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An analytic solution of long waves scattering by a cylindrical island mounted on a permeable
circular shoal was obtained by solving the linear long wave equation (LWE). The solution is in
terms of the Bessel function expressed by complex variables. The present solution is suitable for
arbitrary bottom configurations described by a power function with two independent parameters.
For the case of the paraboloidal shoal, there exists a singular point (α = 2) which can be removed
using Frobenius series, where α is a real constant. The present solution is reduced to Yu and
Zhang’s (2003) solution for impermeable circular shoal. The numerical results show some special
features of the combined effect of wave refraction and diffraction caused by a porous circular
island. The effect of key parameters of the island dimension, the shoal slope, and permeability
on wave scattering was discussed based on the analytic solution.

1. Introduction

The combined effect of wave refraction and diffraction is caused by the varying bottom
topography or the presence of islands and structures. The mild-slope equation (MSE) was
first derived by Berkhoff [1] and then was extended by Porter and Staziker [2], Hsu and
Wen [3] to the rapidly varying sea bottom configuration. Up to now, the MSE still plays an
important role in coastal and ocean engineering practice, as it can be widely implemented to
solve the problems of combined refraction and diffraction based on linear wave theory.

Although numerical models are commonly used in practical applications, it is still
limited by the problems of accuracy and numerical stability. Numerical results are often
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needed to be verified by comparing with measured data or analytic solutions. In some cases,
it takes time and expensive cost for laboratory experiments because of the complexity in
completion of the model and facilities setup. An alternate is to look for analytic solution that
could provide more clear expressions in which the physical properties of wave motion can
be used to examine the predictability and validity of the numerical models.

A typical example of the analytic study of combined refraction and diffraction is
the case when the long-wave approximation is applied to the MSE in one dimension or
axisymmetric bathymetry in two dimensions. Homma [4] is a pioneer to obtain the solution
of long-wave equation (LWE) by considering long waves propagating over the top of a
parabolic shoal. The solution was further extended and applied by Vastano and Reid [5] and
Jonsson et al. [6]. Different geometries of circular or conical island were explored by Fujima
and Goto [7], Fujima et al. [8], Zhang and Zhu [9], and Zhu and Zhang [10]. The research
field is still under rapid developments. Details can be referred to recent articles of Jung et al.
[11], Niu and Yu [12], Liu and Xie [13], and Jung and Lee [14]. Furthermore, there are also
studies, such as Liu et al. [15] and Niu and Yu [16], using Hunt’s [17] approximate solution
of the implicit dispersion equation to solve the MSE without the long-wave approximation.

The present investigation is to extend Yu and Zhang’s [18] analytic solution to long
wave propagation over a porous circular island with arbitrary topography. The combined
effect of refraction and diffraction of long wave motion as well as key features of the intensity
of wave ray focus behind the shoal is presented. A general solution was derived based on the
mild slope equation (MSE). The wave motion with combined refraction and diffraction was
described by the Bessel function (α/= 2) and Frobenius series. The effect of key parameters on
wave scattering is intensively discussed based on the analytic solution.

2. Theoretical Formulation

The long wave equation for combined refraction and diffraction of waves propagating over
porous media is express as

∇h

((
hw + δhp

)∇hφ
)
+ k2(hw + δhp

)
φ = 0, (2.1)

where φ is the velocity potential, ∇h = (∂/∂x, ∂/∂y) the horizontal gradient operator, hw the
thickness of the water, hp the thickness of porous layer, k is the wavenumber and δ is defined
as n0/(S + ifp) with n0 the porosity, S = n0 + (1 − n0)CM, the inertial coefficient, CM the
virtual mass coefficient, i =

√−1 the unit complex number, and fp the friction coefficient. In
the derivation of (2.1), the time harmonic eiωt is assumed withω being the angular frequency
of the incident wave. Here, the angular frequency ω is related to the wavenumber k by the
following dispersion relation:

ω2

g
= k
(
δkhp + khw

)
. (2.2)

Equations (2.1) and (2.2) can be derived from the mild-slope equation of Rojanakamthorn
et al. [19] by neglecting terms of orders O(k2h2

w, k
2h2

p, k
2hwhp). Note that (2.1) and (2.2) are

only valid for long waves, that is, the relative depth is restricted in the shallow water region,
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that is, hw/L ≤ 1/20 and hp/L ≤ 1/20 where L is the wave length. More details can be found
in the Appendix.

In order to study the wave scattering over a circular porous shoal, we assume that the
shoal is symmetric and of the following form:

hw = hw(r) =
hw

rα0
rα ∝ rα, r ≤ r0,

hp = hp(r) =
hp

rα0
rα ∝ rα, r ≤ r0,

(2.3)

where r is the distance of any point on the shoal from the center, r1 is the radius of the circular
island, r0 is the radius of the impermeable circular shoal, hw and hp are the depths of water
and porous layers, respectively, for r > r0 and α is the power parameter of bottom shape. The
definition sketch of the permeable circular island is presented in Figure 1.

