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This paper proposes a discontinuous finite volume method for the Darcy-Stokes equations. An
optimal error estimate for the approximation of velocity is obtained in a mesh-dependent norm.
First-order L2-error estimates are derived for the approximations of both velocity and pressure.
Some numerical examples verifying the theoretical predictions are presented.

1. Introduction

The study of discontinuous Galerkin methods has been a very active research field since
they were proposed by Reed and Hill [1] in 1973. Discontinuous Galerkin methods use
discontinuous functions as finite element approximation and enforce the connections of
the approximate solutions between elements by adding some penalty terms. The flexibility
of discontinuous functions gives discontinuous Galerkin methods many advantages, such
as high parallelizability and localizability. Arnold et al. [2] provided a framework for
the analysis of a large class of discontinuous Galerkin methods for second-order elliptic
problems.

Based on the advantages of using discontinuous functions for approximation in
discontinuous Galerkin methods, it is natural to consider using discontinuous functions as
trial functions in the finite volume method, which is called the discontinuous finite volume
method. Such a method has the flexibility of the discontinuous Galerkin method and the
simplicity and conservative properties of the finite volume method. Ye [3] developed a new
discontinuous finite volume method and analyzed it for the second-order elliptic problem. Bi
and Geng [4] proposed the semidiscrete and the backward Euler fully discrete discontinuous
finite volume element methods for the second-order parabolic problems. Ye [5] considered
the discontinuous finite volume method for solving the Stokes problems on both triangular
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and rectangular meshes and derived an optimal order error estimate for the approximation of
velocity in a mesh-dependent norm and first-order L2-error estimates for the approximations
of both velocity and pressure.

The Darcy-Stokes problem is interesting for a variety of reasons. Apart from being a
modeling tool in its own right, it also appears, less obviously, in time-stepping methods for
Stokes and for high Reynolds number flows (where of course the convective term causes
additional difficulties). In [6], the nonconforming Crouzeix-Raviart element is stabilized
for the Darcy-Stokes problem with terms motivated by a discontinuous Galerkin approach.
In [7], a new stabilized mixed finite element method is presented for the Darcy-Stokes
equations.

In this paper, we will extend the discontinuous finite volume methods to solve
the Darcy-Stokes equations. In our methods, velocity is approximated by discontinuous
piecewise linear functions on triangular meshes and by discontinuous piecewise rotated
bilinear functions on rectangular meshes. Piecewise constant functions are used as the test
functions for velocity in the discontinuous finite volume methods. We obtained an optimal
error estimate for the approximation of velocity in a mesh-dependent norm. First-order L2-
error estimates are derived for the approximations of both velocity and pressure. For the sake
of simplicity and easy presentation of the main ideas of our method, we restrict ourselves to
the model problem.

We consider the Darcy-Stokes equations

σu − μΔu +∇p = f, x ∈ Ω, (1.1a)

∇ · u = 0, x ∈ Ω, (1.1b)

u = 0, x ∈ ∂Ω, (1.1c)

whereΩ is a bounded polygonal domain in R2 with boundary ∂Ω. u = (u1, u2) is the velocity,
p is the pressure, and f is a given force term. We assume σ = 1, μ = 1.

2. Discontinuous Finite Volume Formulation

Let Rh be a triangular or rectangular partition of Ω. The triangles or rectangles in Rh are
divided into three or four subtriangles by connecting the barycenter of the triangle or the
center of the rectangles to their corner nodes, respectively. Then we define the dual partition
Th of the primal partition Rh to be the union of the triangles shown in Figures 1 and 2 for
both triangular and rectangular meshes.

