh® + dsh 7 eul?, n=0,1,..., he(0hl, (3.13)

where e, = [(Yn — Tn)" ) Yns1 = Jns1) "+ o) Yot — Frke1) 17

Proof. Since A-stability is equivalent to G-stability (see [45]), it follows from the definition of
G-stability that there exists a k x k real symmetric positive definite matrix G such that for any
real sequence {ai)e,

ATGA; - AjGAq < 20(E)aop(E)ao, (3.14)

where A; = (a;, ait1, ..., ai+k_1)T (i =0,1). Therefore, we can easily obtain (see [45, 46])
lensa Iz = llenlls < 2Re((E) (Yn = Fn), P(E) (Y = Jn))- (3.15)

Write €41 = [(Yn+1— ],7,,+1)T, oo, (Ynak-1— ymk,l)T, (Ynik = Ynsk — en)T]T, and note the difference
between it and €,;. Then use the argument technique above to obtain

Ens1llG < llenlls +2Re(o(E) (Yn — Un) — Pren, p(E) (Yn — ) — axen)- (3.16)

By means of condition (3.1), it follows from (3.16) that

(el < eal + 26e( o (E) (3 - ) = Pren,
F (0Bt 0By, v (n(o(E)t)), Y" (n(0 (E))) )
~F(o®t, o7+ Pren, 7 (1 (E), T (MG EN)) ) )
< lleall + 20 |allo(E) (v = 52) = Breall* + 0B (v = ) = el

X

f(0(E)tn, 0(E)Z + Prew, y" (n(o(E)E)), Y (n(o (E)t)) )

g <"(E)t""’(E)??" +ﬁk@nr37h<'1<0<E>tn>)fYh(n(o(E)tn)))(‘l]ﬁ)
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If there exists a positive integer [ such that ) (c(E)t,) < 0, then in view of y"(7? (c(E)t,)) -
7" (" (c(E)ty)) = 0, we have

|7 (et 0@ + pren v (i 1), Yo @11
(0B, 0B + Pren 7 (10BN, ¥ (1 (EN) |

<o|lv*(no®Brtn) - 7" (e Ert) |
(3.18)

+y \f(n(a(E)tn»yh(n(o(E)tn)),yh(n@’(o(E)tn)),Yh (n?(eBEt))
- (1B, 7 (e ®)1), 7 (17 (0(B1)), ¥ (12 (0(E) |

< pomax |y (10 @@ ) -5 (1 e Ep) |

Conversely, if for all I, n¥ (¢(E)t,) > 0, we similarly have (3.18). In short, it follows from
(3.16) that

Ens1llg < lleallE + 2R [a||o<E><yn ~ Tn) = Prenl|” + [|0(E) (Y = Jn) — Pren]|

(3.19)
Q n(, (i) _=h( @)
X Yng.lzalxuy (n@E)t) 7" (1@ Et) | |-
As an important step toward the proof of this lemma, we show that
~ _ 20h
|Enlle < llenls + c2hllo(E) (v = Fu) = Prenl” + 5 fY (1+ [c1])*M3R*
(3.20)
+ 2 o Nyt = gk = el _max -l
1 _ Y n n n 4 1glgn+k_1 1 1 4
where
0, 2a+ = <0,
cr = 0 0 (3.21)
20+ ——, 2a+ ——>0.
1-v 1-v

For this purpose, we consider the following two cases successively.
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Case 1. tyik-1 < D (0(E)ty) < tysk. In this case, from (2.7) and (3.9) we have

o (09 @B)t)) =7 (0 0Byt ) |

< (1-41)

< <1 - 59) [”yer—l — Ynek1|| + |C1|M2h2] + 65 | Ynsk = Tk — €|

Ynik-1 — yh (tnik-1) || + 65? ”yn+k - y,ﬁ.k - ey ”
(3.22)

< max{ ||yn+k—l - gn+k—l ”r ”]/n+k - ]7n+k - en” } + IcllMth‘
Case 2. 1V (c(E)t,) < tysk—1. For this case, similarly, it follows from (2.7) and (3.9) that

v (0@ E)t) - 7" (0@ E)t) |
(-8 ) 85~ +50)
<(1-st)
6 Ty i1 + (1= 68 ) T = ¥ (b + 641) n

< max{|

Yn-m) = ?nfmff’ || + 55:) Yn-mP+1~ gn—ms)ﬂ (3.23)

+

Yiem®1 ™ Ynem® 41

AR ] b+ (14 fer ) Mah2

Substituting (3.22) and (3.23) into (3.19), and using the Cauchy inequality yields (3.20). From
(3.20) one further gets

g, - 20h
Eills < llenlls + c2l|0(E) (v = ) = Preall” + 1 S+ fea)* M3t
20h (3.24)
Q e 5
T T o e + ————max||g||g,
A (1=7) IEnvallc AS (1-7) OSiSn” e

where )Lgin denotes the minimum eigenvalues of the matrix G. On the other hand, it is easy

to verify that there exists a constant d4 such that

2

lo(E) (v = 7a) |I” =

k
Zﬁj (Ynsj = Ynsj)
70 (3.25)

