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The nonclassical symmetries of boundary layer equations for two-dimensional and radial flows
are considered. A number of exact solutions for problems under consideration were found in the
literature, and here we find new similarity solution by implementing the SADE package for finding
nonclassical symmetries.

1. Introduction

Prandt [1] derived the boundary layer equations by simplifying the Navier-Stokes equations.
Schlichting [2, 3] showed that the two-dimensional flow is represented by the boundary layer
equation:

ψyψxy − ψxψyy − ψyyy = 0. (1.1)

Here (x, y) denote the usual orthogonal cartesian coordinates parallel and perpendicular to
the boundary y = 0, ψ denotes the stream function. The velocity components in the x and
y directions, u(x, y) and v(x, y), are related with ψ as u = ψy and v = −ψx. The boundary-
layer equations are usually solved subject to certain conditions to describe flow in jets, films,
and plates. In jet flow problems due to homogeneous boundary conditions a further condition
known as conserved quantity is required. The conserved quantity is a measure of the strength
of the jet. A new method of deriving conserved quantities for different types of jet flow
problems was discussed by Naz et al. [4]. The liquid jet, the free jet, and the wall jet satisfy
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the same partial differential equations (1.1), but the boundary conditions and conserved
quantities for each jet flow problem are different. The boundary-layer equations were solved
subject to certain boundary conditions and conserved quantity for two-dimensional free,
wall, and liquid jets in [2, 3, 5–8].

The radial flow is represented by the boundary layer equation (see, e.g., Squire [9]):

1
x
ψyψxy − 1

x2
ψ2
y −

1
x
ψxψyy − ψyyy = 0. (1.2)

Cylindrical polar coordinates (x, θ, y) are used. The radial coordinate is x, the axis of
symmetry is x = 0, and all quantities are independent of θ. The velocity components in the x
and y directions, u(x, y) and v(x, y), are related to ψ as u = (1/x)ψy and v = (−1/x)ψx. The
boundary layer equations were solved subject to certain boundary conditions and conserved
quantity for radial-free jet in works [6, 9–11], wall jet by Glauert [7], and liquid jet in [8, 10].

The classical and nonclassical symmetry methods play a vital role in deriving the
exact solutions to nonlinear partial differential equations. The nonclassical method due to
Bluman and Cole [12] and the direct method due to Clarkson and Kruskal [13] have been
successfully applied for constructing the nonclassical symmetries and new solutions for
partial differential equations. Olver [14] has shown that for a scalar equation, every reduction
obtainable using the direct method is also obtainable using the nonclassical method. An
algorithm for calculating the determining equations associated with the nonclassical method
was introduced by Clarkson and Mansfield [15]. In the nonclassical method the invariant
surface condition is augmented by the invariant surface condition. A new procedure for
finding nonclassical symmetries is given in [16, 17], but this is restricted to a specific class of
PDEs. Recently Filho and Figueiredo [18] developed a powerful computer package SADE for
calculating the nonclassical symmetries by converting given PDE system to involutive form
or without converting it to involutive form. We will use SADE to calculate the nonclassical
symmetries and similarity reductions of boundary layer equations for two-dimensional as
well as radial flows.

The paper is arranged in the following pattern: in Section 2 the nonclassical
symmetries and similarity solution of boundary layer equations for two-dimensional flows
are presented. The nonclassical symmetries and similarity solution of boundary layer
equations for radial flows are given in Section 3. Finally, Conclusions are summarized in
Section 4.

2. Nonclassical Symmetries and Similarity Solution of Boundary Layer
Equations for Two-Dimensional Flows

The two-dimensional flow is represented by the boundary layer equation:

Δ1 = ψyψxy − ψxψyy − ψyyy = 0. (2.1)

Consider the infinitesimal operator:

X = ξ1
(
x, y, ψ

) ∂

∂x
+ ξ2

(
x, y, ψ

) ∂

∂y
+ η

(
x, y, ψ

) ∂

∂ψ
. (2.2)
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The invariant surface condition is

Δ2 = ξ1
(
x, y, ψ

)
ψx + ξ2

(
x, y, ψ

)
ψy − η

(
x, y, ψ

)
= 0. (2.3)

The nonclassical symmetries determining equations are

X[3]Δ1

∣
∣
∣
Δ1=0,Δ2=0

= 0, X[1]Δ2

∣
∣
∣
Δ1=0,Δ2

= 0, (2.4)

whereX[1] andX[3] are the usual first and third prolongations of operatorX. Two cases arise:
Case 1 ξ1 /= 0 and Case 2 ξ1 = 0, ξ2 /= 0.

Case 1 (ξ1 /= 0). In this case we set ξ1 = 1, the SADE package yields the following six
determining equations:

ξ2u = 0,

ηuu = 0,

ηyyy −
(
ηy

)2 + ηηyy = 0,

3ξ2yy − 3ηyu − ηξ2y − ηuη − ηx − ηyξ2 = 0,

ξ2yyy − 3ηyu + ηξ2yy + ξ
2ηyy + ηxy − ηηyu + 2ηuηy = 0,

ηxu −
(
ξ2y

)2 − ξ2xy + ξ2ηyu − ξ2ξ2yy +
(
ηu

)2 = 0.