Let Pk(T) consist of all the polynomials with degree less than or equal to k defined on
T . We define the finite dimensional trial function space for velocity on a triangular partition
by

Vh =
{
v ∈ L2(Ω)2 : v|K ∈ P1(K)2, ∀ K ∈ Rh

}
(2.1)

and on rectangular partition by

Vh =
{
v ∈ L2(Ω)2 : v|K ∈ Q̂1(K)2, ∀ K ∈ Rh

}
, (2.2)

where Q̂1 denotes the space of functions of the form a + bx1 + cx2 + d(x2
1 − x2

2) on K.
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Figure 1: Element T ∈ Th for triangular mesh.
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Figure 2: Element T ∈ Th for rectangular mesh.

Let Qh be the finite dimensional space for pressure

Qh =
{
q ∈ L2

0(Ω) : q
∣∣
K ∈ P0(K), ∀K ∈ Rh

}
, (2.3)

where

L2
0(Ω) =

{
q ∈ L2(Ω) :

∫

Ω
q dx = 0

}
. (2.4)

Define the finite dimensional test function space Wh for velocity associated with the dual
partition Th as

Wh =
{
ξ ∈ L2(Ω)2 : ξ|T ∈ P0(T)2, ∀ T ∈ Th

}
. (2.5)
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Multiplying (1.1a) and (1.1b) by ξ ∈ Wh and q ∈ Qh, respectively, we have

(u, ξ) −
∑
T∈Th

∫

∂T

∂u
∂n

· ξds +
∑
T∈Th

∫

∂T

pξ · nds = (f, ξ),

∑
K∈Rh

∫

K

∇ · uq dx = 0,

(2.6)

where n is the unit outward normal vector on ∂T .
Let Tj ∈ Th (j = 1, . . . , t) be the triangles in K ∈ Rh, where t = 3 for triangular meshes

and t = 4 for rectangular meshes, as shown as Figures 3 and 4. Then we have

∑
T∈Th

∫

∂T

∂u
∂n

· ξ ds =
∑
K∈Rh

t∑
j=1

∫

Aj+1CAj

∂u
∂n

· ξ ds +
∑
K∈Rh

∫

∂K

∂u
∂n

· ξ ds, (2.7)

where At+1 = A1.
For vectors v = (v1, v2) and n = (n1, n2), let v ⊗ n denote the matrix whose ijth

component is vi · nj as in [5]. For two matrix valued variables σ and τ , we define σ : τ =∑2
i,j=1 σi,jτi,j . Let Γ =

∑
K∈Rh

∂K, Γ0 = Γ \ ∂Ω. Let e be an interior edge shared by two elements
K1 andK2 inRh. We define the average {·} and jump [·] on e for scalar q, vectorw, andmatrix
τ , respectively. If e ∈ Γ0,

{
q
}
=

1
2
(
q|∂K1 + q|∂K2

)
, {w} =

1
2
(w|∂K1 +w|∂K2), {τ} =

1
2
(τ |∂K1 + τ |∂K2),

[
q
]
= q|∂K1n1 + q|∂K2n2, [w] = w|∂K1 · n1 +w|∂K2 · n2, [τ] = τ |∂K1 · n1 + τ |∂K2 · n2,

(2.8)

where n1 and n2 are unit normal vectors on e pointing exterior toK1 andK2, respectively. We
also define a matrix valued jump �·� for a vector w as

�w� = w|∂K1 ⊗ n1 +w|∂K2 ⊗ n2. (2.9)

If e ∈ ∂Ω, define

{
q
}
= q, [w] = w · n, {τ} = τ, �w� = w ⊗ n. (2.10)

A straightforward computation gives

∑
K∈Rh

∫

∂K

qv · nds =
∑
e∈Γ0

∫

e

[
q
]
· {v}ds +

∑
e∈Γ

∫

e

{
q
}
[v]ds, (2.11)

∑
K∈Rh

∫

∂K

v · τnds =
∑
e∈Γ0

∫

e

[τ] · {v}ds +
∑
e∈Γ

∫

e

{τ} : �v�ds. (2.12)



Journal of Applied Mathematics 5

P2

P1 P3

A2 A3

A1

C

T1 T3

T2

Figure 3: Triangular partition and its dual.