Using the method of separation variables, the velocity potential is written as

φ =
∞∑

n=0

Rn(r)Θn(θ) (2.4)

in which Θn is the eigenfunction given by

Θn(θ) = C1n cosnθ + C2n sinnθ (n = 0, 1, 2, . . .), (2.5)

where C1n and C2n are coefficients to be determined. C2n is set to be zero due to the
symmetric property of the present problem with respect to the coordinate x. For convenience
of computational procedure, the coefficient C1n is specified as C1n = 1. Substituting (2.4) and
(2.5) into (2.1) gives

r2
d2Rn

dr2
+ r

(

1 +
r

h̃

dh̃

dr

)

+

(
ω2r2

gh̃
− n2

)

Rn = 0, (2.6)

where h̃ is an equivalent water depth defined by

h̃ = hw + δhp. (2.7)

The following dimensionless variables are introduced for convenience of mathematical
formulation:

ρ =
ω2r

g
, ξ2w =

ω2hw

g
, ξ2p =

ω2hp

g
. (2.8)



4 Journal of Applied Mathematics

Y

X

X

Z
Incident wave

hp(r)

hw(r)

Incident wave

hw

r

r

0
hp

h

Φw

Φp

r1

θ

Figure 1: Definition sketch of a circular island.

Substitution of ξ2w and ξ2p from (2.8) into (2.3) leads to the resultant equations.

ξ2w =
ξ
2
w

ρα0
ρα, ρ ≤ ρ0, (2.9)

ξ2p =
ξ
2
p

ρα0
ρα, ρ ≤ ρ0. (2.10)

Equation (2.10) is multiplied by δ and added with (2.9). The following equation is thus
obtained, that is

ξ2 = ξ2w + δξ2p =
ξ
2
w

ρα0
ρα + δ

ξ
2
p

ρα0
ρα =

⎛

⎝ξ
2
w

ρα0
+ δ

ξ
2
p

ρα0

⎞

⎠ρα =
1
β2

ρα. (2.11)

And, (2.6) is rearranged with the help of the dimensionless variable ρ = ω2r/g (2.8) and the
result reads

ρ2
d2Rn

dρ2
+ (α + 1)ρ

dRn

dρ
+
(
β2ρ2−α − n2

)
Rn = 0. (2.12)

For the special case of α = 2, (2.12) is solved by making use of the Frobenius series, the
solution is given by

Rn =

⎧
⎨

⎩

C3nρ
−1+μn + C4nρ

−1−μn if 1 + n2 − β2 /= 0

C3nρ
−1 + C4nρ

−1 ln ρ if 1 + n2 − β2 = 0,
(2.13)
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where C3n and C4n are constants, and μn is represented by

μn =
√∣
∣1 + n2 − β2

∣
∣. (2.14)

We introduce two dimensionless parameters Qn = ρα/2Rn and χ = (2β/|2 − α|)ρ1−α/2 for α/= 2,
(2.6) is rewritten in the form

χ2d
2Qn

dχ2
+ χ

dQn

dχ
+
(
χ2 − ν2n

)
Qn = 0, (2.15)

where νn =
√
(α2 + 4n2)/(|2 − α|).

The general solution of (2.15) is the Bessel function expressed as

Qn = C3nJνn
(
χ
)
+ C4nYνn

(
χ
)

(n = 0, 1, 2 . . .), (2.16)

where Jνn and Yνn are the Bessel functions of the first and second kind of vn order. Substitution
the corresponding boundary conditions in (2.16) results in the particular solution for α/= 2
given by

Rn

(
ρ
)
= ρ−α/2

[
C3nJνn

(
2β

|2 − α|ρ
1−(α/2)

)
+ C4nYνn

(
2β

|2 − α|ρ
1−(α/2)

)]
(n = 0, 1, 2, ...).

(2.17)

For an arbitrary bathymetry of a circular island, the solution is thus written as follows

Rn

(
ρ
)
= C3nR1n

(
ρ
)
+ C4nR2n

(
ρ
)
, (2.18)

where

R1n
(
ρ
)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ−1+μn if α = 2 & 1 + n2 − β2 /= 0,
ρ−1 if α = 2 & 1 + n2 − β2 = 0,

ρ−α/2Jνn

(
2β

|2 − α|ρ
1−(α/2)

)
if α/= 2,

R2n
(
ρ
)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ−1−μn if α = 2 & 1 + n2 − β2 /= 0,
ρ−1 ln ρ if α = 2 & 1 + n2 − β2 = 0,

ρ−α/2Yνn

(
2β

|2 − α|ρ
1−(α/2)

)
if α/= 2.

