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Protein-protein interactions (PPIs) play a crucial role in cellular processes. In the present work, a
new approach is proposed to construct a PPI predictor training a support vector machine model
through a mutual information filter-wrapper parallel feature selection algorithm and an iterative
and hierarchical clustering to select a relevance negative training set. By means of a selected
suboptimum set of features, the constructed support vector machine model is able to classify PPIs
with high accuracy in any positive and negative datasets.

1. Introduction

Protein-protein interactions (PPIs) play a greatly important role in almost any biological
function carried out within the cell [1, 2]. In fact, an enormous effort has already beenmade to
study biological protein networks in order to understand themain cell mechanisms [3–5]. The
development of new technologies has improved the experimental techniques for detecting
PPIs, such as coimmunoprecipitation (CoIP), yeast two-hybrid (Y2H), or mass spectrometry
studies [6–9]. However, computational approaches have been implemented for predicting
PPIs because of cost and time requirements associated with the experimental techniques [5].

Therefore, different computational methods have been applied in PPI prediction, some
methods are Bayesian approaches [10–12], maximum likelihood estimation (MLE) [13, 14],
maximum specificity set cover (MSSC) [4], decision trees [15, 16], and support vector ma-
chines (SVM) [15–18]. Many computational approaches use information fromdiverse sources
at different levels [5]. In this way, predicting PPI models [4, 13, 15, 16, 19] have been built



2 Journal of Applied Mathematics

using domain information. Since interacting proteins are usually coexpressed and colocated
in the same subcellular compartment [10], cell location patterns are also considered to be a
valid criterion in predictionworks. In other works, authors use functional similarity to predict
interacting proteins [20]. Likewise, the concept of homology has been already used to gen-
erate prediction models [19, 21], homologs interactions databases [11], and negative datasets
[22].

In the past years, these experimental methods [23] and computational approaches [22]
have provided interactions for several organisms such as Saccharomyces cerevisiae (S. cerevisiae
or Baker’s yeast or simply yeast) [24–27], Caenorhabditis elegans (C. elegans) [28, 29],Drosophila
melanogaster (D. melanogaster or fruit fly) [30, 31], including Homo Sapiens (H. sapiens) [3, 6,
32].

In spite of obtaining a huge amount of interaction data through high-throughput tech-
nologies, it is still difficult to compare them as they contain a large number of false positives
[11, 22]. Some authors provide several reliable interaction sets, including diverse confidence
levels. With this context, supervised learning methods used in PPI prediction require com-
plete and reliable datasets formed by positive and negative samples. However, noninteract-
ing pairs are rarely reported by experimentalists motivated by the difficulties associated in
demonstrating noninteraction under all possible conditions. In fact, negative datasets have
traditionally been created by randomly paired proteins [15, 33, 34] or by selecting pairs of
proteins that are not sharing the same subcellular compartment [10]. Nonetheless, other
works suggest that negative sets created on the basis of cell location alone lead to biased
estimations in the predictive interacting models [17]. To solve this problem, Wu et al. [35]
proposed a predictive interacting method by means of similarity semantic measures [36],
based on gene ontology (GO) annotations [37], although they did not specify which ontology
contributed most to the process of obtaining negative interactions. For this reason, Saeed and
Deane [22] introduced a novel method to generate negative datasets, based on functional
data, location, expression, and homology. These authors considered noninteracting pairs to
be two proteins showing no overlapping between any of the features under consideration.
In another work, Yu et al. [38] demonstrated that the accuracy of the PPI prediction works is
significantly overestimated. The accuracy reported by the prediction model strongly depends
on the structure of the selected training and testing datasets. The chosen negative pairs in the
training data have a variable impact on the accuracy, and it can be artificially inflated by
a bias towards dominant samples in the positive data [38]. In this way, Yu et al. [38] also
presented a method for the selection of unbiased negative examples based on the frequency
of the proteins involved in positive interactions in the dataset.

In this work, a novel method is presented for constructing an SVM classifier for
PPI prediction, selecting negative dataset through clustering approach applied to 4 million
negative pairs from Saeed and Deane [22]. This clustering approach is applied in an effort to
avoid the impact of negative dataset on the accuracy of the classifier model. This newmethod
is based on a new feature extraction and selection using well-known databases, applied
specifically to a yeast organism model, since yeast is the most widely analysed organism and
the one in which it is easiest to find data. New similarity semantic measures calculated from
the features are proposed, and they demonstrate that their use improves the predictive power
of trained classifiers. In addition, this classifier may return a confidence score for each PPI
prediction through a modification of the SVM implementation. Firstly, features are extracted
for positive and negative samples; then, a clustering approach is performed in order to obtain
high-reliable noninteracting representative samples. Subsequently a parallel filter-wrapper
feature technique selects the most relevance extracted features in order to obtain a reliable
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model. The algorithm calledmRMR (minimal-redundancy-maximal-relevance criterion) [39]
is used as filter and is based on the statistical concept of mutual information. This reduction
in the number of features allows for a better training efficiency as the search space for most
of the parameters of the model is also reduced [40, 41].

In a second part, with the purpose of validating the generalisation capability of our
model, a group of highly reliable external datasets from [9]were classified using our method.
These datasets to be validated were extracted using computational and experimental
approaches together with information from the literature. The used models are SVM clas-
sifiers built using the most relevance selected features that characterise the protein-protein
interaction as explained. They were trained using three training sets, the positive examples
were kept, but the negative set was changed, each negative set was obtained by a specific
method: (1) hierarchical clustering method presented in this paper, (2) randomly selection,
and (3) using the approach proposed by Yu et al. [38].

The testing datasets were filtered for assessment to prevent biased results, that is, with-
out any overlapping between the datasets used during the training stage. High sensitivity
and specificity are obtained in both parts using this proposed approach, that is, the model
trained using the negative set by the proposed hierarchical clustering method. The presented
approach leads to the possibility of becoming a guide for experimentation, being a useful tool
to save money and time.

