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A problem of the gyroscopic motions around a fixed point, under the action of a gyrostatic moment
vector, in presence of electromagnetic field andNewtonian one, is considered. The small parameter
technique is used to investigate the periodic solutions for the derived equations of such motion
problem. A geometric interpretation of motion will be given in terms of Euler’s angles (θ, ψ, φ).
Computer programs are carried out to integrate the attained quasilinear autonomous system using
a fourth-order Runge-Kutta method. A comparison between the obtained analytical solutions and
the numerical ones is investigated to calculate the errors between them.

1. Introduction

The problem of motion of a nonsymmetric rigid body rotating around a fixed point, under the
action of a central Newtonian field of force exerted by one center of attraction, is considered
in [1]. The angular momentum principle is applied to deduce the equations of motion of
the body [2]. These equations represent an autonomous system of six nonlinear ordinary
differential equations describing the motion of the body [3]. The first integrals for such
system are obtained in [4]. Euler, Lagrange and the kinetic symmetry cases are studied in
[5–7]. Numerical solutions for this system are obtained using the fourth-order Runge-Kutta
method [8]. The influence of the characteristic parameters of the body is obtained in [9] to
describe the motion. Two cases of study are given: the first, when the attracting center lies on
the vertical downward, and the second, when the attracting center lies on the vertical upward
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Figure 1: Description of the motion.

[10]. In [5, 6] the author showed that the fourth algebraic integral exists only in two special
cases analogous to those of Euler and Lagrange besides the case of kinetic symmetry of the
body. The other cases with single-valued integrals are really not new cases but can be reduced
to the previous two cases. In [11] the authors study necessary and sufficient conditions for
the existence of an additional algebraic integral named, the fourth first integral. In [12], Amer
studied the motion of a gyrostat similar to Lagrange’s gyroscope under the influence of a
gyrostatic moment vector in the uniform gravity field (only theweightmg acted on the body).

In the present study, an electromagnetic gyroscopic motion is considered (in presence
of uniform force field, Newtonian one, perturbed torques, and restoring ones) as one of the
important problems in mechanics. The importance of this problem is due to its important
applications in aeroplanes, space crafts, submarines, and compasses. The aim of this study is
to give analytical solutions and numerical ones for such problem. The averaging technique
[13] is used to investigate the first order approximate analytical solutions. On the other
hand, fourth-order Runge-Kutta method [8] is used to investigate the numerical solutions
for the derived system of equations of motion. Errors between both obtained solutions are
considered.

2. Formulation of the Problem

Consider a dynamically symmetrical gyro of weight mg acted on its center of mass c directed
along a fixed point O in space, (see Figure 1). Two systems of references are achieved: a
fixed one OXYZ, in such a way that the point O1 lies in the negative part of axis OZ at a
constant distance R = OO1 and another mobile one Oxyz fixed in the body, and whose axes
are directed along the principal axes of inertia of the body at O. The gyro was acted upon by
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the gravity mg; the Newtonian force N due to the center O1 when the mutual potential V
is approximated by V (2) where V (2) represents the second approximation term of V , that is,
V = V (0) + εV (1) + ε2V (2); the action of a variable restoring torques kj , j = 1, 2 and perturbing
torques τi, (i = 1, 2, 3). Consider a restoring torque due to the gravity g in the form:

k1 = mg�; � = Oc. (2.1)

If the gyro rotates around the fixed point in an electromagnetic field of strength B (B is
vertical) and a point charge Q on the axis of symmetry, the restoring torque k2 comes from
the Newtonian field and the Lorentz forceQ(V ∧B) [14], where V is the linear velocity vector
of the gyro, that is, V = ω ∧ �′, �′ = (0, 0, �′), ω is the angular velocity vector of such gyro,
and �′ is the position of the point charge Q from the fixed point O. Let k2 takes the form

k2 = QB �′
2 cos θ

∣
∣
(

ωy,−ωx, 0
)∣
∣ +N(Izz − Ixx) cos θ, (2.2)

where k2 depends on the components of the angular velocity vector (ωx,ωy); the principal
moments of inertia Ixx, Izz; and on the nutation angle θ. Equation (2.2) represents torques
coming from Newtonian electromagnetic field of strength B and a point chargeQ locating on
the axis of symmetry. Thus the gyro rotates under the force of gravity, the central Newtonian
force, and the restoring moments k = k1 + k2.

