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Amodified function projective synchronization (MFPS) scheme for different dimension fractional-
order chaotic systems is presented via fractional order derivative. The synchronization scheme,
based on stability theory of nonlinear fractional-order systems, is theoretically rigorous. The
numerical simulations demonstrate the validity and feasibility of the proposed method.

1. Introduction

Fractional-order calculus, which can be dated back to the 17th century [1, 2]. However, only
in the last few decades, its application to physics and engineering has been addressed. So,
the fractional-order calculus has attracted increasing attention only recently. On the other
hand, complex bifurcation and chaotic phenomena have been found in many fractional-
order dynamical systems. For example, the fractional-order Lorenz chaotic system [3], the
fractional-order unified chaotic system [4], the fractional-order Chua chaotic circuit [5], the
fractional-order modified Duffing chaotic system [6], and the fractional-order Rössler chaotic
system [7, 8], and so on.

Nowadays, synchronization of chaotic systems and fractional-order chaotic systems
has attracted much attention because of its applications in secure communication and
control processing [9–21]. Many approaches have been reported for the synchronization
of chaotic systems and fractional-order chaotic systems [12–19]. In 1999, Mainieri and
Rehacek proposed projective synchronization (PS) [12] for chaotic systems, which has
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been extensively investigated in recent years because of its proportional feature in secure
communications. Recently, a modified projective synchronization, which is called function
projective synchronization (FPS) [13–15] has been reported. In FPS, the master and slave
systems could be synchronized up to a scaling function, but not a constant. So, the
unpredictability of the scaling function in FPS can additionally enhance the security of
communication.

To the best of our knowledge, most of the existing FPS scheme for the fractional-order
chaotic systems only discuss the same dimension. However, in many real physics systems,
the synchronization is carried out through the oscillators with different dimension, especially
the systems in biological science and social science [16–21]. Moreover, in some previous
works [16, 17], all the nonlinear terms of response system or error system was absorbed.
Referring to chaotic synchronization via fractional-order controller, there are a few results
reported until now. Inspired by the above discussion, in this paper, we present a modified
function projective synchronization (MFPS) scheme between different dimension fractional-
order chaotic systems via fractional-order controller. The fractional-order controller is easily
designed. The synchronization technique, based on tracking control and stability theory of
nonlinear fractional-order systems, is theoretically rigorous. Ourmodified function projective
synchronization (MFPS) scheme need not absorb all the nonlinear terms of response system.
This is different from some previous works. Two examples are presented to demonstrate the
effectiveness of the proposed MFPS scheme.

This paper is organized as follows. In Section 2, a modified function projective
synchronization (MFPS) scheme is presented. In Section 3, two groups of examples are
used to verify the effectiveness of the proposed scheme. The conclusion is finally drawn in
Section 4.

2. The MFPS Scheme for Different Dimension Fractional-Order
Chaotic Systems

The fractional-order chaotic drive and response systems with different dimension are defined
as follows, respectively:

dqdx

dtqd
= Fd(x), (2.1)

dqry

dtqr
= Fr

(
y
)
+ C
(
x, y
)
, (2.2)

where qd (0 < qd < 1) and qr (0 < qr < 1) are fractional order, and qd may be different with qr .
x ∈ Rn, y ∈ Rm (n/=m) are state vectors of the drive system (2.1) and response system (2.2),
respectively. Fd : Rn → Rn, Fr : Rm → Rm are two continuous nonlinear vector functions,
and C(x, y) ∈ Rm is a controller which will be designed later.

Definition 2.1. For the drive system (2.1) and response system (2.2), it is said to be modified
function projective synchronization (MFPS) if there exist a controller C(x, y) such that:

lim
t→+∞

‖e‖ = lim
t→+∞

∥∥y −M(x)x
∥∥ = 0, (2.3)
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where ‖ · ‖ is the Euclidean norm,M(x) is am×n real matrix, and matrix elementMij(x) (i =
1, 2, . . . m, j = 1, 2, . . . , n) are continuous bounded functions. ei = yi −

∑n
j=1Mijxj (i =

1, 2, . . . m) are called MFPS error.