& _ d
< ds 3y = G < 16 [lenliE + enanliE]-

j=0 min
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Thus, we get

0(E) (Y — 9) — Preul|” < 2||0(E) (v — 9u) |I” + 28} lewll®
2d,
)LG

min

(3.26)

2 2 2 2
[lenlie + lleweallz] + 28 lex”

Substituting the above inequality into (3.24) yields

_ 2¢odsh 2codsh
IEnallg < (1 = >||sn||é o llennlle + 2cafillenl?

min min

20h
2 e 027

20h 20h

2
+ m”«%ﬂ”c + mo«rt”&“c

For any given ¢y € (0,1), we letc; = (1 - co)AC

in/ 2. Then for (¢/(1 - y))h < ¢, the above
inequality leads to

~ 2 1 202d4h 2 2C2d4
€ 1+ £ —le
lenallc < T oh/AC (1= 7)) [< I llenllc + 2. lenllz

2
+2cofihllenl* + 7

h5
(’_Y (1+ |c1|>2M§]

20h ax|leil2 (3.28)
mm(1 Y) 2ph0<1<n €illg
2crdsh
< (1+ d5h)51<12X||6i||2c + L” ensllE
sisn 0 min
2C2ﬁ 2 h5
lealP + —— (1 + |eul)*M

co(1-7)

where ds = 2¢ody/ CO)‘Sun

+40/coAS, (1 -7). Noting that

lensillE < NEnalle + Asaxllenl® + 2\ AGaxllenll|Ennll
(3.29)

~ 1
< @ wlEaly + (145 )Audenl?,
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where \$,, denotes the maximum eigenvalues of the matrix G, we have

max

2C2d4
lenallE < (1+h) [(1 + dsh){)fslgn<||5i||2c O)L—mm” ennllg
2C2ﬂ 20h°
= Jlewl” + ﬁ(l * |c1|>2M§] (3:30)

« (14 %)Aﬁaxnennz.

Now for any given ¢y € (0,1), when (4cody/ CQ.)Lern)h < 1 - ¢y, the above inequality leads to
(3.13) with

1- 1- AC
hl min ( Y)CZI ( CO)CO min ) dl _ 1 +~2d5 + 4crdy
4cody Co CoCQ)me
(3.31)
PR le1])> M2 p 4c2ﬁk 228,
2 (1 - Y) E()C() ! e CoCo Co ’
This completes the proof of this lemma. O

Compared to the nonneutral DDEs with a constant delay considered in [38, 44], the
problems considered in this paper are more complex such that a series of new difficulties
need to be overcome. Nevertheless, we note that some basic proof ideas are related to the
ones used in [38, 44].

Lemma 3.5. If the method (p, o) is A-stable, then there exist two constants de and hy, which depend
only on the method, some of the bounds M;, and the parameters o and /(1 —y), such that

leall < dsh?*', he (0,h], n=0,1,..., (3.32)

where p is the consistent order in the classical sense, p = 1,2.

Proof. The idea is a generalization of that used in [38, 44]. The A-stability of the method (p, o)
implies that fx /ax > 0, and it is consistent of order p = 1,2 in the classical sense (see [45, 46]).
Consider the following scheme:

k-1

y(o(E)t,JzZ(ﬂj—g )yn+]+ﬁ hy' (o(E)t,) + R, (3.33)

j=0

p(E)¥ = hy' (0(E)t,) + R\, (3.34)
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By Taylor expansion, we can assert that there exists constant c3 such that

Rgn) < C3h3,
(3.35)
Rén) < C3hp+1.

From (3.7) and (3.33), it is easy to obtain

y(G(E)tn) - G(E)gn - ﬂken

= Ri") + ﬁ—lih [y'(o(E)tn) - f<o(E)tn,o(E)]7n +,Bken,yh(q(o(E)tn)),l_/h(q(o(E)tn))>].
(3.36)

If 1 (0 (E)tn) € (tnsk-1,tnsk], by Taylor expansion, we have
| (19 @ (E)ta)) = 6 Gnor + ) = (1= 68 )y (tnen1) | < cal® Mz + flenll (3.37)

This inequality and (3.36) imply that

ly(@(E)tn) = 0(E)fn — Brenl|” < fj—ihllyw(E)tn) ~ 0 (E) ¥ - Preal|

x |ally (@ (E)tn) = 0(E)Gn - Breal| + —— (cah® Mo + ||en||>]

Q
-y
+ Ry (@(B)ta) = 0 (E) G — rea|
(3.38)

For any given ¢y € (0,1), we let ¢3 = (1 — ¢o)ax/Pk. Then for ah < ¢35, the above inequality
leads to

1Y) - o(E)n— Preal| < = [M (ca®Ma + leal)) + | R

Co[ax(1-7y) (339)
h
<ot —PR o
axco(1-)
where
oo | ProesMa | (3.40)
co|ar(1-7v)
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Substitute (3.39) into (3.36) to obtain

[ @Ert) -t (B0, 015 + pren 7 (ate ), ¥ o E1) )|

Ak ~ Ak || »(n)
< 5o ly @B = o) preal| + || (3.41)
< 2K (e + )l + _Q—h||en||.