2. Material and Methods

2.1. Material

Two types of datasets were used: training datasets to construct the models and testing
datasets to assess the goodness of predictions. A supervised learning classifier as SVM
requires positive and negative samples for training data. The positive and negative examples
were extracted from Saeed and Deane [22], where authors provide a positive dataset com-
posed of 4809 high-reliability interacting pairs of proteins and a high-quality negative set
formed by more than 4 million noninteracting pairs. Two negative subsets of the size similar
to that of the positive dataset were extracted from this negative set: one dataset is composed
of randomly selected noninteraction pairs (4894) and the other one is created by means of the
proposed hierarchical clustering approach presented in this paper in order to select the most
representative negative samples (4988). The main goal of this negative dataset of clustered
samples is to represent the whole negative space of more than 4 million examples avoiding
biased results in PPI prediction. The third negative set used in this paper is created using the
method proposed by Yu el at. [38], which is “balanced” to the taken positive set. A com-
parison of the PPI classification results training three models using these negative datasets
is shown Section 3. During the training phase, the positive dataset is called gold standard
positive (GSP) set and the used negative dataset is called gold standard negative (GSN) set.

In the case of testing datasets, these were selected for the sake of validating the gen-
eralisation capability of the proposed approach in PPI prediction. A group of reliable binary
interaction datasets (LC-multiple, binary-GS, Uetz-screen, and Ito-core) were taken from Yu
et al. [34]. These datasets have been obtained using several approaches from experimentally,
computationally, and grouping datasets well known in the literature. These datasets can be
freely downloaded from the website http://interactome.dfci.harvard.edu/. Besides, another
group of used negative testing datasets is also described here. So all proposed testing datasets
are the follwing.
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(i) The LC-Multiple Dataset. It is composed of literature-curated interactions sup-
ported by two or more publications. There are 2855 positive interactions.

(ii) Binary-GS dataset. It is a binary gold standard set that was assembled through a
computational quality reexamination that includes well-established complexes, as
well as conditional interactions and well-documented direct physical interactions
in the yeast proteome. There are 1253 positive interactions.

(iii) Uetz-screen. It is the union of sets found by Uetz et al. in a proteome-scale all-by-all
screen [24]. There are 671 positive interactions.

(iv) Ito-core. It is Interactions found by Ito et al. that appear three times or more [25].
There are 829 positive interactions.

(v) Random Negative Dataset 1, 2. Due to the low number of noninteracting protein data
within the RRS set, three negative subsets of similar size of the proposed GSP have
been utilised. These set are denoted, random dataset negative 1 (4896 pairs) and
random dataset negative 2 (4898 pairs), and were also randomly selected from the
Saeed and Deane negative set [22].

(vi) Negative Datasets Obtained Using the Proposed Hierarchical Clustering Approach. The
negative datasets obtained in the last step of the hierarchical clustering process were
used as testing negative datasets. In total there are 9 datasets of 5000 examples (see
Section 3).

For all the datasets, a feature extraction process was applied and the data obtained
through this process were normalised in the range [0, 1] to apply the proposed method.
Furthermore, in a previous step to the evaluation of our model, those interactions from every
testing dataset were filtered out to remove overlapping with the training set. In this way,
the possible overestimated classification accuracy is prevented through a clustering process
selecting a representative negative dataset and a filtering step.

2.2. Feature Extraction

Feature extraction process for the proposed datasets was applied using well-known data-
bases in proteomics, especially for yeast model organism. The calculated features cover
different proteomic information integrating diverse databases: Gene Ontology Annotation
(GOA) Database [42], MIPS Comprehensive Yeast Genome Database (MIPS CYGD) [43],
Homologous Interactions database (HINTdb) [11], 3D Interacting Domains database (3did)
[44], and SwissPfam (SwissPfam is an annotated description of how Pfam domains map to
possibly multidomain SwissProt entries) [45].

Essentially, the presented approach in this paper integrates distinct protein features to
design a reliable classifier of PPIs. The importance of protein domains in predicting PPIs has
been already proved [4, 13, 19], so the use of SwissPfam and 3did databases was included in
this process. The MIPS CYGD catalogues that cover functional, complexes, phenotype, pro-
teins, and subcellular compartments information about yeast make it a very useful tool in
PPI analysis [10, 11]. Likewise, GO data has been successfully applied in classificationmodels
[46] and so has the usage of similarity measures supporting PPI prediction [35]. Furthermore,
the “interlogs” concept helps to design new approaches in proteomics such as PPI prediction,
classification, and creation of reliable PPI databases [11, 22, 28]. Therefore, the HINTdb
database was included in our study.



Journal of Applied Mathematics 5

The main step in this process is the extraction of a set of features that can be associated
with all possible combinations of pairs of proteins. The fundamental idea about feature
extraction here consists of computing howmany common terms are shared between two pro-
teins (a given pair) in any given database. Those features would be our “basic” features, with
every feature being calculated as the number of common terms that are shared by a pair of
proteins in a specific database.

Although the extraction process integrates several information sources, these features
in themselves do not provide enough information to estimate whether any given pair of pro-
teins are very likely to interact [10]. Thus, reinforcing the predictive power of classification
models through a specific combination of features, two new similarity measures called local
and global were incorporated in this process as “extended” features. The definition of these
two similarity measures would be the following.

Given a pair of proteins (protA, protB) and leting A be the set of all terms linked for
protein protA and B the set of terms linked for protein protB in a specific database, the local
similarity measure for (protA, protB) is defined as

simlocal =
#(A ∩ B)
#(A ∪ B)

, (2.1)

where #(A ∩ B) represents the number of common terms in a specific database for (protA,
protB) and #(A ∪ B) is the total number of all terms in the union of sets A and B.