Let
∫
Γ qds =

∑
e∈Γ

∫
e qds. Using (2.7), (2.12), and the fact that [∇u] = 0 for u ∈ (H1

0(Ω)∩H2(Ω))2

on Γ0, (2.7) becomes

∑
T∈Th

∫

∂T

∂u
∂n

· ξds =
∑
K∈Rh

t∑
j=1

∫

Aj+1CAj

∂u
∂n

· ξ ds +
∫

Γ
�ξ� : {∇u}ds. (2.13)

Since [p] = 0 for p ∈ H1(Ω) on Γ0, we also have

∑
T∈Th

∫

∂T

pξ · nds =
∑
K∈Rh

t∑
j=1

∫

Aj+1CAj

pξ · nds +
∫

Γ

{
p
}
[ξ]ds. (2.14)

Let V (h) = Vh + (H2(Ω) ∩H1
0(Ω))2. Define a mapping γ : V (h) → Wh,

γv|T =
1
he

∫

e

v|Tds, ∀T ∈ Th, (2.15)

where he is the length of the edge e.
We define two norms for V (h) as follows:

‖|v‖|21 = ‖v‖21,h +
∑
e∈Γ

�γv�2e,

‖|v‖|2 = ‖|v‖|21 +
∑
K∈Rh

h2
K|v|

2
2,K,

(2.16)

where ‖v‖21,h = |v|20,h + |v|21,h, |v|
2
0,h =

∑
K∈Rh

|v|20,K,|v|
2
1,h =

∑
K∈Rh

|v|21,K, and hK = diameter ofK.
As in [5], the standard inverse inequality implies that there is a constant C such that

‖|v‖| ≤ C‖|v‖|1, ∀v ∈ Vh. (2.17)
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Lemma 2.1. There exists a positive constant C independent of h such that

h‖|v‖| ≤ C‖v‖ , ‖v‖ ≤ C‖|v‖|, ∀v ∈ Vh. (2.18)

Proof. As in [4],

h‖|v|‖1,h ≤ C‖v‖, ‖v‖ ≤ C‖|v|‖1,h, ∀v ∈ Vh, (2.19)

where ‖|v‖|21,h = |v|21,h+
∑

e∈Γ �γv�2e+
∑

K∈Rh
h2
K|v|

2
2,K. Since ‖|v‖|1,h ≤ ‖|v‖|, we have ‖v‖ ≤ C‖|v‖|.

Note that v ∈ Vh is a piecewise linear function, and h2‖|v‖|2 = h2|v|20,h+h
2|v|21,h+h

2∑
e∈Γ �γv�2e =

I1 + I2 + I3. By Lemma 3.6 in [4], I2 ≤ C‖v‖2, I3 ≤ C‖v‖2, we have h‖|v‖| ≤ C‖v‖.

Lemma 2.2 (see [4]). The operator γ is self-adjoint with respect to the L2-inner product, (u, γv) =
(v, γu), ∀u,v ∈ Vh. Define ‖|v‖|0 = (v, γv)1/2. Then ‖| · ‖|0 and ‖ · ‖ are equivalent; here the
equivalence constants are independent of h. And ‖γv‖ = ‖v‖, ∀v ∈ Vh.

Let

a0(v, ξ) = (v, ξ) −
∑
K∈Rh

t∑
j=1

∫

Aj+1CAj

∂v
∂n

· ξ ds −
∫

Γ
�ξ� : {∇v}ds,

c
(
ξ, q
)
=
∑
K∈Rh

t∑
j=1

∫

Aj+1CAj

qξ · nds +
∫

Γ

{
q
}
[ξ]ds,

b0
(
v, q
)
=
∑
K∈Rh

∫

K

∇ · vq dx.

(2.20)

It is clear that the solutions (u, p) of the Darcy-Stokes equations (1.1a)–(1.1c) satisfy the
following:

a0(u, ξ) + c
(
ξ, p
)
= (f, ξ), ∀ξ ∈ Wh,

b0
(
u, q
)
= 0, ∀q ∈ Qh.