Pr co(1-y)

On the other hand, since

axe, = hf <o(E)t,,,o(E)gn + pken,yh(n(o(E)tn)),?"(q(o(E)tn))> — hy'(6(E)t,) - R\”

(3.42)
it follows from (3.41) that
@llenll < 5 (s + eIl + =2 [lenl| + cshP*. (3.43)
Pr co(l-y)
For any given ¢y € (0,1), let
1-7y)(1-¢)c
min{hl, (1-7y)( - Co)Colak| }, fa<o,
hy = (3.44)
1-y)(1-&)colax| ©
min{hl, (-7 C0)60|ak|,c—3}, if a > 0.
o) a
Then the required inequality (3.32) follows from (3.43), where
1 c3+Cs C3
dg = — +— ). (3.45)
° Co< | Br| |“k|>
This completes the proof of the lemma. O

Lemma 3.4, together with Lemma 3.5, implies the following theorem.

Theorem 3.6. The algorithm OLIDE(]) extended by the method (p, o) is EB-convergent of order p if
and only if the method (p, o) is A-stable and consistent of order p in the classical sense, wherep = 1,2.

Proof. Firstly, we observe that the EB-convergence of order p of the method OLIDE(I) implies
that the method (p, 0) is B-convergent of order p, and it is A-stable and consistent of order p
in the classical sense for ODEs, p = 1 or 2 (see, e.g., [38]).
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On the other hand, it follows from Lemmas 3.4 and 3.5 that

||Sn+1||é < (1 + dlh)gl;lfgi”‘glné + dzhs + d3d6h2p+1/ n= 0/ 1/~ ey h € (Or hZ] (346)

which implies that

omax, lenalle < (1+ dlh)max||gl||c +doh° + dsdeh™!, n=0,1,..., he (0,h]. (3.47)

By induction, we have
lealle < max|lelig < (1+dih)" gl
0<i<n

+ <d2h5 + d3d6h27"+1> [1 +(A+dih)+-+(1+ dlh)"‘l]

(3.48)
< (1+dh)" [||so||é +n(doh® + d3d6h2’”+1>]
< expldity) [lleolE + tn(da + dsdde) |
and therefore
. exp(dit,
o 3l < 3—)[ Syl <dz+d3d6>h21 649
min j=0

Consequently, the following holds:

lyn =yt || = |yn = Fn + 70— y () ||

0<i<k-1 )LG

e o t,(dy +dzd
< lerlMah” + [ T( max ||y; — y(t:) || + |C1|M2h2> + M ]

(3.50)

which implies the algorithm OLIDE(I) is EB-convergent of order p, p = 1 or 2. The proof of
Theorem 3.6 is completed. O

In [44], Huang et al. proved that A-stable one-leg methods with the interpolation (2.7)
for constant-delay DDEs are D-convergent under a condition that q(i) (0(E)ty) < tpik-1- Asa
special case, we have the following corollary.

Corollary 3.7. A one-leg method (p, o) with the interpolation (2.7) for DDEs with any variable delay
is D-convergent of order p if and only if the method (p, o) is A-stable and consistent of order p in the
classical sense, where p = 1,2.
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3.3. Convergence Analysis of OLIDE(II)

In [18], Wang et al. have shown that the algorithm OLIDE(II) has better stability properties
than the algorithm OLIDE(I) for DDEs with constant delay. Here we will prove that the
algorithms OLIDE(II) and OLIDE(I) have the same convergence properties. To obtain the
convergence result of the algorithm OLIDE(II), we also consider (3.7). But in this case,
' (9 (c(E)t,)) (i=1,2,...) are determined by

P (Fnsk + €n) + I;;:ﬁj]/ (tnsj),

if tukr <O (0 (E)tn) < tek, 7, =0,
&, I:ﬂk(gmk +en) + gﬁjy(tnﬂ-)]

+ (1 - gs)>§)ﬁfy(tn—l+j),

if tyrk1 < O(O(E)tn) < buok, MY =1,
| v(n9(c(E)t,)), other case.