In a similar way, the global similarity measure is calculated as the ratio of common
terms shared by a given pair (protA, protB) with respect to the sum of all terms in a specific
database. This measure is calculated as

simglobal =
#(A ∩ B)

#C
, (2.2)

where C is the total number of terms in the complete database.
Hence, a further description of each considered database detailing the feature calcula-

tion and extraction for a given pair of proteins is summarised in Table 4. For the sake of clarity,
in the following enumeration, the same information indicating between parenthesis the type
of data (integer or real) and the order in the feature list is also explained.

(i) Gene Ontology Annotation (GOA) Database [42] that provides high-quality anno-
tation of gene ontology (GO) [37]. The GO project was developed to give a con-
trolled vocabulary for the annotations of molecular attributes in different model
organisms. These annotations are classified in GOA into three structured ontologies
that describe molecular function (F), biological process (P), and cellular component
(C). Each ontology is organised as a directed acyclic graph (DAG). We extract the
IDs (identifiers) of the GO terms associated with each protein calculating the com-
mon GO annotation terms between both proteins in the three ontologies (P, C, and
F) (1st integer) and their local and global similarity measures (12th real, 13th real).
Moreover, we considered each ontology separately (4th P integer, 5th C integer,
and 6th F integer) and their respective local (15th real, 16th real, and 17th real) and
global similarity measures (18th real, 19th real, and 20th real).

(ii) Homologous Interactions database (HINTdb) [11] is a collection of protein-protein
interactions and their homologs in one or more model organisms. Homology refers
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to any similarity between characteristics that is because of their shared ancestry.
The number of homologs between both proteins obtained from HintDB is the 2nd
feature (integer).

(iii) MIPS Comprehensive Yeast Genome Database (MIPS CYGD) [43] gathers infor-
mation on molecular structure and functional network in yeast. All catalogues are
considered: functional, complexes, phenotype, proteins, and subcellular compart-
ments. Considering each MIPS catalogue separately, the number of common terms
(using the catalogue identifier) is calculated between both proteins (functional 7th
integer, complexes 8th integer, proteins 9th integer, phenotypes 10th integer, and
subcellular compartments 11th integer). Moreover, their local similarity measures
are considered (21st real, 22nd real, 23rd real, 24th real, 25th real).

(iv) 3D Interacting Domains database (3did) [44] is a collection of domain-domain
interactions in proteins for which high-resolution three-dimensional structures are
known in the Protein Data Bank (PDB) [47]. 3did exploits structural information
to support critical molecular details necessary for better understanding how inter-
actions occur. This database also provides an overview of how similar in structure
are interactions between different members of the same protein family. The data-
base also stores gene ontology-based functional annotations and interactions be-
tween yeast proteins from large-scale interaction discovery analysis. The 3rd feature
(integer) is calculated as the common Pfam domains between both proteins,
extracted from SwissPfam, which are found in the 3did database. The 3rd feature
divided by the total Pfam domains that are associated with both proteins is the 14th
feature (real).

(v) SwissPfam [45] from UniProt database [48] is a compilation of domain structures
from SWISSPROT and TrEMBL [45] according to Pfam [49]. Pfam is a database
of protein families that stores their annotations and multiple sequence alignments
created using hidden Markov models (HMM). No feature is directly associated
with this database, but it is used in combination with the 3did database to calculate
the 3rd and 14th features.

2.3. Feature Selection: Mutual Information and mRMR Criterion

In pattern recognition theory, patterns are represented by a set of variables (features) ormeas-
ures. Such pattern is a point in an n-dimensional features space. The main goal is to select
features that distinguish uniquely between patterns of different classes. Normally, the opti-
mal set of features is unknown and commonly has an irrelevant number or redundant
features. In this way, through a pattern recognition process, these irrelevant or redundant
features are filtered out greatly improving the learning performance of classifiers [40, 41].
This reduction in the number of features, also known as feature selection, allows to simplify
the model complexity, as it gives a better visualisation and understanding of used data [50].
In this work, we consider the PPI prediction as a classification problem, so each sample point
represents a pair of proteins that must be classified into one out of two possible classes:
noninteracting or interacting pair.

The feature selection algorithm can be classified in two groups: filter and wrapper
[50, 51]. The filter methods choose a subset of features by means of a preprocessed step
independently of used machine learning algorithm. The wrapper methods use the classifier
performance to assess the goodness of the features subset. Other authors have utilised
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a combination of filter and wrapper algorithms [39]; in fact, in this work, a combination be-
tween filter and wrapper is used. First, a filter method is applied in order to obtain the rel-
evance of features and subsequently a wrapper method is performed using support vector
machine models from the obtained relevance order.

Different criteria have been applied to evaluate the goodness of a feature [50, 52].
In this case, the proposed filter features selection method is based on mutual information as
relevance measure and redundancy between the features throughminimal-redundancy-max-
imal-relevance criterion (mRMR) proposed by Peng et al. [39].

Let X and Y be two random continuous variables with marginal pdfs p(x) and p(y),
respectively, and joint probability density function (pdf) p(x, y). The mutual information
between X and Y can be represented as [50, 53].

I(X,Y ) =
∫∫

p
(
x, y

)
log

p
(
x, y

)
p(x)p

(
y
)dxdy. (2.3)

In the case of discrete variables, the integral operation is reduced to a summation
operation. Let X and Y be two discrete variables with mathematical alphabets X and Y,
marginal probabilities p(x) and p(y), respectively, and a joint probability mass function
p(x, y). The MI between X and Y is expressed as [50]

I(X,Y ) =
∑
x∈X

∑
y∈Y

p
(
x, y

)
log

p
(
x, y

)
p(x)p

(
y
) . (2.4)

The mutual information (MI) has two principal properties that make it different from
other dependency measures: (1) the capacity of measuring any relationship between var-
iables and (2) its invariance under space transformations [50, 54].