(2.21)

Define the following bilinear forms:

A0(v,w) = a0
(
v, γw

)
, ∀w,v ∈ V (h),

B0
(
v, q
)
= b0
(
v, q
)
, ∀v ∈ V (h), ∀q ∈ L2

0(Ω),

C
(
v, q
)
= c
(
γv, q

)
, ∀v ∈ V (h), ∀q ∈ L2

0(Ω).

(2.22)

Then systems (2.21) are equivalent to

A0(u,v) + C
(
v, p
)
=
(
f, γv

)
, ∀v ∈ Vh,

B0
(
u, q
)
= 0, ∀q ∈ Qh.

(2.23)
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We propose two discontinuous finite volume formulations based on modification of
the weak formulation (2.23) for Darcy-Stokes problem (1.1a)–(1.1c). Let us introduce the
bilinear forms as follows:

A1(v,w) = A0(v,w) + α
∑
e∈Γ

�γv�e : �γw�e,

B
(
v, q
)
= B0

(
v, q
)
−
∫

Γ

{
q
}[
γv
]
ds,

(2.24)

where α > 0 is a parameter to be determined later. For the exact solution (u, p) of (1.1a)–(1.1c),
we have

A0(u,v) = A1(u,v), ∀v ∈ Vh,

B0
(
u, q
)
= B
(
u, q
)
, ∀q ∈ Qh.

(2.25)

Therefore, it follows from (2.23) that

A1(u,v) + C
(
v, p
)
=
(
f, γv

)
, ∀v ∈ Vh,

B
(
u, q
)
= 0, ∀q ∈ Qh.

(2.26)

The corresponding discontinuous finite volume scheme seeks (uh, ph) ∈ Vh ×Qh, such that

A1(uh,v) + C
(
v, ph

)
=
(
f, γv

)
, ∀v ∈ Vh,

B
(
uh, q

)
= 0, ∀q ∈ Qh.

(2.27)

Let e be an edge of element K. It is well known (see [2]) that there exists a constant C
such that for any function g ∈ H2(K),

∥∥g∥∥2e ≤ C
(
h−1
K

∥∥g∥∥2K + hK

∣∣g∣∣21,K
)
, (2.28)

∥∥∥∥
∂g

∂n

∥∥∥∥
2

e

≤ C
(
h−1
K

∣∣g∣∣21,K + hK

∣∣g∣∣22,K
)
, (2.29)

where C depends only on the minimum angle of K.
Let ∇hv and ∇h · v be the functions whose restriction to each element ∀K ∈ Rh is equal

to ∇v and ∇ · v, respectively.

Lemma 2.3. For v,w ∈ V (h), there exists a positive constant C independent of h such that

A1(v,w) ≤ C‖|v‖| ‖|w‖|. (2.30)
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Proof. Let A∗∗(v,w) = (v, γw) +A∗(v,w),

A∗(v,w) = −
∑
K∈Rh

t∑
j=1

∫

Aj+1CAj

∂v
∂n

· γwds. (2.31)

By Lemma 3.1 in [5],

A∗(v,w) = (∇hv,∇hw) +
∑
K∈Rh

∫

∂K

(
γw −w

)∂v
∂n

ds +
∑
K∈Rh

(
Δv,w − γw

)
K.

|A∗∗(v,w)| ≤
∣∣(v, γw)∣∣ + |(∇hv,∇hw)| +

∣∣∣∣∣
∑
K∈Rh

∫

∂K

(
γw −w

)∂v
∂n

ds

∣∣∣∣∣ +
∣∣∣∣∣
∑
K∈Rh

(
Δv,w − γw

)
K

∣∣∣∣∣

≤ C

(
|v|0,h|w|0,h + |v|1,h|w|1,h +

∑
K∈Rh

(
h−1
K

∥∥w − γw
∥∥2
K + hK

∣∣w − γw
∣∣2
1,K

)1/2

×
(
h−1
K |v|21,K + hK|v|22,K

) 1/2
+
∑
K∈Rh

hK|v|2,K|w|1,K

)