7' (17 (0(E)t) = 1 (3.51)

When 70 (6(E)t,) < tix_1, we have
v (0 @®)t)) = 7" (n® (Bt )
= [[(1-8" )o@, 5. 0B - v (1 (0B |
< (1-30) o) (tump = Tt )| +57
(1-5.) o5, + 50 B, s - (17 (0B |

< (1 —55)>§|ﬁj|

o (a5

+

(3.52)

Ynm®+j ~ Yn-msj

yn—ﬁi,i)+j+1 - yn—ﬁif)+j+1

—() &
+6, > |6l
=0

+

7

. k Nk
=) S =@ S G
<1 -6, )Zﬁan—ﬁff)ﬂ' +0, Zﬁan—ﬁ;"H—jﬂ -y (71( )(U(E)t")>
py =0

where

Y; = f<ti,yi,yh(q(t,-)),?h(rl(t,-))), i=1,2,...,n+k-1. (3.53)
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By Taylor expansion, there exist constants ¢; and h3 such that

v (19 @E)t) - 7" (Bt |
(3.54)

<1 | max
0<j<k+1

Ynejoin® = Y ” +h|, he(0hs]

Noting that for t,.x-1 < 77(0(E)t,) <tk we have similar inequality, we find that the proof of
the following theorem is similar to that of Theorem 3.6.

Theorem 3.8. The algorithm OLIDE(II) extended by the method (p, o) is EB-convergent of order p if
and only if the method (p, o) is A-stable and consistent of order p in the classical sense, wherep = 1,2.

It should be pointed out that Huang et al. [38] proved that A-stable one-leg methods
with the interpolation (2.8) for constant-delay DDEs are D-convergent. As a special case,
in this paper we obtain the convergence result of A-stable one-leg methods with the
interpolation (2.8) for DDEs with any variable delay.

Since the algorithm OLIDE(II) has better stability properties than the algorithm
OLIDE(I) [18] and they have the same convergence properties, we believe that the algorithm
OLIDE(II) is more effective than the algorithm OLIDE(I) for solving delay problem.

Although we can show theoretically the convergence of the algorithms OLIDE for
solving NDDEs with any variable delay, in practical implementation, these algorithms are
generally expensive and will create a serious storage problem since they always require to
trace back the recursion until the initial interval. So for general variable delay NDDEs, we
need other algorithms, which are based on interpolation.

4. The Second Class of Algorithms Derived from
the Interpolation: OLIIT

In this section, for Y"(17(c(E)t,)) we consider the consistent interpolation schemes with for
yh (n(o(E)ty)). Firstly, if (2.6) holds, the consistent interpolation with (2.7) is

. 59 Ym(i) +(1- 5,(1i) Ym(i), tm(i) + 5,(1i)h >0,
Yh <Tl(1) (O(E)tn)> = , n +1 (l)< > n n 0 (41)
¢ (0 +670), to+6h<0,

where Y; is computed by the following formula:
Y; = £ (v, 9" (n(t)), Y (n())). (42)

Of course, when j < 0, Y; is determined by Y; = ¢'(jh). The algorithm (2.4)-(2.7)-(4.1)
is simply denoted by OLIT(I). Obviously, when the methods OLIDE(I) and OLIIT(I) are
applied to non-neutral DDEs, they are identical and have been used in [11].
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Given (2.9), the corresponding interpolation scheme with (2.8) is
Y (19 (o(B)y)) = 5 G(E)Y. —o. +(1-8")o(E)Y. -0 4.3)

Similarly, Y; is produced by (4.2) and Y; = ¢'(jh) for j < 0. The algorithm (2.4)—-(2.8)—(4.3) is
denoted by OLIIT(II).

Now we discuss the convergence of OLIIT(I) and OLIT(II). In order to do this, the
condition (3.3) will be replaced by the following;:

| f(t,y1,u,0) = f(t,y2,u,0)|| < L||y1 - y2|- (4.4)

If we allow the error bound to depend on (f+yL)/(1-7), we can also obtain the convergence
results.

4.1. Convergence Analysis of OLIIT(I)

Below, we establish the convergence result of the algorithm OLIIT(I). To accomplish this, we
need to consider (3.7) with ?h (19 (c(E)t,)) defined by the following formula:

(1@ if 1@
—h, y' (1" (c(E)tn)), if (o (E)tn) < tnik-1,
Y' (1 @(B)t) = (SA : o o (4.5)
6nZ Yok + <1 - 6n1 >y,(tn+k—1)/ if tyiko1 < ﬂ(l)(o(E)tn) < tusk,
where
S A . —h
Y‘r1+k = f<tn+k/ Yn+k T €n, yh (ﬂ(tn+k))/Y (ﬂ(tn+k))>- (46)

Then we have the following lemma.