Suppose the center of mass of the body and the principal moments of inertia are

xG = yG = 0, zG = �, Ixx = Iyy /= Izz. (2.3)

The equations of motion take the form

Ixxω̇x + (Izz − Ixx)ωyωz = k sin θ cosφ + τ1 +
1
2
N(Izz − Ixx) sin 2θ cosφ,

Ixxω̇y + (Ixx − Izz)ωxωz = −k sin θ sinφ + τ2 +
1
2
N(Izz − Ixx) sin 2θ sinφ,

Izzω̇z = τ3, τi = τi
(

ωx,ωy,ωz, ψ, θ, φ, t
)

, i = 1, 2, 3,

θ̇ = ωx cosφ −ωy sinφ,

φ̇ = ωz −
(

ωx sinφ +ωy cosφ
)

cot θ,

ψ̇ = cosec θ
(

ωx sinφ +ωy cosφ
)

.

(2.4)

Here (2.4) are two vector equations represented in two groups; the first three equations
represent the components of the first vector equation. The last three equations represent the
components of the second vector equation. The symbols (ωx,ωy,ωz) and τi, i = 1, 2, 3 are the
projections of the vectors of angular velocity and perturbing torques onto the principal axes
of inertia of the body passing through O; Ixx and Izz are the equatorial and axial moments of
inertia of the body relative to the fixed point; θ, ψ, and φ are the Euler’s angles andN = 3λ/R,
where λ is the gravitational constant.
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The perturbing torques τi in (2.4) are assumed to be known functions of their
arguments. For τi = 0, i = 1, 2, 3, (2.4) correspond to the case analogous to that of Lagrange-
Poisson [6], and, for τ = N = 0, they give the Lagrange-Poisson case in the uniform gravity
field.

Also (2.4), with N = 0, describe the motion of Lagrange’s top acted upon by
perturbations of various physical origin, as well as motion of a free rigid body relative to the
center of mass when this body is acted upon by a restoring torque generated by aerodynamics
forces and certain perturbing torques.

Consider the following initial assumptions:

ω2
x +ω

2
y � ω2

z, ω2
z � k, |τi| � k, i = 1, 2, τ3 ≈ k. (2.5)

The assumptions (2.5) mean that the direction of the angular velocity of the gyro is close to
the axis of the dynamic symmetry, and the angular velocity is large, so that the kinetic energy
of the gyro is much greater than the potential energy resulting from the restoring torque
and two projections of the perturbing torque vector onto the principal axes of inertia of the
gyro are small as compared to the restoring torque while the third is of the same order of
magnitude as this torque. The assumptions (2.5) allow us to introduce the small parameter ε
and to set

ωx = εΩx, ωy = εΩy, k = εK,

τi = ε2τ∗i
(

ωx,ωy,ωz, ψ, θ, φ, t
)

, i = 1, 2,

τ3 = ετ∗3
(

ωx,ωy,ωz, ψ, θ, φ, t
)

.

(2.6)

The new variables Ωx and Ωy as well as the variables and constants ωx, ψ, θ, φ, K,
Ixx, Izz, τ

∗
i , i = 1, 2, 3 are assumed to be bounded quantities of order unity as ε tends to zero.

The aim of this research is to investigate the asymptotic behavior of the solutions of system
(2.4), for small ε, when conditions (2.5) and (2.6) are satisfied. This will be done by using the
averaging method which is extensively applied in problems of dynamics of rigid bodies on a
time interval of order ε−1. This method was employed to investigate a variety of problems of
dynamics, chiefly for bodies with dynamic symmetry.

The ensemble of simplifying assumptions (2.5) and (2.6) made in this work enables
us to obtain a relatively simple averaging scheme in the general case and to exhaustively
investigate the following cases.