(2.19)

It is noted that the LWE of (2.1) has been solved for long waves propagating over a permeable
circular island. The velocity potential is finally expressed as

φ =
∞∑

n=0

[
C3nR1n

(
ρ
)
+ C4nR2n

(
ρ
)]

cosnθ. (2.20)
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Considering an incident wave expressed in a nondimensional form:

φ0 = AIe
ik0x = AI

∞∑

n=0

inεnJn(k0r) cosnθ = AI

∞∑

n=0

inεnJn
(
κ0ρ
)
cosnθ, (2.21)

where AI is the reference wave height defined as AI = φ0(ρ = 0). In addition, the
wavenumber k0 for r > r0 can be obtained from the dispersion relation (2.2), and the
dimensionless wave number κ0 is defined as k0g/ω2. In addition, εn is the Jacobian parameter
given by

εn =

{
1 n = 0,
2 n ≥ 1.

(2.22)

The physical problem is presented in Figure 1. Following Yu and Zhang [18], the method
of eigenexpansion is adopted to solve the problem. The study domain is divided into two
subregions on the horizontal plane: the finite region with varying depth (r1 < r < r0)
and semi-infinite far region with a porous constant depth (r > r0). The general solution of
the complex velocity potential subject to the Somerfield condition as well as the symmetric
condition is written in the form

φ1 = φ0 +
∞∑

n=0

DnΨn

(
ρ
)
, (2.23)

Ψn

(
ρ
) ≡ Hn

(
κ0ρ
)
, (2.24)

whereHn is the Hankel function of the first kind of the nth order,Dn are complex coefficients
to be determined.

In the finite region, the permeable bottom configuration is represented by (2.3). The
complex velocity potential is given by

φ2 =
∞∑

n=0

[
C3nR1n

(
ρ
)
+ C4nR2n

(
ρ
)]

cosnθ. (2.25)

Because the present investigation assumes the symmetric condition, the corresponding terms
of the odd function sinnθ are negligible.

The following boundary conditions are used for solving the problem:

∂φ2

∂ρ
= 0 for ρ = ρ1 (or r = r1). (2.26)

Using (2.25), the relation between two coefficients C3n and C4n is given by

Cn =
C3n

R′
2n

(
ρ1
) =

C4n

R′
1n

(
ρ1
) . (2.27)
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The prime denotes the first derivative with respect to ρ. The rearrangement of (2.25) yields

φ2 =
∞∑

n=0

Cn

[
R′

2n
(
ρ1
)
R1n
(
ρ
)
+ R′

1n

(
ρ1
)
R2n
(
ρ
)]

cosnθ. (2.28)

Two matching boundary conditions of continuity of flow mass and pressure are again
adopted which are given by

φ1 = φ2 for ρ = ρ0,

∂φ1

∂ρ
=

∂φ2

∂ρ
for ρ = ρ0.

(2.29)

Substituting (2.29) into (2.23) and (2.25), we have

CnΓn = AIinεnJn
(
κ0ρ0

)
+DnΨn

(
ρ0
)
,

CnΛn = AIinεnJ ′n
(
κ0ρ0

)
+DnΨ′

n

(
ρ0
)
,

(2.30)

where

Γn = R′
2n
(
ρ1
)
R1n
(
ρ0
) − R′

1n

(
ρ1
)
R2n
(
ρ0
)
,

Λn = R′
2n
(
ρ1
)
R′

1n

(
ρ0
)
+ R′

1n

(
ρ1
)
R′

2n
(
ρ0
)
.

(2.31)

The coefficients Cn and Dn are solved by (2.30) and are expressed by

Cn = −AIinεn
Ψn

(
ρ0
)
J ′n
(
κ0ρ0

) −Ψ′
n

(
ρ0
)
Jn
(
κ0ρ0

)

ΓnΨ′
n

(
ρ0
) −ΛnΨn

(
ρ0
) ,

Dn = −AIi
nεn

ΓnJ ′n
(
κ0ρ0

) −ΛnJn
(
κ0ρ0

)

ΓnΨ′
n

(
ρ0
) −ΛnΨn

(
ρ0
) .