Lemma 4.1. If the method (p, o) is A-stable, then the numerical solution produced by the algorithm
OLIIT(I) satisfies

lensills < (1 + dlh)gr}%nginé +doh® + dshYea|?, n=0,1,..., he (0,h]. (4.7)

Here the constants di, dy, ds, and hy depend on the method (p, o), a, (B + yL)/(1 —y), and bounds
M; for certain derivatives of the true solution y(t).
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Proof. Similar to the proof of Lemma 3.4, we have

lEnell& < lleullE + 20 |allo(E) (Yn = Fu) = Prenl|* + |0 (E) (Y = Fu) ~ Pren|

< (Bl tato®ta) -7 (o Bt 43)

||[Y (e B)t) - Y (n(o(E)t))

)

If 5(o(E)ty) < tyek-1, it follows from (2.7) and (4.5) that

Bl|y" (1 E)n) -7 (e Byt) || + [ Y (@ (Btn)) - ¥ (n(@(E)t)

= )| (1= 80+ 6y, ~ ¥ (MO (EN)
sy (180 )Y + 8,00 ¥ (10 (E)t)
T P
+y(1-60)

< (ﬁ + YL) [(1 - 6511)> |ym£,” - ?m;” + 57(11) “ym;pﬂ - gms)ﬂ
v (Bl () - (1)) | (1)) - (o))
v (Bl () -7 (1)) 1 () -V (i)

p+yL oy PHYL 2
Ty 1B v = wll+ T (Ll Mo

]/mill)+1 - ymsll)+1 + ﬁ(l + |C1|)M2h2

+yL(1 + |c1|) My ?

|Ym511) - ?mﬁ) || + Yﬁill)

Ym;l)Jr1 -Y o

my, +1

+(1+ |c1|)M2h2]

<

(4.9)

If tyik-1 £ n(o(E)ty) < tpek, then from (2.7) and (4.5) we have

Blly" (10 (B)t) - 7" (oY) || + || Y (n(0(B)t)) - Y (n(o (E)t)
=p(1-6")

+ y(l - 6511))

Y

Ynik-1— yh(tm—k—l) || + ﬁ6£ll) ||]/n+k ~ Yn+k — €n ”

—h ~
Yn+k—1 -Y (tn+k—1) + Yﬁill) Yn+k - Yn+k
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< B(1=6) k1 = Gt || + BA+ ea) Mak? + 6 | Yok = Fuor e

+y(1 - 621)>|

p+yL - -
< B max{ v 3l o= i = el +

Yn+k - Yn+k

Yokt = Youkot || + LA+ ler) Mah? + y6)

+yL
ﬂl _YY (1 + |er) Mah?.

(4.10)

Consequently, we have a similar inequality to (3.20). The remaining part of this proof is
analogous with that of Lemma 3.4, and we omit it here. This completes the proof. O

Similarly, we can give the same lemma as Lemma 3.5 and obtain the following
theorem.

Theorem 4.2. The algorithm OLIIT(I) extended by the method (p, o) is convergent of order p if and
only if the method (p, o) is A-stable and consistent of order p in the classical sense, where p = 1,2.

4.2. Convergence Analysis of OLIIT(II)

In this subsection, we establish the convergence result of the algorithm OLIIT(II).

Theorem 4.3. The algorithm OLIIT(II) extended by the method (p, o) is convergent of order p if and
only if the method (p, o) is A-stable and consistent of order p in the classical sense, where p = 1,2.

There is no essential difference between the proofs of the previous three theorems and
the proof of this theorem, and therefore we omit it here.

We conclude this section with a few remarks about our results.

Our first remark is that if we allow the error bound to depend on (f +yL)/(1 —y), the
algorithms OLIDE(I) and OLIDE(II) are also convergent. Moreover, since ¢ < f+yL, we have
reason to believe that the algorithms OLIDE(I) and OLIDE(II) whose error bounds depend
on ag and ¢/ (1 —y) are more efficient than the algorithms OLIIT(I) and OLIIT(II) whose error
bounds depend on ag and (f+yL)/(1 —-y).

Second, a key property of NDDEs is that its solution does not possess the smoothing
property that the solution becomes smoother with increasing values of ¢ (see, [1]), that is, if

¢'(to) = f(to, p(to), p(n(to)), ¢’ (n(to))) (4.11)

does not hold, the solution to NFDEs will in general have a discontinuous derivative at a
finite set of points of discontinuity of the first kind. Our results cannot be applied to this
case, but they would provide better insight to numerical researchers in the field of numerical
methods for solving NDDEs. On the other hand, for the problem which satisfies the condition
(C1), the convergence analysis of the four algorithms can be done interval-by-interval if its
true solution is sufficiently differentiable on each subinterval I.
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5. Numerical Experiments

In this section in order to illustrate the one-leg methods (2.4) for solving the NDDEs (1.1)-
(1.2) we will consider two examples.