2.1. The Case of Variable Restoring Torque

The resultant of restoring torque, K, taking into account (2.5) and (2.6), can be written in the
form

K = mg� +QB �′2 cos θ
∣
∣
(

ωy,−ωx, 0
)∣
∣ +N(Izz − Ixx) cos θ. (2.7)
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Equation (2.7) is the total restoring torque that comes out from the motion of the gyro under
the action of uniform force field, Newtonian one, and the perturbed torques. Making use of
(2.4), (2.6), and (2.7) and omitting ε on both sides of the first two equations, one obtains

IxxΩ̇x + (Izz − Ixx)Ωyωz = K sin θ cosφ + ετ∗1 ,

IxxΩ̇y + (Ixx − Izz)Ωxωz = −K sin θ sinφ + ετ∗2 ,

Izzω̇z = ετ∗3 ,

θ̇ = ε
(

Ωx cosφ −Ωy sinφ
)

,

φ̇ = ωz − ε
(

Ωx sinφ + Ωy cosφ
)

cot θ,

ψ̇ = ε
(

Ωx sinφ + Ωy cosφ
)

cosec θ.

(2.8)

The last four equations in (2.8) for the zero approximation give

ωz = (ωz)o, ψ = ψo, θ = θo, φ = (ωz)ot + φo, (2.9)

where (ωz)0, ψ0, θ0, and φ0 are constants equal to the initial values of the corresponding
variables for t = 0.

Substituting (2.9) into the first two equations of system (2.8) for ε = 0 yields

Ω̈x + n2oΩx = Ko[no − (ωz)o](Ixx)
−1 sin θo sin

[

(ωz)ot + φo
]

,

Ω̈y + n2oΩy = Ko[no − (ωz)o](Ixx)
−1 sin θo cos

[

(ωz)ot + φo
]

.
(2.10)

Solving system (2.10), one obtains

Ωx = a cos γ0 + b sin γ0 +K0(Izz − Ixx)−1(ωz)−10 sin θ0 sin
[

(ωz)0t + φ0
]

,

Ωy = a sin γ0 − b cos γ0 +K0(Izz − Ixx)−1(ωz)−10 sin θ0 cos
[

(ωz)0t + φ0
]

,
(2.11)

where

a = (Ωx)0 −K0(Izz − Ixx)−1(ωz)−10 sin θ0 sinφ0,

b = −(Ωy

)

0 +K0(Izz − Ixx)−1(ωz)−10 sin θ0 cosφ0,

γ0 = n0t, n0 = (Izz − Ixx)(Ixx)−1(ωz)0 /= 0,
∣
∣
∣
∣

n0
(ωz)0

∣
∣
∣
∣
≤ 1.

(2.12)

Here (Ωx)0 and (Ωy)0 are the initial values of the new variables Ωx and Ωy introduced in
accordance with (2.6), while γo is the oscillation phase of the generating system.

The last condition of (2.12) shows that the initial fast spin of the gyrostat is assumed
to be given about the minor axis of the ellipsoid of inertia (Ixx = Iyy < Izz).



6 Journal of Applied Mathematics

System (2.8) is essentially nonlinear and therefore we introduce the additional variable
γ defined by the relation

dγ

dt
= n, γ(0) = 0. (2.13)

For ε = 0, we have γ = γo = not in accordance with (2.12). Equations (2.9), (2.11) define the
general solution of system (2.8) and (2.13) for ε = 0. Eliminating the constants with allowance
of (2.9), it is possible to rewrite (2.11) in equivalent form

Ωx = a cos γ + b sin γ +K0(Izz − Ixx)−1(ωz)−1 sin θ sinφ,

Ωy = a sin γ − b cos γ +K0(Izz − Ixx)−1(ωz)−1 sin θ cosφ,
(2.14)

where a and b are in the form

a = Ωx cos γ + Ωy sin γ −K(Izz − Ixx)−1(ωz)−1 sin θ sin
(

γ + φ
)

,

b = Ωy sin γ −Ωy cos γ +K0(Izz − Ixx)−1(ωz)−1 sin θ cos
(

γ + φ
)

,
(2.15)

which defines a change of variables Ωx and Ωy to variables a and b of Van der Pol type [15]
and vice versa. Using (2.8) and (2.13), we convert from the variables Ωx,Ωy, ωz, ψ, θ, φ, γ to
the new variables a, b,ωz, ψ, θ, φ, α, γ , where

α = γ + φ. (2.16)

After some manipulations, we obtain a system of seven equations as follows:

ȧ = ε(Ixx)−1
[

τo1 cos γ + τ
o
2 sin γ

] − εK(Izzωz)−1 cos θ
[

b −K(Izzωz)−1 sin θ cosα
]