≤ C

⎛
⎝|v|0,h|w|0,h + |v|1,h|w|1,h +

(∑
K∈Rh

|w|21,K

)1/2

×

⎛
⎝|v|1,h +

(∑
K∈Rh

h2
K|v|

2
2,K

)1/2
⎞
⎠+

(∑
K∈Rh

h2
K|v|

2
2,K

)1/2

|w|1,h

⎞
⎠

≤ C‖|v‖| ‖|w‖|,

A1(v,w) = A∗∗(v,w) −
∫

Γ
�γw� : {∇v}ds + α

∑
e∈Γ

�γve� : �γwe�,

≤ C

⎛
⎝‖|v‖| ‖|w‖| +

(∑
K∈Rh

(
|v|21,K + h2

K|v|
2
2,K

)1/2)(∑
e∈Γ

�
γw2

e

�
)1/2

+α

(∑
e∈Γ

�
γv2e

�
)1/2(∑

e∈Γ

�
γw2

e

�
)1/2

⎞
⎠

≤ C‖|v‖| ‖|w‖|.
(2.32)

Lemma 2.4 (see [5]). For any (v, q) ∈ V (h) ×Qh, one has

C
(
v, q
)
= −B

(
v, q
)
. (2.33)
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Figure 4: Rectangular partition and its dual.

Lemma 2.5 (see [5]). For (v, q) ∈ V (h) × L2
0(Ω), there exists a positive constantM independent of

h such that

C
(
v, q
)
≤ M‖|v‖|

⎛
⎝∥∥q∥∥ +

(∑
K∈Rh

h2
K

∣∣q∣∣21,K
)1/2

⎞
⎠. (2.34)

If (v, q) ∈ Vh ×Qh, then

C
(
v, q
)
≤ M‖|v‖|

∥∥q∥∥. (2.35)

Lemma 2.6. For any v ∈ Vh, there is a constant C0 independent of h such that for α large enough

A1(v,v) ≥ C0‖|v‖|2. (2.36)

Proof. Using the proof of Lemmas 3.1 and 3.5 in [5], for v ∈ Vh,

∫

Γ
γv : �∇v�ds ≤ C‖|v‖|1

(∑
e∈Γ

�γv�2e

)1/2

,

A∗(v,w) = (∇hv,∇hw), ∀v,w ∈ Vh,

(2.37)
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we have

A1(v,v) =
(
v, γv

)
+ (∇hv,∇hv) + α

∑
e∈Γ

�γv�2e −
∫

Γ
�γv� : {∇v}ds,

≥ |v|20,h + |v|21,h + α
∑
e∈Γ

�γv�2e − C‖|v‖|1

(∑
e∈Γ

�γv�2e

)1/2

≥ C‖|v‖|21 ≥ C0‖|v‖|2,

(2.38)

when α is large enough.

The value of α depends on the constant in the inverse inequality. Therefore, the value
of α for which A1(·, ·) is coercive is mesh dependent. We introduce a second discontinuous
finite volume scheme which is parameter insensitive. Define a bilinear form as follows:

A2(v,w) = A1(v,w) +
∫

Γ
�γv� : {∇w}ds. (2.39)

Similar to the bilinear form A1(·, ·), for the exact solution (u, p) of the Darcy-Stokes problem
we have

A2(u,v) = A0(u,v), ∀v ∈ Vh. (2.40)

Consequently, the solution of the Darcy-Stokes problem satisfies the following variational
equations:

A2(u,v) + C
(
v, p
)
=
(
f, γv

)
, ∀v ∈ Vh,

B
(
u, q
)
= 0, ∀q ∈ Qh.

(2.41)

Our second discontinuous finite volume scheme for (1.1a)–(1.1c) seeks (uh, ph) ∈ Vh × Qh,
such that

A2(uh,v) + C
(
v, ph

)
=
(
f, γv

)
, ∀v ∈ Vh,

B
(
uh, q

)
= 0, ∀q ∈ Qh.