For mRMR, authors considered mutual-information-based feature selection for both
discrete and continuous data [39]. The MI for continuous variables was estimated using the
Panzer Gaussian windows [39]. Peng et al. show that using a first-order incremental search
(as a feature is selected in a time), the mRMR criterion is equal to maximum dependence,
or, in other words, estimating the mutual information I(C, S) between class variable C and
subset of selected features S. In Peng el al. [39], for minimizing the classification error in the
incremental search algorithm, mRMR method is combined with two wrapper schemes. In
a first stage, the method is used with the purpose of finding the candidate feature set. In a
second stage, backward and forward selections were applied in order to find the compact
feature set through the candidate feature set that minimises the classification error.

Given class variable C, the initial set of features F, an individual feature fi ∈ F, and a
subset of selected features S ⊂ F, the mRMR criterion for the first-order incremental search
can be expressed as the optimisation of the following condition [39, 50]:

I
(
C; fi

)
=

1
|S|

∑
fs∈S

I
(
fs; fi

)
, (2.5)

where |S| is the cardinality of the selected feature set S, fs ∈ S.
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This filter mRMR method is a fast and efficient method because of its incremental na-
ture, showing better feature selection and accuracy in classifier including wrapper approach
[39, 50].

In this work, mRMR criterion method was used as filter algorithmwith the purpose of
obtaining the relevance of proposed features. Subsequently, an SVMmodel is trained for each
incremental combination of features in ascending order of relevance. Such combination of fea-
tures is applied adding a feature in a time according to the relevance, starting from the most
relevant one, and adding the next most relevant one until feature 25. In total, 25 SVMmodels
are trained using grid search to estimate the hyperparameters. A parallel approach was
implemented for this filter-wrapper proposal because of memory and computational re-
quirements, reducing the time to obtain the best combination of features that minimises the
error classification.

2.4. Support Vector Machine

In machine learning theory, support vector machine (SVM) is related to supervised learning
methods that analyse data and recognise patterns in regression analysis and classification
problems. In fact, a support vector machine (SVM) is a classification and regression paradigm
originally invented by Vladimir Vapnik [55, 56]. In the literature, the SVM is quite popular
above all in classification and regression problems mainly due to its good generalisation
capability and its good performance [57]. Although SVM method was originally designed
for binary-class classification, a multiclass classification methodology was presented in Wu
et al. [58]. In the case of this PPI classification, it is straightforward to apply the binary-class
classification between interacting and noninteracting pairs of proteins.

For a given training set of instance-label pairs {xi, yi}, i = 1, . . . ,N, with input data
xi ∈ R

n and labelled output data yi ∈ {−1,+1}, a support vector machine resolves the next
optimisation problem:

minw,b,∈
1
2
wTw + C

N∑
i=1

ξi,

subject to yi

(
wTφ(xi) + b

)
≥ 1 − ξi, ξi ≥ 0.

(2.6)

So the training data vectors xi are mapped into a higher-dimensional space through
the φ function. C is the hyperparameter called penalty parameter of the error term, that is, it
is a real positive constant that controls the amount of misclassification allowed in the model.

Taking the problem given in (2.6) into account, the dual form of an SVM can be
obtained

minα
1
2
αTQα − eTα,

subject to yTα = 0,

0 ≤ αi ≤ C, i = 1, . . . ,N,

(2.7)
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where e is a vector composed of all ones (all-ones vector). Q is an N by N positive semi-
definite matrix given byQij ≡ yiyjK(xi, xj).K(xi, xj) ≡ φ(xi)

Tφ(xj) is called the kernel function
and allows the SVM algorithm to fit a maximum-margin hyperplane in a transformed feature
space.

The classifier is a hyperplane in the high-dimensional feature space that may be non-
linear in the original input space. In this case, for the general nonlinear SVM classifier, the
decision function can be expressed as

y(x) = sign

[
N∑
i=1

αiyiK(x, xi) + b

]
, (2.8)

where parameters αi correspond to the solution of the quadratic programming problem that
solves the maximum-margin optimisation problem. The training data points corresponding
to nonzero αi values are called support vectors [59] because they are the ones that are really
required to define the separating hyperplane.

The most common kernel utilised in the literature is the radial basis function (RBF) or
the Gaussian kernel [60]. It can be defined as

K(x, xi) = exp
(
−γ‖x − xi‖2

)
, γ > 0, (2.9)

where parameter γ controls the region of influence of every support vector.
Training an SVM implies the optimization of the αi and of the so-called hyperparame-

ters of the model. These hyperparameters are usually calculated using gridsearch and cross-
validation [59]. In the case of the RBF kernel, the hyperparameters C and γ are required to be
optimised.

Furthermore, a score is proposed in the presented work for PPI prediction. This score
is estimated using the difference of probabilities in absolute value returned by SVM model
for each pair of proteins.

This score would be used as a measure of confidence in PPI classification. SVM classi-
fies the pairs reporting two probability values that express the chance to belong to an inter-
acting pair class or noninteracting pair class. These probabilities are obtained by the par-
ticularisation of the multiclass classification methodology introduced by Wu et al. [58] in the
problem of PPI prediction (binary classification). In a general problem, given the observation
x and the class label y, it is assumed that the estimated pairwise class probabilities μij = P(y =
i|y = i or j, x) are available. Following the setting of the one-against-one approach for the
general problem of multiclass problem with k classes, firstly, the pairwise class probabilities
are estimated by rij with

rij ≈ P
(
y = i

∣∣ y = i or j, x
) ≈ 1

1 + eAf̂+B
, (2.10)

where A and B are estimated by minimizing the negative log-likelihood function using
known training data and f̂ are their decision values for these training data. In Zhang et al.
[61], it is recalled that SVM decision can be easily clustered at ±1, making the estimate
probability in (2.10) inaccurate. Therefore, ten-fold cross-validation was applied to obtain
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decision values in the experimental results. The next step is obtaining pi from these rij , solving
the following optimisation problem presented in Wu et al. [58].