+ εK(Izzωz)−2τo3 sin θ sinα + ε sinα
(

f2 − f1
)

,

ḃ = ε(Ixx)−1
[

τo1 sin γ − τo2 cos γ
]

+ εK(Izzωz)−1 cos θ
[

a −K(Izzωz)−1 sin θ sinα
]

− εK(Izzωz)−2τo3 sin θ cosα + ε cosα
(

f2 − f1
)

,

ω̇z = ε(Izz)−1τ03 ,

ψ̇ = ε cosec θ(a sinα − b cosα) + εK(Izz − Ixx)−1(ωz)−1,

θ̇ = ε(a cosα + b sinα),

α̇ = Izz(Ixx)−1ωz − ε cot θ(a sinα − b cosα) + εK cos θ(Izz − Ixx)−1(ωz)−1,

γ̇ = (Izz − Ixx)(Ixx)−1ωz,

(2.17)

where

f1 =
1
2
(Izzωz)−1BQ�′ sin θ

[
1
2
(Izz)−1τo3 (3 − cos 2θ) −

(
Izz
Ixx

− 1
)

ωz sin 2θ(a cosα + b sinα)
]

,

f2 = (Izzωz)−1sin2θN(Izz − Ixx)(a cosα + b sinα).
(2.18)
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τoi denote functions obtained from τ∗i as a result of substitution of (2.14) into (2.17), that is,

τoi
(

a, b,ωz, ψ, θ, α, γ, t
)

= τ∗i
(

Ωx,Ωy, ωz, ψ, θ, φ, t
)

, i = 1, 2, 3. (2.19)

We introduce a vectorXwhose components are the slow variables a, b, ωz, ψ, and θ of system
(2.17). Thus, this system can be written in the form

Ẋ = εX
(

x, α, γ, t
)

, α̇ = Izz(Ixx)−1ωz + εY (x, α),

γ̇ = (Izz − Ixx)(Ixx)−1ωz, x(0) = xo, α(0) = αo, γ(0) = 0,
(2.20)

where the vector-valued function X and the scalar function Y are defined by the right-hand
sides of (2.17). The initial values of X and Y can be obtained in accordance with (2.9)
to (2.13) and (2.16). Consider system (2.17) or (2.20) from the stand point of employing
the averaging method. System (2.17) contains the slow variables a, b, ωz, ψ, and θ and fast
variables represented by the phases α, γ and time t. This system is essentially nonlinear and
it is extremely difficult to employ the averaging method directly. Let us assume, for the sake
of simplicity, that the perturbing torques τ∗i are independent of t. Since τi, i = 1, 2, 3, are 2π-
periodic in φ, it follows, in accordance with (2.14) to (2.17), that the functions τ∗i from (2.19)
will be 2π-periodic functions of α and γ . Then system (2.20) contains two rotating phases α
and γ and two corresponding frequencies Izz(Ixx)

−1ωz and (Izz − Ixx)(Ixx)−1ωz.
In averaging system (2.17) or (2.20), two cases should be distinguished.

(1) A nonresonant case, when frequencies Izz(Ixx)
−1ωz and (Izz − Ixx)(Ixx)

−1ωz are
noncommensurable.

(2) A resonant case, when these frequencies are commensurable.

A very important feature of system (2.20) is the fact that the ratio of the frequencies is
constant (Izz − Ixx)(Ixx)−1ωz/Izz(Ixx)

−1ωz = 1 − Ixx(Izz)−1 and the resonant case occurs for

Izz
Ixx

=
i

j
,

i

j
≤ 2, (2.21)

where i and j are relatively prime natural numbers, while in the non-resonant case Izz/Ixx is
an irrational number.