5.1. Example 1: A Test Equation

First of all, we consider a simple test equation

y(t) =aly®t)-g®)] +g' ) +b[y(t-7) - g(t - 7)]
+cly't-1)-g'(t-1)], te][0,10], (5.1)

y() =g®), te[-7,0]

which is a modification of a test equation for stiff ODEs (see, e.g., [47, 48]), where T = 1,
g : R — Ris a given smooth function and a,b, and c are given real constants. Its exact
solution is y(t) = g(t). Now let us take a = —108, b =0.9-10%, ¢ = 0.9, and g(t) = sin(t). Then
a=-10%=09-10% y = 0.9, and ¢ = 0. Observe that when the constant coefficient linear
NDDE (5.1) is discretized on a constrained mesh, thatis, h = 0.1, h = 0.01, and h = 0.001, the
four algorithms, OLIDE(I), OLIT(I), OLIDE(II), and OLIT(II), extended by the midpoint
rule are identical. The same conclusion holds for the algorithms extended by second-order
backward differentiation formula (BDF2). So we consider only applying the algorithms
OLIDE(I) extended by the midpoint rule (OLIDE(I)-MP)

yn+1:yn+hf<tn+%hr%>/ nzorlr'-' (52)

and by second-order backward differentiation formula (OLIDE(I)-BDF2)
4 1 2
Yne2 = gyn+1 - gyn + ghf(tn+2/ yn+2)/ n=0,1,... (53)

to the problem (5.1). Table 1 shows the numerical errors at t = 10.
Note that for this problem, the two algorithms both are convergent of order 2 and the
algorithm OLIDE(I)-BDEF2 is more effective than the algorithm OLIDE(I)-MP.

5.2. Example 2: A Partial Functional Differential Equation

The next problem is defined for ¢ € [0,10] and x € [0, 1], as follows:

2
%u(t, x) = a(t)%u(t, x) +b(t)u(n(t), x) + c(t)%u(q(t),x) +g(t, x). (5.4)
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Table 1: The numerical errors at ¢ = 10 when the algorithm OLIDE(I) is applied to the problem (5.1).

h OLIDE(I)-MP OLIDE(I)-BDF2
0.1 6.807355¢ — 004 2.922906e — 011
0.01 6.800335¢ — 006 2.811085¢ — 013
0.001 6.800264e — 008 2.775558e — 015

Table 2: The errors € at t = 10 when the algorithms are applied to the problem (5.6) with the coefficients
group I, where 7(t) = 1.

h OLIDE-MP OLIIT-MP
N, =10 N, =100 N, =10 N, =100
0.1 2.804687¢ - 008 2.795105e - 008 2.808233e - 008 2.798658e — 008
0.01 2.802893e — 010 2.793375e — 010 2.806421e - 010 2.796910e — 010
0.001 2.802876e — 012 2.793359¢e — 012 2.806405e — 012 2.796895e — 012

The function g(t, x) and the initial and boundary values are selected in such a way that the
exact solution becomes

u(t,x) = <x - x2> exp(—t). (5.5)

After application of the numerical method of lines, we obtain the following neutral-delay
differential equations of the form

Ui (t) — Zui(t) + Ui (t)
Ax?

u;(t) = a(t) +btui(n(t)) + c()ui(nt)) + gi(t), te[0,10],

uo(t) =un, (t) =0, te€0,10], (5.6)

u;i(t) =iAx(1 —iAx)exp(-t), t<0,i=1,2,...,Ny—-1,

where Ax is the spatial step, N, is a natural number such that AxN, = 1, x; = iAx, i =
0,1,2,...,Ny, gi(t) = g(t,x;), and u;(t) is meant to approximate the solution of (5.4) at the
point (¢, x;).

We take Ax = 0.1 or Ax = 0.01 for the numerical method of lines and use the midpoint
rule connecting the different interpolation approximations for the numerical integration of
the problem (5.6).

For the purpose of comparison, we consider three groups of coefficients as follows:

Coefficient I: a(t) = sin’t, b(t) = 0, c(t) = —0.0001;
Coefficient II: a(t) = sin’t, b(t) = 0, c(t) = -0.9;
Coefficient III: a(t) = 100sin’t, b(t) = 0, c(t) = —0.9.
It is easy to verify that @ = —ar’mingo101a(t), L = 4N2maxiep01a(t), f = maxie[o10)b(t),

Y = maxe[o,101/c(t)], and ¢ = 4N§maxt€[orlo] {a(t)|c(t)|}. Then only for coefficients I, ¢/ (1 - y)
or (B+vyL)/(1-7y) is of moderate size.
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Table 3: The errors € at t = 10 when the algorithms are applied to the problem (5.6) with the coefficients
group II, where 7(t) = 1.

h OLIDE-MP OLIIT-MP

N, =10 N, =100 N, =10 N, =100
0.1 3.500122e - 007 3.433799¢ — 007 3.345386¢ — 006 5.307093e — 002
0.01 2.658399¢ — 009 2.575017e — 009 3.215464e — 008 3.198151e — 008
0.001 2.649853e — 011 2.566321e — 011 3.214185e — 010 3.196886¢e — 010