(2.32)

3. Results and Discussions

In the following numerical results, we have typically set ω2/g = 1, the inertial coefficient

S = 1 and hp = hw = ξ
2
p = ξ

2
w = 0.02. The infinite series in the solution of the velocity

potential should be truncated, indicating that the number of N must be large enough to
represent the infinity so that the infinite series in (2.23) and (2.28) can effectively accounts
for the wave motion by a prescribed accuracy. For the case of α = 1 and α = 2, respectively.
Figure 2 presents the variation of the relative wave runup height (A/AI) around the cross-
section along the y = 0. The result demonstrates the wave height distribution at different
values of α for different permeable materials with variant porosities. In Figure 2(a), the wave
height distribution before the island increases monotonically with the increase of n0, but
the variation of wave height distribution behind the island decreases monotonically with
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Figure 2: Effects of the porosity of the permeable material (ρ0 = 0.2π , ρ1 = 0.1π , fp = 1).

the increasing n0 for α = 1, r0 = 0.2π . Note that the variation of wave height distribution at
α = 2 shows the same feature shown in Figure 2(b).

Figure 3 demonstrates the variation of wave height distribution at different values of
α as a linearized friction coefficient changes. We notice that the wave height increases with
the increase of the friction factor fp in the front of the island but opposite property behind the
island.

Figures 4 and 5 show different bottom slopes for different values of α, ρ0, ξ0 and
ρ1. It is interesting to note that a higher value could produce a steeper bottom geometry,
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Figure 3: Effects of linearized friction coefficient (ρ0 = 0.2π , ρ1 = 0.1π , n0 = 0.5).

the intensity of wave ray focusing increases with the decrease of the bottom slope.
Consequently, a significant increase of wave runup height is evident.

4. Conclusions

An analytic solution of the long-wave equation for waves propagating over a porous circular
island was derived. The solution is in terms of the Bessel functions. The singularity was
removed by the Frobenius series for the case of a parabolic island. The solution is able to
account for the combined effect of refraction and diffraction around a circular island on the
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Figure 4: Effects of island on wave scattering for α = 1 (ρ0 = 0.2π , fp = 1, n0 = 0.5).
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Figure 5: Effects of island on wave scattering for α = 2 (ρ0 = 0.2π , fp = 1, n0 = 0.5).

top of a shoal for arbitrary geometry described by two independent parameters. The effect of
key parameters on waves scattering was investigated based on numerical calculations from
the analytic solution.

Appendix

According to Rojanakamthorn et al. [19], the mild-slope equation for waves propagating over
a permeable media is described by

∇h

(
I∇hφ

)
+ k2Iφ = 0, (A.1)
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where

I =
∫0

−hw

W2dz +
1
δ

∫−hw

−(hw+hp)
P 2dz, (A.2)

with

W
(
z, hw

(
x, y
)
, hp

(
x, y
))

=
(δ − 1) sinh k

[(
hw + hp

)
+ z
]
tanh khp + cosh k

[(
hw + hp

)
+ z
](

1 − δ tanh2 khp

)

(δ − 1) sinh k
(
hw + hp

)
tanh khp + cosh k

(
hw + hp

)(
1 − δ tanh2khp

)

P
(
z, hw

(
x, y
)
, hp

(
x, y
))

=
δ cosh k

[(
hw + hp

)
+ z
]

cosh2 khp

[
(δ − 1) sinh k

(
hw + hp

)
tanh khp + cosh k

(
hw + hp

)(
1 − δ tanh2khp

)]

(A.3)

being the depth functions in the water and porous layers respectively. The angular frequency
ω is related to the wavenumber k by the following dispersion relation:

ω2

g
= k

(δ − 1) sinh k
(
hw − hp

) − (δ + 1) sinh k
(
hw + hp

)

(δ − 1) cosh k
(
hw − hp

) − (δ + 1) cosh
(
hw + hp

) . (A.4)

In order to consider the long wave limit, (A.3) should be expanded in polynomials of khw

and khp as

W
(
z, hw

(
x, y
)
, hp

(
x, y
))

= (δ − 1)
(
khp sinh kz

)
+
[
cosh kz + k

(
hw + hp

)
sinh kz

]
+O
(
k2h2

w, k
2h2

p, k
2hwhp

)
,

(A.5)

P
(
z, hw

(
x, y
)
, hp

(
x, y
))

= δ2[cosh kz + k
(
hw + hp

)
sinh kz

]
+O
(
k2h2

w, k
2h2

p, k
2hwhp

)
.

(A.6)

Substituting (A.4) and (A.5) into (A.2) results in

I = hw + δhp +O
(
k2h2

w, k
2h2

p, k
2hwhp

)
. (A.7)

Equations (A.1) and (A.7) give the long wave equation (2.1) of the present study.
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In addition, the dispersion relation (A.4) can also be expanded in polynomials of khw

and khp as

ω2

g
= k
(
δkhp + khw +O

(
k2h2

w, k
2h2

p, k
2hwhp

))
. (A.8)

Equation (A.8) is sufficient to obtain the dispersion relation of long waves as given in (2.2).
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