(2.5)

The solution determining equations in (2.5) yield all classical symmetries (see [5]) and the
following infinite many nonclassical symmetry generators:

X =
∂

∂x
+ g(x)

∂

∂y
+ h

(
x, y

) ∂
∂u

, (2.6)

where h(x, y) and g(x) satisfy

hx + g(x)hy = 0, hyyy − h2y + hhyy = 0. (2.7)

Equation (2.7) yields

h
(
x, y

)
=

6
y −G(x) , G′(x) = g(x), (2.8)
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and thus the nonclassical symmetry generators in (2.6) take the following form:

X =
∂

∂x
+G′(x)

∂

∂y
+

6
y −G(x)

∂

∂u
. (2.9)

Now, ψ = φ(x, y) is group invariant solution of (2.1) if

X
(
ψ − φ(x, y))∣∣ψ=φ = 0, (2.10)

where the operator X is given in (2.9). The solution of (2.10) for ψ = φ(x, y) is of the form

ψ
(
x, y

)
=

6x
χ

+w
(
χ
)
, χ = y −G(x). (2.11)

Substitution of (2.11) in (2.1) yields

χ2d
3w

dχ3
+ 6χ

d2w

dχ2
+ 6

dw

dχ
= 0 (2.12)

and thus

w
(
χ
)
= c1 +

c2
χ

+
c3
χ2
. (2.13)

The invariant solution (2.11) with the help of (2.13) takes the following form:

ψ
(
x, y

)
=

6x
χ

+ c1 +
c2
χ

+
c3
χ2
, χ = y −G(x). (2.14)

The invariant solution (2.14) is new solution for boundary layer equations for two-dimen-
sional flows.

Case 2 (ξ1 = 0, ξ2 /= 0). Results are in no-go case.

3. Nonclassical Symmetries and Similarity Solution of
Boundary Layer Equations for Radial Flows

The radial flow is represented by the boundary layer equation:

Δ =
1
x
ψyψxy − 1

x2
ψ2
y −

1
x
ψxψyy − ψyyy = 0. (3.1)
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Case 1 (ξ1 /= 0). In this case we set ξ1 = 1 and using SADE we have following six determining
equations:

ξ2u = 0,

ηuu = 0,

xηyyy −
(
ηy

)2 + ηηyy = 0,

3x2ξ2yy − 3x2ηyu − xηξ2y − xηuη − xηx − xηyξ2 + η = 0,

x2ξ2yyy − 3x2ηyyu + xηξ2yy + xξ
2ηyy + xηxy − xηηyu + 2xηuηy − 3ηy = 0,

x2ηxu − x2
(
ξ2y

)2 − x2ξ2xy + x
2ξ2ηyu − x2ξ2ξ2yy + x

2(ηu
)2 − 2xηu + 2 = 0.

(3.2)

The solution determining equations in (3.2) yield all classical symmetries and the following
infinite many nonclassical symmetry generators:

X =
∂

∂x
+
1
x

[−y + xg(x)
] ∂
∂y

+ h
(
x, y

) ∂
∂u

, (3.3)

where h(x, y) and g(x) satisfy

xhx − yhy + xg(x)hy − 2h = 0, xhyyy − h2y + hhyy = 0. (3.4)

The nonclassical symmetry generators (3.3) finally become

X =
∂

∂x
+
1
x

[−y + xG′(x) +G(x)
] ∂
∂y

+
6x

y −G(x)
∂

∂u
, (3.5)

and we have used

h
(
x, y

)
=

6x
y −G(x) , xG′(x) +G(x) = xg(x). (3.6)

Now, ψ = φ(x, y) is group invariant solution of (3.1) if

X
(
ψ − φ(x, y))∣∣ψ=φ = 0 (3.7)

where the operator X is given in (3.5). The solution of (3.7) for ψ = φ(x, y) is of the form:

ψ
(
x, y

)
=

2x3

χ
+w

(
χ
)
, χ = x

[
y −G(x)]. (3.8)
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Substitution of (3.8) in (3.1) yields

χ2d
3w

dχ3
+ 6χ

d2w

dχ2
+ 6

dw

dχ
= 0 (3.9)

and thus

w
(
χ
)
= c1 +

c2
χ

+
c3
χ2
. (3.10)

Finally, we have following form invariant solution:

ψ
(
x, y

)
=

2x3

χ
+ c1 +

c2
χ

+
c3
χ2
, χ = x

[
y −G(x)], (3.11)

and this is new solution not obtained in the literature.

Case 2 (ξ1 = 0, ξ2 /= 0). Results are in no-go case for radial flow also.

4. Conclusions

The nonclassical symmetries of boundary layer equations for two-dimensional and radial
flows were computed by computer package SADE. A new similarity solution for two-
dimensional flows was given in (2.14). For radial flows a new similarity solution (3.11) was
derived. It would be of interest to identify what type of physical phenomena can be associated
with the solutions derived in this paper.
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