Table 4: The errors € at t = 10 when the algorithms are applied to the problem (5.6) with the coefficients
group III, where 7(t) = 1.

h OLIDE-MP OLIIT-MP
N, =10 N, =100 N, =10 N, =100
0.1 1.932937e — 006 2.085638e — 006 5.303484¢ + 000 5.282569¢ + 001
0.01 1.432539¢ — 010 1.432852¢ — 010 2.926272e — 010 9.189176e — 004
0.001 1.429940e — 012 1.429875e — 012 2.938189¢ — 012 2.941581e — 012
Let
= :(10) — (10, iA
€ 1§ggg§_1lu1( ) —u(10,iAx)| (5.7)

denote the error of an algorithm when applied to problem (5.6).

(a) Constant Delay Problem

First of all, we consider the problem (5.6) with a constant delay 7(t) = t — n(t) = 1. When
we choose the step-sizes h = 0.1, h = 0.01, and h = 0.001, the two algorithms OLIDE(I) and
OLIDE(II) extended by the midpoint rule are identical (OLIDE-MP), and the two algorithms
OLIT(I) and OLIT(II) extended by the midpoint rule are identical (OLIIT-MP). But since
(5.6) is a variable-coefficient system, the algorithm OLIDE-MP differs from the algorithm
OLIT-MP. The errors € at t = 10 are listed in Tables 2, 3, and 4 when the methods are applied
to the problem (5.6) with three groups of coefficients, respectively.

Observe that for the constant delay problem with the coefficients I, both algorithms,
OLIDE-MP and OLIT-MP, are convergent of order 2. But for the problem with the coefficients
II, the numerical results of OLIIT-MP is not ideal when N, = 100 and h = 0.1. This situation
has further deteriorated when the coefficients become III. On the one hand, this implies that
OLIDE-MP are stronger than OLIIT-MP, which confirm our theoretical analysis. On the other
hand, this implies that the coefficients, the spatial step-size Ax and the time step size h affect
the efficiency of the algorithm OLIIT-MP. It is well-known that the midpoint rule is A-stable
and is convergent for stiff ODEs. But now the numerical results become worse when the time
step-size is larger and the grid is finer, which further confirms our theoretical results.

(b) Bounded Variable Delay Problem

Next we consider the problem (5.6) with a bounded variable delay 7(t) =t — 5(t) = sint + 1.
Observe that the function 7(t) = t — sin(f) — 1 satisfies the condition (C1) such that the
convergence analysis and numerically solving this equation can be done interval-by-interval.
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Table 5: The errors € at t = 10 when the algorithms are applied to the problem (5.6) with the coefficients
group I, where 7(t) = sint + 1.

L OLIT(I)-MP OLIIT(II)-MP
N, =10 N, =100 N, =10 N, =100
0.1 2.809033¢ — 008 2.799451¢ — 008 2.808259 — 008 2.798684¢ — 008
0.01 2.807181e — 010 2.797665¢ — 010 2.806578¢ — 010 2.797068¢ — 010
0.001 2.807207¢ — 012 2.797692¢ — 012 2.806491¢ — 012 2.796982¢ — 012

Table 6: The errors € at t = 10 when the algorithms are applied to the problem (5.6) with the coefficients
group II, where 7(t) = sint + 1.

h OLIT(I)-MP OLIT(II)-MP
N, =10 N, =100 N, =10 N, =100
0.1 1.126902¢ — 006 9.145590e - 004 4.938563¢e — 006 1.656698e — 002
0.01 1.106792e — 008 1.102020e - 008 6.263681e — 009 6.274124e — 009
0.001 1.142587e — 010 1.136783e — 010 6.251279e — 011 6.255985e — 011

Because we have known that the true solution is sufficiently differentiable on the whole
interval, the step sizes h = 0.1, h = 0.01, and h = 0.001 are chosen.

In this case, we do not consider OLIDE(I) and OLIDE(II) since the two algorithms
will produce implementation and computational complexity issues. We explore only the
algorithm OLIIT(I) extended by the midpoint rule (OLIHT(I)-MP) and the algorithm
OLIT(I) extended by the midpoint rule (OLIIT(II)-MP). The errors € at ¢t = 10 are listed
in Tables 5, 6, and 7 when the algorithms are applied to the problem (5.6) with three groups
of coefficients, respectively.

From these numerical data, we also see that both algorithms, OLIIT(I)-MP and
OLIT(II)-MP, are convergent of order 2 for this equation with the coefficients I, but such
a good situation is destroyed when the coefficients become II or III.

(c) Proportional Delay Problem

Finally, we consider the problem (5.6) with a proportional variable delay 7(t) = 0.5¢. We still
choose the step size h = 0.1, h = 0.01, and k = 0.001. Similar to the case of the bounded
variable delay, we use only the algorithm OLIT(I)-MP and the algorithm OLIIT(II)-MP to
solve the problem (5.6). Tables 8, 9, and 10 show the errors € at t = 10.