The implementation for SVM was taken from the library LIBSVM [62] for Matlab (in
this case R2010a). Specifically, C-SVM and RBF kernel was used in the development of the
presented work.

2.5. Clustering Methodology

A clustering approach was applied to the negative dataset proposed by Saeed and Deane [22]
in order to obtain a relevant, representative, and significant negative subset for training reli-
able SVMmodels. Saeed and Deane provide more than 4 million high-quality negative pairs.
Therefore, after the feature extraction process applied to this large set of pairs, the set of data
to consider would be represented as a matrix whose size is more than 4 million pairs (rows)
and 25 features (columns). However, such amount of data is not feasible to train a model, and
there is also an overrepresentation of negative data that hides the positive samples effect.

In order to reduce this amount of negative samples to select themost relevant noninter-
acting pairs, a “hierarchical” clustering approach is proposed in this section which is a iter-
ative k-means process. Due to memory and computational requirements, the clustering data
of 4 million noninteracting pairs were divided into subsets which are suitable to be computed
by k-means. The k-means algorithm is applied to every subset. For each k-means, the k near-
est samples to centroid are taken as the most representative pairs of that specific subset. Then,
these representatives are joined again creating a number of new subsets. Thus, the same
process of k-means for each subset is applied in an iterative procedure as explained below.

Therefore, in the following lines, a definition of classic k-means is given. In data min-
ing, k-means clustering [63] is a method of cluster analysis that assigns n observations into
k clusters where each observation belongs to the cluster with the nearest mean. Given a set of
observations (x1, x2, . . . , xn), where each observation or point is a d-dimensional real vector,
n observations are then assigned into k sets (k ≤ n) S = S1, S2, . . . , Sk minimising the within-
cluster sum of squares (WCSS) [63]:

arg min
S

k∑
i=1

∑
xj∈Si

∥∥xj − µi

∥∥2
, (2.11)

where μi is the mean of points in Si.
Here, in the application of k-means, the used distance measure is the classical squared

Euclidean distance and the clustering data is actually a matrix whose rows represent a pair of
noninteracting proteins and columns represent the 25 considered features. The initial cluster
centroid positions are randomly chosen from samples. Likewise, k is set to 5000 because it is a
value similar to the size of the considered positive set (GSP) and also for computational per-
formance of this “hierarchical” clustering approach.

In practice, the 4 million set was divided in subsets of 50000 pairs approximately
(49665 samples) creating 84 subsets of negative samples. This division was carried out due
to memory requirements of the available computing system, using the maximum allowed
limit. A classical k-means clustering algorithm [63] was applied to each subset obtaining
the 5000 most representative samples, that is, reducing 10% of data. Then, new subsets of
50000 negative samples were created adding the 5000 respective samples in order. And again
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the k-means algorithm is applied to the new subsets obtaining the 5000 most representative
samples. This process is repeated until the last 5000 most representative samples that have a
similar size to the proposed positive set (see Figure 1) are obtained. This approach is a “hier-
archical” and iterative k-means-based clustering algorithm that can be run in a parallel com-
puting platform (see Section 2.6) considering the k-means clustering independently in every
iteration.

More formally, if we pay attention to Figure 1, we can see that in Iteration 1, given
an initial group of subsets of 50000 pairs approximately C = C1

1, C
1
2, . . . , C

84
1 . As commented,

the proposed “hierarchical” clustering approach is an iterative k-means process applied for
each C

j

i where i is the iteration and j is the subset order. The resulting set for the k-means
method is called R

j

i using the same indices i and j from the input subset Cj

i . Thus, R
j

i is
formed by the set of the 5000 most representative negative samples from C

j

i selected by
k-means. In the next iterations,Cj

i+1 is the subset formed by the summation of the 10 sets of the
5000most representative negative samplesRj

i . When it is not possible to apply the summation
of every 10 subsets R

j

i because there is an inferior number of subsets, the summation is
composed by the maximum number of subsets until completing all considered data. In
general, Cj

i =
∑j∗10

m=(j−1)∗10+1 R
m
i−1 given the iteration i and the subset j. In this paper, 3 iterations

were executed until obtaining the set of the 5000 most representative negative samples from
the whole set of more than 4 million negative samples. Iteration 2 shows that there were
9 subsets C1

2, C
2
2, . . . , C

9
2 where C9

2 contains 20000 pairs. The resulting subsets by k-means
R1

2, R
2
2, . . . , R

9
2 create a new C1

3 of 45000 elements. In the final step, R1
3 is obtained in Iteration

3, which will be used as part of a training set as a representation of the negative space from
the whole negative set. The R1

2, R
2
2, . . . , R

9
2 will be used as testing set in Section 3, and after a

filtering process from the training set, they are called Rtest 1
3 , Rtest 2

3 , Rtest 3
2 , Rtest 4

3 , Rtest 5
3 , Rtest 6

3 ,
Rtest 7

3 , Rtest 8
3 , and Rtest 9

3 .
With this process, the main goal of obtaining a representative negative dataset and not

biased from a high-quality negative set is fulfilled.

2.6. Parallelism Approach

The filter/wrapper feature selection proposed in this work demands high computational
resources. The classical and simple master-slave approach was adopted [64], a master process
sends tasks and data to the slave process, and the master process receives results from slaves
and controls the finalisation of the tasks. In our case, the tasks are to train SVM model in-
cluding grid search for hyperparameters. Therefore, the master process sends the next data
for slave processes: the selected features and the training and testing datasets. In addition, the
“hierarchical” k-means clustering algorithm from the previous section could be implemented
in a parallel computing platform using this approach.

The implementation of this approach was carried out usingMPIMEX [65], a new inter-
face that allows MATLAB standalone applications to call MPI (message passing interface)
standard routines (it was developed in our research group). MPI is a library specification for
message passing, proposed as a standard by a broadly based committee of vendors, imple-
menters, and users as defined in http://www.mcs.anl.gov/research/projects/mpi/.