Remark 2.2. According to the view of tracking control, M(x)x can be chosen as a reference
signal. The MFPS in our paper is transformed into the problem of tracking control, that is the
output signal y in system (2.2) follows the reference signalM(x)x.

In order to achieve the output signal y follows the reference signal M(x)x. Now, we
define a compensation controller C1(x) ∈ Rm for response system (2.2) via fractional-order
derivative dqr (M(x)x)/dtqr . The compensation controller is shown as follows:

C1(x) =
dqr (M(x)x)

dtqr
− Fr(M(x)x), (2.4)

and let controller C(x, y) as follows:

C
(
x, y
)
= C1(x) + C2

(
x, y
)
, (2.5)

where C2(x, y) ∈ Rm is a vector function which will be designed later.
By controller (2.5) and compensation controller (2.4), the response system (2.2) can be

changed as follows:

dqr e

dtqr
= D1

(
x, y
)
e + C2

(
x, y
)
, (2.6)

where D1(x, y)e = Fr(y) − Fr(M(x)x), and D1(x, y) ∈ Rm×m. So, the MFPS between drive
system (2.1) and response system (2.2) is transformed into the following problem: choose a
suitable vector function C2(x, y) such that system (2.6) is asymptotically converged to zero.

In what followswe present the stability theorem for nonlinear fractional-order systems
of commensurate order [22–25]. Consider the following nonlinear commensurate fractional-
order autonomous system

Dqx = f(x), (2.7)

the fixed points of system (2.7) is asymptotically stable if all eigenvalues (λ) of the Jacobian
matrix A = ∂f/∂x evaluated at the fixed points satisfy | argλ| > 0.5πq. Where 0 < q < 1,
x ∈ Rn, f : Rn → Rn are continuous nonlinear functions, and the fixed points of this nonlinear
commensurate fractional-order system are calculated by solving equation f(x) = 0.

Now, the following theorem is given based on the above discussion in order to achieve
the MFPS between the drive system (2.1) and the response system (2.2).

Theorem 2.3. Choose the control vector C2(x, y) = D2(x, y)e, and if D1(x, y) + D2(x, y) satisfy
the following conditions:

(1) dij = −dji (i /= j),
(2) dii ≤ 0 (all dii are not equal to zero),
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then the modified function projective synchronization (MFPS) between (2.1) and (2.2) can be achieved.
Where D2(x, y) ∈ Rm×m, and dij (i, j = 1, 2, . . . m, for all dij ∈ R) are the matrix element of matrix
D1(x, y) +D2(x, y).

Proof. Using C2(x, y) = D2(x,y)e, so fractional-order system (2.6) can be rewritten as follows:

dqr e

dtqr
=
[
D1
(
x, y
)
+D2

(
x, y
)]
e. (2.8)

Suppose λ is one of the eigenvalues of matrixD1(x, y)+D2(x, y) and the corresponding
non-zero eigenvector is ψ, that is,

[
D1
(
x, y
)
+D2

(
x, y
)]
ψ = λψ. (2.9)

Take conjugate transpose (H) on both sides of (2.9), we yield

{[
D1
(
x, y
)
+D2

(
x, y
)]
ψ
}T = λψH. (2.10)

Equation (2.9)multiplied left by ψH plus (2.10) multiplied right by ψ, we derive that

ψH
{[
D1
(
x, y
)
+D2

(
x, y
)]

+
[
D1
(
x, y
)
+D2

(
x, y
)]H}

ψ = ψHψ
(
λ + λ

)
. (2.11)

So,

λ + λ =
ψH
{[
D1
(
x, y
)
+D2

(
x, y
)]

+
[
D1
(
x, y
)
+D2

(
x, y
)]H}

ψ

ψHψ
. (2.12)

Because dij = −dji (i /= j, for all dij ∈ R) in matrix D1(x, y) +D2(x, y), so

λ + λ =

ψH
(

2d11 0 ··· 0
0 2d22 ··· 0
0 0 ··· 0
0 0 0 2dmm

)

ψ

ψHψ
.