As a result of (2.21), averaging of nonlinear system (2.20), in which X is independent
of t, is equivalent to averaging of a quasilinear system with constant frequencies; this can be
achieved by introducing the independent variable γ . In the non-resonant case Izz/Ixx /= i/j,
we obtain the first approximation averaged system by averaging the right sides of system
(2.17)with respect to the fast variables α and γ . As a result, we obtain the following equations
for the slow variables:

ȧ = ε(Ixx)−1μ1 − εK(Izzωz)−1b cos θ + εK(Izzωz)−2 sin θμs3 +
1
2
ε sin θμk,

ḃ = ε(Ixx)−1μ2 + εK(Izzωz)−1a cos θ − εK(Izzωz)−2 sin θμo3 −
1
2
ε sin θμk1,

ω̇z = ε(Izz)−1 μ3, ψ̇ = εK(Izzωz)−1, θ̇ = 0,

(2.22)
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where

μ1 =
1

4π2

∫ ∫2π

0

[

τo1 cos γ + τ
o
2 sin γ

]

dαdγ,

μ2 =
1

4π2

∫ ∫2π

0

[

τo1 sin γ − τo2 cos γ
]

dαdγ,

μ3 =
1

4π2

∫ ∫2π

0
τo3dαdγ, μs3 =

1
4π2

∫ ∫2π

0
τo3 sinαdαdγ,

μo3 =
1

4π2

∫ ∫2π

0
τo3 cosαdαdγ,

μk = (Izzωz)−1N(Izz − Ixx)b sin θ − 1
2
(Izz)−2(ωz)−1BQ�′(3 − cos 2θ)μs3

+
1
2

[

(Ixx)−1 − (Izz)−1
]

BQ�′b sin 2θ,

μk1 = (Izzωz)−1N(Izz − Ixx)a sin θ − 1
2
(Izz)−2(ωz)−1BQ�′(3 − cos 2θ)μo3

+
1
2

[

(Ixx)−1 − (Izz)−1
]

BQ�′a sin 2θ.

(2.23)

Solving averaged system (2.22) for perturbing torques of specific form, we determine the
motion of the gyrostat in the non-resonant case with an error of order ε on an interval of time
variation of order ε−1.

The integration of the last equation of system (2.22) yields θ = θ0 = const.
System (2.22) is equivalent to a two-frequency system with constant frequencies, since
both frequencies are proportional to the axial component ωz of the angular velocity vector;
therefore, the applicability of the averaging method can be substantiated in the same way as
for a quasilinear system; the principal assertion involves the following.

Assume that the function X is sufficiently smooth with respect to α and γ and that it
satisfies a Lipschitz condition with respect to x , with a constant which is independent of α
and γ . Then on the plane of permissible values of the parameters Izz and Ixx there exists a
set L of measure zero such that if Izz, Ixx ∈ L, then for the solutions of system (2.20) and
(2.22) we have the bound |x(t, ε) − ζ(t, ε)| ≤ R∗ε, t ∈ [0, Oε−1] in which ζ(t, ε) is the solution
of system (2.22) averaged with respect to the phases α and γ , where ζ = (a, b,ωz, ψ, θ) and
R∗ = const. The proof can be carried out by using Gronwall’s lemma, on the basis of the
standard change of variable procedure of the averaging method, as well as the arithmetic
lemma used to estimate the “small denominators” [16].

System (2.20) is a single frequency system in the resonant case (2.21). Indeed, instead
of α we introduce a new slow variable, namely, a linear combination of the phases with
coefficients

λ = α − iγ(i − j)−1,
(
i

j

)

/= 1,
(
i

j

)

≤ 2; i, j > 0. (2.24)
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System (2.20) gives the following form of a standard system with a rotating phase

Ẋ = εX
(

x, iγ
(

i − j)−1 + λ , γ
)

,

λ̇ = εY
(

x, iγ
(

i − j)−1 + λ
)

,

γ̇ = (Izz − Ixx)(Ixx)−1ωz,

(2.25)

and its right sides are (2|i − j|π), periodic in γ . We set up first approximation system by
averaging the right sides of system (2.25)with respect to the above period of variation of the
argument γ . As a result, we obtain the following system of equations for the slow variables:

ȧ = ε(Ixx)−1 μ∗
1 − εK(Izzωz)−1 b cos θ + εK(Izzωz)−2 sin θμ∗s

3 +
1
2
ε sin θμ∗k,

ḃ = ε(Ixx)−1 μ∗
2 + εK(Izzωz)−1a cos θ − εK(Izzωz)−2 sin θμ∗o

3 − 1
2
ε sin θμ∗k1,

ω̇z = ε(Izz)−1 μ∗
3, ψ̇ = εK(Izzωz)−1 , θ̇ = 0, λ̇ = −εK(Izzωz)−1 cos θ,

(2.26)

where

μ∗
1

(

a, b,ωz, ψ, θ, λ
)