This parallel approach was running in a cluster of computers. This cluster was formed
by 13 nodes with dual processors Intel Xeon E5320 2.86GHz, 4GB RAMmemory, and 250GB
HDD. All nodes are connected using Gigabit Ethernet. The installed operating system is
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Figure 1: Diagram for the proposed “hierarchical” k-means-based clustering algorithm applied. It is an
iterative k-means process. The application in this problem would be the selection of the 5000 most repre-
sentative negative samples of the whole set.

Linux CentOS 4.6 (rocks). This cluster was purchased using public funds from the Spanish
Ministry of Education Project TIN 2007-60587. The time of execution was reduced from 16
days in a single computer to 32 hours to train all the SVM models.

3. Results and Discussion

The results consist of two parts. In the first part, a “suboptimal” set of features is selected
through the filter/wrapper feature selection process using the parallel approach. The training
data for RBF-SVM model is composed by a GSP set and for a GSN set which is the set which
resulted from applying iterative clustering approach as explained in section Material and
Methods. In the second part, taking this suboptimal set of features, three RBF-SVM classifiers
are constructed using three training sets, respectively. All training sets have the same GSP
set for positive examples. In one case, the GSN set is the negative set obtained using the
hierarchical clustering method from the first part and, in a second case, the GSN set is a
randomly selected negative set as commented. In the third case, the GSN set was created
using the approach proposed by Yu el al. [38], it is a “balanced” set to GSP. Subsequently, a
comparison of the results obtained of three RBF-SVM classifiers trained with all the proposed
negative datasets is discussed.

Previously the filter/wrapper feature selection process, the feature extraction process
is applied to all available datasets. The 25 features were also extracted for the 4 million
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negative set from Saeed and Deane [22], but, due to computational requirements, the whole
set was divided into 84 subsets of 50000 samples approximately. In order to obtain a represen-
tative negative dataset of the whole negative space, the iterative k-means clustering approach
was applied to these 84 subsets as explained in the Section 2.5. In total, three iterations select-
ing 5000 negative representative samples were realized using the clustering approach. In the
first iteration, the Euclidean k-means method was applied to the 84 subsets creating 5000
centroids, and 9 new subsets (8 subsets of 50000 and the last one of 20000 negative examples)
were obtained adding the selected 5000 negative representative samples of each previous sub-
set. In the second iteration, the k-means was applied again to the 9 new subsets taking 5000
new negative representative samples of each subset and creating another new subset of 45000
samples (the representatives of 9-subset summation). In the third and last iteration, the last
5000 most representative negative samples taken as GSN set for training data were obtained
from clustering the previous subset. The taken negative pairs were selected using the mini-
mum Euclidean distance to the centroid of each cluster. A diagram of this process is repre-
sented in Figure 1.

In this way, the considered data (GSP and clustered GSN sets) was used to apply the
presented paralleled filter/wrapper feature selection process. Because of memory require-
ments in the construction of the 25 SVMmodels, this data was randomly divided into 70% for
training SVM and 30% for testing the performance of obtainedmodels. Hence, four randomly
divisions of data as 4 training/test datasets were used in this feature selection approach in a
cluster of computers as commented in Section 2.6. In order to obtain the best hyperparameters
for SVM models, gridsearch and 10-fold cross-validation were implemented. In Figure 2, the
accuracy, sensitivity, and specificity obtained using the order of feature relevance reported
by mRMR filter method are shown for all 25 SVM models. It can be observed that an excess
of information may lead to overfitting, that is, the interaction information decreases when
adding more features to the models, specially for testing case. The last added features were
considered for mRMR method as more irrelevant or redundant than the features in the first
positions. In Figure 2, it can be observed that the performance does not significantly improve
after reaching 6 features, it even gets worse due to an excess of information, so the subop-
timum selected set is composed of those 6 features: 13th referring to global similarity measure
for 1st feature, common GO terms using all ontologies, 3rd referring to number of SwissPfam
domains for a pair in 3did, 10th referring to common terms for the two proteins in MIPS phenotype
catalogue, 8th referring to common terms for the two proteins in MIPS functional catalogue, 7th
referring to common terms for the two proteins in MIPS complexes catalogue, and 2nd referring to
number of shared homologous proteins between a pair of proteins.

In the selected suboptimum set, the features concerning protein complex, phenotypes,
and functional data from MIPS CYGD catalogues have already been used successfully and
proved themselves to be reliable in interacting prediction analysis [10, 35, 66–69]. Note that
global similarity measures were also included in this suboptimum set of features with the
purpose of improving the performance of the classifier in PPI prediction. At the same time,
domain information (3rd feature) has provided a suitable framework in PPI prediction works
[4, 13]. Moreover, the second feature refers to homology whose relevance has been shown in
previous publications [11, 19, 21, 22].

In order to check if the SVMmodels trained with 6 features are significant, a ROC (re-
ceiver operating characteristic)was plotted using the confidence score presented in this work,
previously explained in Section 2. The ROC curve shows the sensitivity values with respect to
1-specificity values. The used statistics to measure the goodness of the classification was the
widely extended AUC (area under curve) [70, 71]. This statistics represents the probability
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Figure 2: Sensitivity, specificity, and test accuracy for the four randomly partitioned datasets and their
average values.

Table 1: Results for ROC: Area Under Curve (AUC).

Training and test group 6-feature SVM 25-feature SVM
1st 0.808 0.672
2nd 0.812 0.725
3rd 0.836 0.698
4th 0.846 0.619
Mean 0.826 0.678
Std. deviation 0.016 0.039
The ROC curve was constructed using our proposed confidence score for the four randomised sets (70% training, 30% test).
The RBF kernel SVMs were trained using 6 features and 25 features. Std. standard.

that a classifier will rank a randomly chosen positive instance higher than a randomly chosen
negative one. In Figure 3 and Table 1, the results for 6-feature SVMmodel and 25-feature SVM
model showing better performance of the SVM trained with a suboptimum set are shown.
As we mentioned, this reduction in the number of features implies a significant saving in
memory, calculation, and other computational requirements, obtaining an overfitting utilis-
ing the whole set.