(2.42)

For any value of α > 0, we have

A2(v,v) =
(
v, γv

)
+ (∇hv,∇hv) + α

∑
e∈Γ

�γv�2e ≥ C‖|v‖|21 ≥ C0‖|v‖|2, ∀v ∈ Vh. (2.43)

Similarly, we can prove that

A2(v,w) ≤ C‖|w‖| ‖|v‖|, ∀v,w ∈ V (h). (2.44)
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Let A(v,w) = A1(v,w) or A(v,w) = A2(v,w). In the rest of the paper, we assume that the
following is true:

A(v,v) ≥ C0‖|v‖|2. (2.45)

If A(v,w) = A2(v,w), (2.45) holds for any α > 0. If A(v,w) = A1(v,w), (2.45) holds for only
α large enough.

3. Error Estimates

We will derive optimal error estimates for velocity in the norm ‖| · ‖| and for pressure in the
L2-norm. A first-order error estimate for velocity in L2-norm will be obtained.

Let e be an interior edge shared by two elements K1 and K2 in Rh. If
∫
e v|K1ds =∫

e v|K2ds, we say that v is continuous on e. We say that v is zero at e ∈ ∂Ω if
∫
e vds = 0.

Define a subspace V̂h of Vh by

V̂h =
{
v ∈ L2(Ω)2 : v|K ∈ Q̂1(K)2 ∀K ∈ Rh is continuous at e ∈ Γ0 and is zero at e ∈ ∂Ω

}

(3.1)

for rectangular meshes and by

V̂h =
{
v ∈ L2(Ω)2 : v|K ∈ P1(K)2 ∀K ∈ Rh is continuous at e ∈ Γ0 and is zero at e ∈ ∂Ω

}

(3.2)

for triangular mesh.
It has been proven in [8, 9] that the following discrete inf-sup condition is satisfied;

that is, there exists a positive constant β0 such that

sup
v∈V̂h

(
∇h · v, q

)

|v|1,h
≥ β0

∥∥q∥∥, ∀q ∈ Qh. (3.3)

Lemma 3.1. The bilinear form B(·, ·) satisfies the discrete inf-sup condition

sup
v∈Vh

B
(
v, q
)

‖|v‖| ≥ β
∥∥q∥∥, ∀q ∈ Qh, (3.4)

where β is a positive constant independent of the mesh size h.

Proof. For v ∈ V̂h ⊂ Vh and q ∈ Qh, we have B(v, q) = (∇h · v, q), and ‖|v‖|1 = ‖v‖1,h. By
Poincare-Friedrichs ‖v‖1,h ≤ C|v|1,h, with (3.3), and (2.17) we get for any q ∈ Qh

β0
∥∥q∥∥ ≤ sup

v∈V̂h

(
∇ · v, q

)

|v|1,h
≤ C sup

v∈V̂h

B
(
v, q
)

‖|v‖|1
≤ C1 sup

v∈Vh

B
(
v, q
)

‖|v‖| . (3.5)

With β = β0/C1, we have proven (3.4).
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Define an operator πK : H1(K) → P1(K) or Q̂1(K). For all v ∈ H1(K),

∫

ei

πKv ds =
∫

ei

v ds, i = 1, . . . , t, (3.6)

where ei, i = 1, . . . , t, are the t sides of the element K. t = 3 ifK is a triangle and t = 4 ifK is a
rectangle. It was proven in [8] that

|πKv − v|s,K ≤ Ch2−s|v|2,K, s = 0, 1, 2. (3.7)

For all v = (v1, v2) ∈ H1
0(Ω)2, define Π1v = (Π1v1,Π1v2) ∈ Vh by

Π1vi|K = πKvi, ∀K ∈ Rh, i = 1, 2. (3.8)

Using the definition of Π1 and integration by parts, we can show that

B
(
v −Π1v, q

)
= 0, ∀q ∈ Qh. (3.9)