=
1

2π
∣
∣i − j∣∣

∫2π |i−j|

0

[

τo1 cos γ + τ
o
2 sin γ

]

dγ,

μ∗
2
(

a, b,ωz, ψ, θ, λ
)

=
1

2π
∣
∣i − j∣∣

∫2π |i−j|

0

[

τo1 sin γ + τ
o
2 cos γ

]

dγ,

μ∗
3
(

a, b,ωz, ψ, θ, λ
)

=
1

2π
∣
∣i − j∣∣

∫2π |i−j|

0
τo3dγ,

μ∗s
3

(

a, b,ωz, ψ, θ, λ
)

=
1

2π
∣
∣i − j∣∣

∫2π |i−j|

0
τo3 sin

[

λ + iγ
(

i − j)−1
]

dγ,

μ∗o
3

(

a, b,ωz, ψ, θ, λ
)

=
1

2π
∣
∣i − j∣∣

∫2π |i−j|

0
τo3 cos

[

λ + iγ
(

i − j)−1
]

dγ,

μ∗k(a, b,ωz, ψ, θ, λ
)

= (Izzωz)−1N(Izz − Ixx)b sin θ − 1
2
(Izz)−2(ωz)−1BQ�′(3 − cos 2θ)μ∗s

3

+
1
2

[

(Ixx)−1 − (Izz)−1
]

BQ�′b sin 2θ,

μ∗k1(a, b,ωz, ψ, θ, λ
)

= (Izzωz)−1N(Izz − Ixx)a sin θ − 1
2
(Izz)−2(ωz)−1BQ�′(3 − cos 2θ)μ∗o

3

+
1
2

[

(Ixx)−1 − (Izz)−1
]

BQ�′b sin 2θ.

(2.27)

Therefore, the motion of the gyrostat in the resonant case can be substantiated.
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3. The Case of the Sum of Constant and Linear Dissipative
Perturbed Torques

Let us consider a perturbed motion analogous to that of Lagrange case with allowance for
the torques acting on our gyrostat from the environment. We will assume that the perturbing
torques τi, i = 1, 2, 3, are linear dissipative

τ1 = −εI1ωx, τ2 = −εI1ωy, τ3 = −εI3ωz + ετ∗3 ; I1, I3 > 0 (3.1)

where I1 and I3 are constants depending on the properties of the medium and the shape of
the gyro. Let us write the perturbing torques with allowance for expressions (2.6) for ωx and
ωy

τ1 = −ε2I1Ωx, τ2 = −ε2I1Ωy, τ3 = −εI3ωz + ετ∗3 ; I1, I3 > 0, (3.2)

For the fundamental oscillations (nonresonant case), we change over to new slow variables
a, b, ωz, ψ, and θ, the averaged system (2.22) takes the form

ȧ = εaI1(Ixx)−1 − εb(Izzωz)−1K cos θ

− 1
2
bε sin θ

{

(Izzωz)−1N sin θ(Ixx − Izz) + 1
2
BQ�′ sin 2θ

[

(Izz)−1 − (Ixx)−1
]}

,

ḃ = − εbI1(Ixx)−1 + εa(Izzωz)−1K cos θ

+
1
2
aε sin θ

{

(Izzωz)−1N sin θ(Ixx − Izz) + 1
2
BQ�′ sin 2θ

[

(Izz)−1 − (Ixx)−1
]}

,

ω̇z = −ε(Izz)−1
(

I3ωz − τ∗3
)

, ψ̇ = εK(Izzωz)−1, θ̇ = 0.

(3.3)

Integrating the third equation in (3.3), we obtain

ωz =
[

(ωz)o − τ∗3 I−13
]

exp
[

−ε(Izz)−1I3t
]

+ τ∗3 I
−1
3 . (3.4)

Equation (3.3) for ψ̇ can be integrated with allowance for (3.4) to yield

ψ = ψo +K
(

τ∗3
)−1 ln

∣
∣
∣
∣
∣
∣
∣

1 +
[

(ωz)oI3τ
∗−1
3 − 1

]

exp
[

−ε(Izz )−1I3t
]

(ωz)oI3τ
∗−1
3

∣
∣
∣
∣
∣
∣
∣

+ εKI3
(

Izzτ
∗
3
)−1

t. (3.5)