In the second part, the behaviour of our approach is tested using the selected subset of
the six most relevant characteristics. Three RBF-SVMmodels are built with three training sets,
sharing the same GSP but with a different GSN. In one case, the GSN is the negative set from
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the first part created using the proposed hierarchical clustering approach presented in this
paper (it is also called clustered training dataset). In the second case, the GSN is a randomly
selected negative set (called random training dataset), and, in the last case, the GSN is a neg-
ative set “balanced” to GSP set obtained using the approach by Yu et al. [38]. This third GSN
is created using a selection of unbiased negative examples based on the frequency of the
proteins in the positive set. The testing datasets, detailed in Section 2, cover both positive and
negative sets and they were obtained in different ways: experimentally, from the literature,
and computationally. Additionally, in order to make a reliable comparison, previous to the
evaluation of our models, the interactions for each testing dataset were filtered out to avoid
overlapping with the respective training set. The new sizes of the testing datasets are shown
in Table 2.

Therefore, the results of these models are shown in Table 3 and Figure 4 for positive
datasets and Figure 5 for negative datasets. In general, the SVM model trained using the
negative set generated by the proposed hierarchical clustering approach presented in this
paper has a better performance in comparison with the rest of models, that is, the models that
used the randomly selected negative set and the balanced negative set. Globally, the obtained
results were slightly worse in the experimental datasets than in the computational and litera-
ture datasets. The models classify the literature-extracted dataset “LC-multiple” with a range
between 93 and 95% of accuracy. For the computationally obtained “binary-GS” dataset, the
classifiers obtain a range of accuracy between 92 and 95%. Between the experimental datasets
“Uetz-screen” [24] and “Ito-core” [25], the reported accuracies are sightly lower than for the
previous datasets with ranges of 72–81% and 76–80%, respectively, for the case of the models
trained with the negative set from the clustering approach and the negative set from the
random selection. Nevertheless, in the case of the model trained using the “balanced” nega-
tive set, the accuracies for both datasets are about 50%. However, if we can consider the nature
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Table 2: New sizes of datasets after filtering process.

Datasets

Size of filtering training
set with GSN set obtained

using the presented
hierarchical clustering

Size of filtering training
set with randomly
selected GSN set

Size of filtering training
set with “balanced”

GSN set obtained from
the approach by Yu

et al. [38]
Binary-GS 933 937 987
Ito-core 680 686 700
LC-multiple 2362 2380 2468
Uetz-screen 574 584 594
Random negative dataset 1 4893 4894 4894
Random negative dataset 2 4895 4894 4898
Rtest 1

3 4735 4995 4992
Rtest 2

3 4788 4995 4994
Rtest 3

3 4814 4991 4991
Rtest 4

3 4844 4987 4992
Rtest 5

3 4854 4983 4986
Rtest 6

3 4816 4991 4994
Rtest 7

3 4837 4985 4990
Rtest 8

3 4797 4994 4994
Rtest 9

3 4873 4994 4996
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Table 3: Accuracy using the 6 most relevant features for three RBF-SVMmodels.

Datasets
Acc. Our
proposal
RBF-SVM

Acc. Rand.
RBF-SVM

Acc. “balanced”
RBF-SVM

% relative difference
for our proposal
versus “Rand”

model

% relative difference
for our proposal
versus “balanced”

model
Binary-GS 94,111 95,411 92,401 −1,381 1,817
Ito-core 72,059 81,195 52,571 −12,678 27,045
LC-multiple 93,750 95,924 93,517 −2,319 0,249
Uetz-screen 76,857 80,822 54,882 −5,159 28,592
Random
negative
dataset 1

72,211 38,353 6,537 46,888 90,947

Random
negative
dataset 2

71,951 37,937 37,444 47,274 47,959

Rtest 1
3 58,184 29,349 1,883 49,558 96,764

Rtest 2
3 63,596 30,150 1,882 52,591 97,041

Rtest 3
3 96,469 69,365 1,683 28,096 98,255

Rtest 4
3 62,221 31,061 1,522 50,080 97,554

Rtest 5
3 61,248 29,862 1,364 51,244 97,773

Rtest 6
3 64,992 33,120 1,702 49,040 97,381

Rtest 7
3 64,441 31,454 1,824 51,189 97,170

Rtest 8
3 94,705 67,821 1,702 28,387 98,203

Rtest 9
3 64,334 31,237 1,061 51,446 98,351

Acc. is the accuracy of the RBF SVMmodel.Our proposal RBF-SVM is the SVMmodel trained using the training set formed by
the GSP set and the GSN set obtained using the proposed hierarchical clustering method. Rand. RBF-SVM is the SVMmodel
trained using the training set where the GSN set was randomly selected. “balanced” RBF-SVM is the SVM model trained
using the training set formed by the GSP set and the GSN set obtained using the approach to create a “balanced” negative
set by Yu et al. [38]. % relative difference is the percentage of relative difference using “our proposal RBF-SVM” as basis.

and complexity of the filtering in experimental data, the obtained accuracy is still satisfactory
at least in the case of the model trained using the negative set from the clustering approach.
Referring to the different negative datasets in the training data, the model trained using the
negative set extracted by clustering method attained better results than the model trained
using a randomly selected negative set. The obtained minimum relative difference is about
28% compared to the randomly selected negative set, and the maximum difference is about
90% in the case of the model trained using the “balanced” negative set. The negative set ob-
tained by the “hierarchical” approach has a relevant representation of the negative search
space from a large high-reliability negative set from Saeed and Deane [22]. But in the case of
the “balanced” negative set, this is not happening, the negative set is “balanced” to the posi-
tive side in the training data but it is not enough to recognise any negative case. Hence, the
obtained results of the model predicting negative datasets are worse than the results in the
classification of positive datasets. Nonetheless, the difficulty and complexity to predict nega-
tives make the results still acceptable. It can be observed that the relative difference in positive
datasets is better for the model trained with the randomly selected negative set but that
difference is not so strong, it can even be a slightly overestimation. The accuracy could be arti-
ficially inflated by a bias towards dominant samples in the positive data as Yu et al. showed
[38]. With such a suboptimum set of features, an SVM model is able to classify PPIs with
relative notorious accuracy in any positive and negative datasets.
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3 . And the “balanced” negative set is
created using the approach by Yu et al. [38].