The Cauchy-Schwarz inequality implies

�γv�2e =
(

1
he

∫

e

�v�ds

)2

≤
(

1
he

)2 ∫

e

�v�2ds

∫

e

ds =
∫

e

1
he

�v�2ds. (3.10)

Equations (2.28) and (3.8) imply that

∑
e∈Γ

�γ(u −Π1u)�
2
e ≤ C

(
|u −Π1u|21,h +

∑
K∈Rh

h−2‖u −Π1u‖2K

)
≤ Ch2‖u‖22. (3.11)

The definitions of the norm ‖| · ‖|, (3.7), and (3.11) give

‖|u −Π1u‖|2 = |u −Π1u|20,h + |u −Π1u|21,h +
∑
e∈Γ

�γ(u −Π1u)�
2
e +
∑
K∈Rh

h2|u −Π1u|22,K

≤ Ch2‖u‖22.
(3.12)

Theorem 3.2. Let (uh, ph) ∈ Vh×Qh be the solution of (2.27), and let (u, p) ∈ (H2(Ω)∩H1
0(Ω))2×

(L2
0(Ω) ∩ H1(Ω)) be the solution of (1.1a)–(1.1c). Then there exists a constant C independent of h

such that

‖|u − uh‖| +
∥∥p − ph

∥∥ ≤ Ch
(
‖u‖2 +

∥∥p∥∥1
)
, (3.13)

‖u − uh‖ ≤ Ch
(
‖u‖2 +

∥∥p∥∥1
)
. (3.14)
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Figure 5: Triangular and its dual partition of (0, 1) × (0, 1).

Proof. Let ε = u −Π1u, εh = uh −Π1u, η = p −Π2p, ηh = ph −Π2p, where Π2 is L2 projection
from L2

0(Ω) → Qh. Then u − uh = ε − εh, p − ph = η − ηh. Subtracting (2.26) from (2.27) and
using Lemma 2.4, we get error equations

A(εh,v) − B
(
v, ηh

)
= A(ε,v) + C

(
v, η
)
, ∀v ∈ Vh, (3.15a)

B
(
εh, q

)
= B
(
ε, q
)
= 0, ∀q ∈ Qh. (3.15b)

By letting v = εh in (3.15a) and q = ηh in (3.15b), the sum of (3.15a) and (3.15b) gives

A(εh, εh) = A(ε, εh) + C
(
εh, η

)
. (3.16)

Thus, it follows from the coercivity (2.45), the boundedness (2.30), (2.44), and (2.34) that

‖|εh‖|2 ≤ C

⎛
⎝‖|ε‖| ‖|εh‖| +

⎛
⎝∥∥η∥∥ +

(∑
K∈Rh

h2
K

∣∣η∣∣21,K
)1/2

⎞
⎠‖|εh‖|

⎞
⎠ , (3.17)

which implies the following:

‖|εh‖| ≤ C

⎛
⎝‖|ε‖| +

∥∥η∥∥ +
(∑

K∈Rh

h2
K

∣∣η∣∣21,K
)1/2

⎞
⎠. (3.18)
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The previous estimate can be rewritten as

‖|uh −Π1u‖| ≤ C

⎛
⎝‖|u −Π1u‖| +

∥∥p −Π2p
∥∥ +
(∑

K∈Rh

h2
K

∣∣p −Π2p
∣∣2
1,K

)1/2
⎞
⎠. (3.19)

Now using the triangle inequality, (3.7), the definition of Π2, and the inequality mentioned
previously, we get

‖|u − uh‖| ≤ C(‖|u −Π1u‖| + ‖|uh −Π1u‖|) ≤ Ch
(
‖u‖2 +

∥∥p∥∥1
)
, (3.20)

which completes the estimate for the velocity approximation.
Discrete inf-sup condition (3.4), (3.15a), (3.15b), Lemmas 2.5, 2.4, and inverse

inequality give

∥∥ph −Π2p
∥∥ ≤ 1

β
sup
v∈Vh

B
(
v,Π2p − ph

)