From the last equation of (3.3), it is easy to see that the angle of nutation maintains constant
value, that is,

θ = θo. (3.6)
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Making use of (3.3), (3.4), (3.5) and (3.6), one obtains

a = − bIxxI3K1
(

IzzI1τ
∗
3
)−1 − 1

2
BQ�′bI−11

[

Ixx(Izz)−1 − 1
]

sin2θo cos θo

− ε2bI3(Izz)−1τ∗−13 K1

[

I1(Ixx)−1 + (Izz)−1τ∗3 (ωz)−1o
]

+ χ1 exp
[

−εI1(Ixx)−1t
]

,

b = − 1
2
I−11 BQ�′

[

1 − Ixx(Izz)−1
]

sin2θo cos θo + Ixx(ωz)−1o a(Izz)
−1K1

− ε2a(ωz)2o(Izz)
−2[(ωz)oI3 − τ∗3

]

K1 + χ2 exp
[

−εI1(Ixx)−1t
]

,

(3.7)

where

K1 = [K +N(Ixx − Izz) sin θo] cos θo,

χ1 = (Ωx)o −Ko(Izz)−1(ωz)−1o sin θo sinφo − I−11 (Izz)−1

×
[(

Ωy

)

o
−Ko(Izz)−1(ωz)−1o sin θo cosφo

][

AI3K1τ
∗−1
3 +

1
2
BQ�′(Ixx − Izz)sin2θo cos θo

]

,

χ2 = − (

Ωy

)

o
+Ko(Izz)−1(ωz)−1o sin θo cosφo − I−11 (Izz)−1

×
[

(Ωx)o −Ko(Izz)−1(ωz)−1o sin θo sinφo
][1

2
BQ�′(Ixx − Izz)sin2θo cos θo + Ixx(ωz)−1o K1

]

.

(3.8)

4. Discussion of the Solutions

In this section we give a qualitative analysis of the results obtained, several diagrams, and
explanations.

The solutions of the first approximation system for the slow variables in the case
of dissipative torque (3.1) are constructed. If resonance relation (2.21) is satisfied, then
averaging should be performed in accordancewith scheme (2.26). In this case, all the integrals
μ∗
i from (2.26) coincide with the corresponding integrals μi of (2.22). Therefore resonance in

effect does not accrue and the resultant solution is suitable for describing motion for any ratio
Izz/Ixx /= 1. The motion considered in this paper is interpreted by obtaining Euler’s angles of
nutation θ, precession ψ, and pure rotation φ. We conclude from (3.6) and (3.5) that the
nutation angle θ remains constant through the motion, while the precession angle ψ depends
on time t. For zero-order approximation of ε, we note that

θ̇ = 0, ψ̇ = 0, φ̇ = (ωz)o, (4.1)

that is, the case of permanent rotation with fast spin ro of the gyro about its axis of symmetry
is obtained (see Figure 2).



12 Journal of Applied Mathematics

Z

z

y

Y

X x

O

O

1

φψ

θ

ϕ̇ =

Figure 2: Euler’s angles.

98

100

102

104

106

108

110

112

0 50 100 150 200 250 300

Time

A
ng

ul
ar

 v
el

oc
it

y

Analytical solutions (Q = 100)
Numerical solutions (Q = 100)

Figure 3: The angular velocity ω against time when Q = 100.

5. Numerical Results

The fourth-order Runge-Kutta method [8] is used through a computer program to investigate
the numerical solutions for the derived system (2.4) of equations of motion. The angular

velocity ω =
√

ω2
x +ω2

y +ω2
z obtained from the numerical solutions is represented graphi-

cally, in the form of dashed curves, against the time twith different values of the point charge
Q = 100 and 200 gauss and different initial values of the nutation angle. On the other hand
the angular velocityω obtained analytically from the averaging technique is graphed through
continuous curves. Both dashes and continuous curves are given together in Figures 3 and 4.
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Figure 4: The angular velocity ω against time when Q = 200.

From these figures we conclude that the angular velocityω increases when the point chargeQ
increases and vice versa and also that the analytical solutions are very close to the numerical
ones especially when the charge Q is small (that is the errors between the analytical and the
numerical solutions are negligible).
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