(2.13)

Because dii ≤ 0 (for all dii ∈ R), and all dii are not equal to zero. So,

λ + λ ≤ 0. (2.14)

From (2.14), we have

∣∣argλ
[
D1
(
x, y
)
+D2

(
x, y
)]∣∣ ≥ 0.5π > 0.5qrπ. (2.15)
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According to the stability theorem for nonlinear fractional-order systems of commen-
surate order [22–25], system (2.8) is asymptotically stable. That is

lim
t→+∞

‖e‖ = 0. (2.16)

Therefore,

lim
t→+∞

‖e‖ = lim
t→+∞

∥
∥y −M(x)x

∥
∥ = 0. (2.17)

This indicates that the modified function projective synchronization between drive
system (2.1) and response system (2.2) will be obtained. The proof is completed.

Remark 2.4. Theorem 2.3 indicates that the condition of the MFPS between drive system
(2.1) and response system (2.2) are | argλ[D1(x, y) + D2(x, y)]| > 0.5qrπ . So, in practical
applications, we can easily choose the matrix D2(x, y) according to the matrix D1(x, y).
Moreover, in order to reserve all the nonlinear terms in response system or error system,
the controller in our work may be complex than the controller reported by [16, 17]. But, all
the nonlinear terms in response system or error system are absorbed in [16, 17].

Remark 2.5. Perhaps our result can be extended to the modified function projective
synchronization of complex networks of fractional order chaotic systems [26–28] and the
complex fractional-order multi scroll chaotic systems [29–31]. But, the modified function
projective synchronization for complex networks and complex fractional-order multi-scroll
chaotic systems would be much more complex. Further work on this issue is an ongoing
research topic in our group.

3. Applications

In this section, to illustrate the effectiveness of the proposed MFPS scheme for different
dimension fractional-order chaotic systems. Two groups of examples are considered and their
numerical simulations are performed.

3.1. The MFPS between 3-Dimensional Fractional-Order Lorenz System and
4-Dimensional Fractional-Order Hyperchaotic System

The fractional-order Lorenz [3] system is described as follows:

Dqry1 = 10
(
y2 − y1

)

Dqry2 = 28y1 − y2 − y1y3
Dqry3 = y1y2 −

8y3
3
.

(3.1)

The fractional-order Lorenz system exhibits chaotic behavior [3] for qr ≥ 0.993. The chaotic
attractor for qr = 0.995 is shown in Figure 1.
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Figure 1: Chaotic attractors of the fractional-order Lorenz system (3.1) for qr = 0.995.
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Figure 2: Hyperchaotic attractors of the fractional-order system (3.2) for qd = 0.95.

Recently, Pan et al. constructed a hyperchaotic system [17]. Its corresponded
fractional-order system is described as follows:

Dqdx1 = 10(x2 − x1) + x4
Dqdx2 = 28x1 − x1x3
Dqdx3 = x1x2 − 8x3

3
Dqdx4 = −x1x3 + 1.3x4.

(3.2)

The hyperchaotic attractor of system (3.2) for qd = 0.95 is shown in Figure 2.
Consider the fractional-order hyperchaotic system (3.2)with fractional-order qd = 0.95

as drive system, and the fractional-order Loren system with fractional-order qr = 0.995 as
response system. According to the above mentioned, we can obtain

Fr
(
y
) − Fr(M(x)x) = D1

(
x, y
)
e =

⎛

⎜⎜⎜⎜⎜
⎝

−10 10 0

28 − y3 −1 −
4∑

j=1
M1jxj

y2
4∑

j=1
M1jxj −8

3

⎞

⎟⎟⎟⎟⎟
⎠
e. (3.3)
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Now, we can choose

D2
(
x, y
)
=

⎛

⎝
0 0 −y2

−38 + y3 0 0
0 0 0

⎞

⎠. (3.4)

So,

D1
(
x, y
)
+D2

(
x, y
)
=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−10 10 −y2
−10 −1 −

4∑

j=1
M1jxj

y2
4∑

j=1
M1jxj −8

3

⎞

⎟
⎟
⎟
⎟
⎟
⎠
. (3.5)

According to the above theorem, theMFPS between the 3-dimensional fractional-order
Lorenz system (3.1) and the 4-dimensional fractional-order hyperchaotic system (3.2) can

be achieved. For example, choose M(x) =
(

1+x2 2 1+x2 3
2 x1 1 x2
2 1 x4 0.5

)
. The corresponding numerical

result is shown in Figure 3, in which the initial conditions are x(0) = (2, 1, 2, 1)T , and y(0) =
(18, 13, 13.5)T , respectively.