From these numerical data, we still observe that both algorithms, OLIIT(I)-MP and
OLIIT(II)-MP, are convergent of order 2 for this equation with the coefficients I, but for the
same equation with the coefficients II or III, the numerical results become worse when (f +
yL)/(1 - y) becomes larger.

6. Concluding Remarks

In this paper we introduced four algorithms connecting with an ODEs method to solve
nonlinear NDDEs with general variable delay, established their convergence properties and
compared their numerical results by means of extensive numerical data. This paper can be
regarded as an extension from the nonneutral DDEs with a constant delay [38, 44] to neutral
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Table 7: The errors € at t = 10 when the algorithms are applied to the problem (5.6) with the coefficients
group III, where 7(t) = sint + 1.

L OLIT(I)-MP OLIIT(II)-MP

N, =10 N, =100 N, =10 N, =100
0.1 9.066809¢ — 002 1.199248e + 000 1.651731e + 000 3.112600e + 001
0.01 2.328686¢ — 009 6.123243¢ — 005 2.292876¢ — 009 2.828239 — 004
0.001 2.261214e - 011 4.619492¢ — 009 2.239975¢ — 011 2.251171e - 011

Table 8: The errors € at t = 10 when the algorithms are applied to the problem (5.6) with the coefficients
group I, where 7(t) = 0.5¢t.

L OLIT(I)-MP OLIIT(IT)-MP

N, =10 N, =100 N, =10 N, =100
0.1 3.007486¢ — 008 2.998332¢ — 008 2.985691e — 008 2.976663¢ — 008
0.01 3.005176¢ — 010 2.996115¢ — 010 2.983553¢ — 010 2.974621¢ — 010
0.001 3.005155¢ — 012 2.996096e — 012 2.983534e — 012 2.974603e — 012

DDEs with general variable delay. Although some basic proof ideas are related to the ones
used in [38, 44], the problems considered in this paper are more complex such that some
new proof techniques were introduced to overcome a series of new difficulties encountered
in theoretical analysis.

From theoretical analysis given in Sections 3 and 4 and numerical results shown in
Section 5, we come to the following remarks:

(1) If ap and ¢/ (1 — y) are of moderate size, the algorithms OLIDE(I) and OLIDE(II)
based on A-stable one-leg methods (p, o) are convergent of order p, where p = 1,2
is consistent of order in the classical sense. When ay and (f + yL)/(1 — y) are of
moderate size, the four algorithms introduced in this paper are convergent of order
p if the one-leg method (p, o) is A-stable and consistent of order p in the classical
sense, where p = 1,2. Butif (f+yL)/(1-y) is very large, the algorithms OLIIT(I) and
OLIT(II) may produce bad numerical results when the time step size is large even
if the ODEs method is A-stable. This revels the difference between numerically
solving ODEs and NDDEs.

(2) If using the direct estimation (2.10) does not create implementation or compu-
tational complexity problem, we prefer the algorithms OLIDE to the algorithms
OLIIT. Furthermore, considering the algorithm OLIDE(II) has better stability
properties than the algorithm OLIDE(I) (see [18] and the numerical Example 2 in
Section 5.2 ), it is our belief that the algorithm OLIDE(II) could become an effective
numerical method for solving this class of problem, for example, NDDEs with
constant delay, if the algorithm is easy to implement. Of course, for general NDDEs
with variable delay, we have to use the algorithms OLIIT(I) or OLIT(II).

(3) The results we established in this paper can be extended in a straightforward way
to the case of NDDEs with multiple time delay (1.3)-(1.2).
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Table 9: The errors € at t = 10 when the algorithms are applied to the problem (5.6) with the coefficients
group II, where 7(t) = 0.5t.

L OLIT(I)-MP OLIIT(II)-MP

N, =10 N, =100 N, =10 N, =100
0.1 3.794966¢ — 005 2.539557¢ — 001 1.627824¢ — 005 2.019670e — 004
0.01 4.905939¢ — 007 4.870288¢ — 007 1.643376¢ — 007 1.649717¢ — 007
0.001 5.026856¢ — 009 4.977278¢ — 009 1.770753e — 009 1.770849e — 009

Table 10: The errors € at t = 10 when the algorithms are applied to the problem (5.6) with the coefficients
group III, where 7(t) = 0.5¢.

L OLIT(I)-MP OLIIT(I1)-MP

N, =10 N, = 100 N, =10 N, =100
0.1 4.279370e + 001 3.962658¢ + 001 2.324247e — 002 6.345608¢ — 002
0.01 5.989558¢ — 008 3.347081e — 004 6.024260¢ — 008 6.023323¢ — 008
0.001 5.951239 - 010 5.951353¢ — 010 5.842018¢ - 011 5.842442¢ - 010
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