‖|v‖|1,h
=

1
β
sup
v∈Vh

C
(
v, ph −Π2p

)

‖|v‖|1,h

=
1
β
sup
v∈Vh

C
(
v, ph − p

)
+ C
(
v, p −Π2p

)

‖|v‖|

=
1
β
sup
v∈Vh

A(u − uh,v) + C
(
v, p −Π2p

)

‖|v‖|

≤ C

⎛
⎝‖|u − uh‖| +

∥∥p −Π2p
∥∥ +
(∑

K∈Rh

h2
K

∣∣p −Π2p
∣∣2
1,K

)1/2
⎞
⎠

≤ Ch
(
‖u‖2 +

∥∥p∥∥1
)
.

(3.21)

Using the previous inequality and the triangle inequality, we have completed the proof of
(3.13).

Using Lemma 2.1, (3.12), and (3.13), we have

‖uh −Π1uh‖ ≤ C‖|uh −Π1uh‖| ≤ C(‖|u − uh‖| + ‖|u −Π1uh‖|) ≤ Ch
(
‖u‖2 +

∥∥p∥∥1
)
. (3.22)

Equations (3.22) and (3.7) and the triangle inequality imply (3.14). We have completed the
proof.

4. Numerical Experiments

In this section, we present a numerical example for solving the problems (1.1a)–(1.1c) by
using the discontinuous finite volume element method presented with (2.27) and (2.42). Let
Ω = (0, 1) × (0, 1), Rh be the Delaunay triangulation generated by EasyMesh [10] over Ω
with mesh size h as shown in Figure 5. We consider the case of σ = 1, μ = 1, the exact
velocity u1(x, y) = −x2(x−1)2y(y−1)(2y−1), u2(x, y) = −u1(y, x) and the pressure p(x, y) =
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Table 1: Error behavior for scheme (2.27).

hd h |‖u − uh‖|
|‖u − u2h‖|
|‖u − uh‖|

‖u − uh‖
‖u − u2h‖
‖u − uh‖

‖p − ph‖
‖p − p2h‖
‖p − ph‖

1/8 1.598e − 1 2.082e − 2 3.393e − 4 1.068e − 2

1/16 8.372e − 2 1.031e − 2 2.0 9.649e − 5 3.5 5.345e − 3 2.0

1/32 3.679e − 2 5.185e − 3 2.0 2.598e − 5 3.7 2.650e − 3 2.0

1/64 1.899e − 2 2.611e − 3 2.0 6.795e − 6 3.8 1.323e − 3 2.0

1/128 9.413e − 3 1.307e − 3 2.0 1.730e − 6 3.9 6.598e − 4 2.0

Table 2: Error behavior for scheme (2.42).

hd h |‖u − uh‖|
|‖u − u2h‖|
|‖u − uh‖|

‖u − uh‖
‖u − u2h‖
‖u − uh‖

‖p − ph‖
‖p − p2h‖
‖p − ph‖

1/8 1.598e − 1 2.071e − 2 3.280e − 4 1.079e − 2
1/16 8.372e − 2 1.027e − 2 2.0 9.204e − 5 3.5 5.380e − 3 2.0
1/32 3.679e − 2 5.175e − 3 2.0 2.476e − 5 3.7 2.659e − 3 2.0
1/64 1.899e − 2 2.608e − 3 2.0 6.361e − 6 3.8 1.325e − 3 2.0
1/128 9.413e − 3 1.306e − 3 2.0 1.613e − 6 3.9 6.603e − 4 2.0

(x − 0.5)(y − 0.5). Denote the numerical solution as uh and ph with step hd which is used
to generate the mesh data in the EasyMesh input file, and h = max{he : e ∈ Γ}. For α = 2,
the numerical results are presented in Tables 1 and 2. It is observed from the tables that the
numerical results support our theory.
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