First, in Patil and Nakamura [19], the authors used a Bayesian approach, previously
proposed by Jansen et al. [10]with only three features for the filtering out of high-throughput
datasets of the organisms Saccharomyces cerevisiae (Yeast), Caenorhabditis elegans, Drosophila
melanogaster, and Homo sapiens. Their model was able to obtain a sensibility of 89.7% and a
specificity of 62.9%, being only capable of attaining a prediction accuracy of 56.3% for true
interactions for the datasets Y2H, external to the model. For two datasets called “Ito” and
“Uetz” (see Table 3), the presented model trained with the negative set from clustering meth-
od reported classification rates between 76 and 93%. In Jiang and Keating [72], a mixed frame-
work is proposed combining high-quality data filtering with decision trees in PPI prediction,
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Table 4: Description of the 25 extracted features.

Number Description Type

1st #(AGOA ∩ BGOA) from GOA DB taking 3 ontologies together (P,F,C) Integer
2nd Number of homologs for (protA, ProtB) from HINTdb integer

3rd #[(ASPFAM ∩ 3DID) + (BSPFAM ∩ 3DID)], A and B are domains extracted
form SwissPfam, 3DID is 3did database Integer

4th #(AGOA−P ∩ BGOA−P ) from GOA DB taking Biological Process ontology Integer
5th #(AGOA−C ∩BGOA−C) from GOA DB taking Cellular Compartment ontology integer
6th #(AGOA−F ∩ BGOA−F) from GOA DB taking Molecular Function ontology integer
7th #(AMIPS−F ∩ BMIPS−F) from functional MIPS catalogue identifiers integer
8th #(AMIPS−C ∩ BMPIS−C) from complexes MIPS catalogue identifiers integer
9th #(AMIPS−P ∩ BMIPS−P ) from proteins MIPS catalogue identifiers integer
10th #(AMPIS−FE ∩ BMPIS−FE) from phenotypes MIPS catalogue identifiers integer

11th #(AMPIS−FCC ∩ BMIPS−FCC) from subcellular compartments MIPS catalogue
identifiers integer

12th Local similarity of 1st feature real
13th Global similarity of 1st feature real
14th #[((ASPFAM ∩ 3DID) + (BSPFAM ∩ 3DID))]/#(ASPFAM ∪ BSPFAM) Real
15th Local similarity of 4th feature real
16th Local similarity of 5th feature real
17th Local similarity of 6th feature real
18th Global similarity of 4th feature real
19th Global similarity of 5th feature Real
20th Global similarity of 6th feature Real
21th Local similarity of 7th feature Real
22th Local similarity of 8th feature Real
23th Local similarity of 9th feature Real
24th Local similarity of 10th feature Real
25th Local similarity of 11th feature Real
Symbol # indicates the number of elements in a set. See (2.1) and (2.2).

taking as the base the notation of all GO ontologies, aiming an accuracy in a range of 65–78%.
From there, we incorporated that information in combination with other features to improve
the generalisation of our approach. Other similarity measures have been proposed, mainly
based on the GO annotations, for example, the works byWu et al. [35] that were able to detect
the 35% of the cellular complexes from the MIPS CYGD catalogues or the work by Wang
et al. [36] for the validation of gene expression analysis. Nevertheless, the authors did not take
into account the cellular component ontology because it was considered that this ontology
includes ambiguous annotations that may lead to error. In this paper, we opted for proposing
a set of similarity measures that permit their generalisation to a wide range of databases in
the obtaining of our prediction model.

4. Conclusion

In this work, a new approach to build an SVM classifier in PPI prediction is presented. The
approach has several notorious processes: a feature extraction using well-known databases,
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a new filter-wrapper feature selection implemented in a master-slave parallel approach, and
a reliable and representative negative dataset for training by the means of “hierarchical”
k-means clustering. The filtermethod is based on the statistical concept ofmutual information
using mRMR criterion, which is a reliable and quick method. In addition, a confidence score
is presented through a modification of SVM model implementation. A comparison between
a randomly selected negative dataset, a “balanced” negative set obtained using Yu et al.
approach [38], and a negative dataset obtained using the “hierarchical” k-means clustering
method presented in this paper is done where the model training using the set resulted by
the clustering approach has better performance. This comparison also allowed us to check the
generalisation capacity of the presented approach for the sake of the evaluation of previously
filtered external datasets. Hence, a fair negative selection method is presented avoiding the
overestimation in the classification of PPIs.

For further work, a hierarchical parallel clustering could improve the performance of
a classifier with the purpose of obtaining a balanced negative dataset using a more complex
clustering algorithm. We consider applying this approach to other model organisms as Homo
sapiens. A parallel approach was applied, which, by making a better load balancing, would
be suitable to reduce time computation in the filter/wrapper feature selection approach.

In summary, we conclude that by combining data from several databases, using relia-
ble positive and clustered negative samples for training, supporting a set of widely applicable
similarity measures to the feature extraction process, and using mutual information methods
for feature selection and RBF-SVM models capable of returning a confidence score, we have
presented a reliable approach to the validation of protein-protein interaction datasets.
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