3.2. The MFPS between 4-Dimensional Fractional-Order Hyperchaotic Lǔ
System and 3-Dimensional Fractional-Order Arneodo Chaotic System

In 2002, Lü and Chen reported a new chaotic system [32], which be called Lü chaotic system.
The Lü chaotic system is different from the Lorenz and Chen system. Based on Lü chaotic
system, the hyperchaotic Lü chaotic system and the fractional-order hyperchaotic Lü system
have been constructed recently. The fractional-order hyperchaotic Lü system [16] is described
by the following

Dqry1 = 36
(
y2 − y1

)
+ y4

Dqry2 = 20y2 − y1y3
Dqry3 = y1y2 − 3y3
Dqry4 = y1y3 − y4.

(3.6)

The hyperchaotic attractor of system (3.6) for qr = 0.96 is shown in Figure 4.
The fractional order Arneodo chaotic system [16] is defined as follows:

Dqdx1 = x2
Dqdx2 = x3

Dqdx3 = 5.5x1 − 3.5x2 − x3 − x3
1.

(3.7)

The chaotic attractor of system (3.7) for qd = 0.998 is shown in Figure 5.
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Figure 3: The modified function projective synchronization errors between the fractional-order Lorenz
system (3.1) and the fractional-order hyperchaotic system (3.2).
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Figure 4: Hyperchaotic attractors of the fractional-order hyperchaotic Lǔ system (3.6) for qr = 0.96.

Consider the fractional-order Arneodo chaotic system (3.7) with fractional-order qd =
0.998 as drive system, and the fractional-order hyperchaotic Lǔ system (3.6) with fractional-
order qr = 0.96 as response system. According to the above mentioned, we can yield

Fr
(
y
) − Fr(M(x)x) = D1

(
x, y
)
e =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−36 36 0 1

−y3 20 −
3∑

j=1
M1jxj 0

y2
3∑

j=1
M1jxj −3 0

y3 0
3∑

j=1
M1jxj −1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

e. (3.8)
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Figure 5: Chaotic attractors of the fractional-order Arneodo chaotic system (3.7) for qd = 0.998.

Now, we can choose

D2
(
x, y
)
=

⎛

⎜⎜⎜⎜⎜
⎝

0 0 −y2 0
−36 + y3 −21 0 0

0 0 0 −
3∑

j=1
M1jxj

−1 − y3 0 0 0

⎞

⎟⎟⎟⎟⎟
⎠
. (3.9)

So,

D1
(
x, y
)
+D2

(
x, y
)
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−36 36 −y2 1

−36 −1 −
3∑

j=1
M1jxj 0

y2
3∑

j=1
M1jxj −3 −

3∑

j=1
M1jxj

−1 0
3∑

j=1
M1jxj −1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (3.10)

According to above theorem, the MFPS between the 4-dimensional fractional-order
hyperchaotic Lǔ system (3.6) and the 3-dimensional fractional-order Arneodo chaotic system

(3.7) can be achieved. For example, choose M(x) =

(
1+x2 0 0
0 1+x3 0
0 0 0.5+x1
1 1−x1 1

)

. The corresponding

numerical result is shown in Figure 6, in which the initial conditions are x(0) = (2, 2, 2)T , and
y(0) = (11, 10, 11, 2)T , respectively.

4. Conclusions

In this paper, based on the stability theory of the fractional-order system and the tracking
control, a modified function projective synchronization scheme for different dimension
fractional-order chaotic systems is addressed. The derived method in the present paper
shows that the modified function projective synchronization between drive system and
response systemwith different dimensions can be achieved. The modified function projective
synchronization between 3-dimensional fractional-order Lorenz system and 4-dimensional
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Figure 6: The modified function projective synchronization errors between the fractional-order system
(3.6) and the following fractional-order system:

fractional-order hyperchaotic system, and the modified function projective synchronization
between the 4-dimensional fractional-order hyperchaotic Lǔ system, and the 3-dimensional
fractional-order Arneodo chaotic system, are chosen to illustrate the proposed method.
Numerical experiments shows that the present method works very well, which can be used
for other chaotic systems.
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