
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2012, Article ID 736214, 19 pages
doi:10.1155/2012/736214

Research Article
Common Fixed Point Theorems for a Class of Twice
Power Type Contraction Maps in G-Metric Spaces

Hongqing Ye and Feng Gu

Institute of Applied Mathematics and Department of Mathematics, Hangzhou Normal University,
Hangzhou Zhejiang 310036, China

Correspondence should be addressed to Feng Gu, gufeng99@sohu.com

Received 5 February 2012; Accepted 27 July 2012

Academic Editor: Svatoslav Staněk
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We introduce a new twice power type contractive condition for three mappings inG-metric spaces,
and several new common fixed point theorems are established in complete G-metric space. An
example is provided to support our result. The results obtained in this paper differ from other
comparable results already known.

1. Introduction

The study of fixed points of mappings satisfying certain contractive conditions has been in
the center of rigorous research activity. In 2006, a new structure of generalized metric space
was introduced by Mustafa and Sims [1] as an appropriate notion of generalized metric
space called G-metric space. Abbas and Rhoades [2] initiated the study of common fixed
point in generalized metric space. Recently, many fixed point theorems for certain contractive
conditions have been established in G-metric spaces, and for more details one can refer to [3–
27]. Fixed point problems have also been considered in partially ordered G-metric spaces
[28–31], cone metric spaces [32], and generalized cone metric spaces [33].

In 2006, Gu and He [34] introduced a class of twice power type contractive condition
in metric space, proving some common fixed point theorems for four self-maps with twice
power type Φ-contractive condition.

In this paper, motivated and inspired by the above results, we introduce a new twice
power type contractive condition in G-metric space, and we prove some new common fixed
point theorems in complete G-metric spaces. Our results obtained in this paper differ from
other comparable results already known.
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Throughout the paper, we mean by N the set of all natural numbers. Consistent with
Mustafa and Sims [1], the following definitions and results will be needed in the sequel.

Definition 1.1 (see [1]). Let X be a nonempty set, and let G : X × X × X → R+ be a function
satisfying the following axioms:

(G1) G(x, y, z = 0) if x = y = z;

(G2) 0 < G(x, x, y), for all x, y ∈ X with x /=y;

(G3) G(x, x, y) ≤ G(x, y, z), for all x, y, z ∈ X with z/= y;

(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · (symmetry in all three variables);

(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X, (rectangle inequality);

then the function G is called a generalized metric, or, more specifically, a G-metric on X and
the pair (X,G) are called a G-metric space.

Definition 1.2 (see [1]). Let (X,G) be a G-metric space, and let {xn} be a sequence of points in
X, a point x in X is said to be the limit of the sequence {xn} if limm,n→∞G(x, xn, xm) = 0, and
one says that sequence {xn} is G-convergent to x.

Thus, if xn → x in a G-metric space (X,G), then for any ε > 0, there existsN ∈ N such
that G(x, xn, xm) < ε, for all n,m ≥ N.

Proposition 1.3 (see [1]). Let (X,G) be a G-metric space, then the followings are equivalent.

(1) {xn} is G-convergent to x.

(2) G(xn, xn, x) → 0 as n → ∞.

(3) G(xn, x, x) → 0 as n → ∞.

(4) G(xn, xm, x) → 0 as n,m → ∞.

Definition 1.4 (see [1]). Let (X,G) be a G-metric space. A sequence {xn} is called G-Cauchy
sequence if for each ε > 0 there exists a positive integer N ∈ N such that G(xn, xm, xl) < ε for
all n,m, l ≥ N; that is, if G(xn, xm, xl) → 0 as n,m, l → ∞.

Definition 1.5 (see [1]). A G-metric space (X,G) is said to be G-complete if every G-Cauchy
sequence in (X,G) is G-convergent in X.

Proposition 1.6 (see [1]). Let (X,G) be a G-metric space. Then the following are equivalent.

(1) The sequence {xn} is G-Cauchy.

(2) For every ε > 0, there exists k ∈ N such that G(xn, xm, xm) < ε, for all n,m ≥ k.

Proposition 1.7 (see [1]). Let (X,G) be a G-metric space. Then the function G(x, y, z) is jointly
continuous in all three of its variables.

Definition 1.8 (see [1]). Let (X,G) and (X′, G′) be G-metric space, and f : (X,G) → (X′, G′)
be a function. Then f is said to be G-continuous at a point a ∈ X if and only if for every ε > 0,
there is δ > 0 such that x, y ∈ X andG(a, x, y) < δ impliesG′(f(a), f(x), f(y)) < ε. A function
f is G-continuous at X if and only if it is G-continuous at all a ∈ X.
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Proposition 1.9 (see [1]). Let (X,G) and (X′, G′) be G-metric space. Then f : X → X′ is G-
continuous at x ∈ X if and only if it is G-sequentially continuous at x; that is, whenever {xn} is
G-convergent to x, {f(xn)} is G-convergent to f(x).

Proposition 1.10 (see, [1]). Let (X,G) be a G-metric space. Then, for any x, y, z, a in X it follows
that:

(i) if G(x, y, z) = 0, then x = y = z;

(ii) G(x, y, z) ≤ G(x, x, y) +G(x, x, z);

(iii) G(x, y, y) ≤ 2G(y, x, x);

(iv) G(x, y, z) ≤ G(x, a, z) +G(a, y, z);

(v) G(x, y, z) ≤ (2/3)(G(x, y, a) +G(x, a, z) +G(a, y, z));

(vi) G(x, y, z) ≤ (G(x, a, a) +G(y, a, a) +G(z, a, a)).

2. Main Results

Theorem 2.1. Let (X,G) be a complete G-metric space. Suppose the three self-mappings T, S, R :
X → X satisfy the following condition:

G2(Tx, Sy, Rz
) ≤ αG(x, Tx, Tx)G

(
y, Sy, Sy

)
+ βG

(
y, Sy, Sy

)
G(z, Rz, Rz)

+ γG(x, Tx, Tx)G(z, Rz, Rz),
(2.1)

for all x, y, z ∈ X, where α, β, γ are nonnegative real numbers and α + β + γ < 1. Then T, S, and R
have a unique common fixed point (say u) and T, S, R are all G-continuous at u.

Proof . We will proceed in two steps.
Step 1. We prove any fixed point of T is a fixed point of S and R and conversely. Assume that
p ∈ X is such that Tp = p. However, by (2.1), we have

G2(Tp, Sp, Rp
) ≤ αG

(
p, Tp, Tp

)
G
(
p, Sp, Sp

)
+ βG

(
p, Sp, Sp

)
G
(
p, Rp, Rp

)

+ γG
(
p, Tp, Tp

)
G
(
p, Rp, Rp

)

= αG
(
p, p, p

)
G
(
p, Sp, Sp

)
+ βG

(
p, Sp, Sp

)
G
(
p, Rp, Rp

)

+ γG
(
p, p, p

)
G
(
p, Rp, Rp

)

= βG
(
p, Sp, Sp

)
G
(
p, Rp, Rp

)
.

(2.2)

Now we discuss the above inequality in three cases.
Case (i). If p /=Sp and p /=Rp, then, by (G3), we have

G
(
p, Sp, Sp

) ≤ G
(
p, Sp, Rp

)
, G

(
p, Rp, Rp

) ≤ G
(
p, Sp, Rp

)
. (2.3)

So, the above inequality becomes

G2(p, Sp, Rp
)
= G2(Tp, Sp, Rp

) ≤ βG2(p, Sp, Rp
)
. (2.4)
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SinceG2(p, Sp, Rp) > 0, hence we have β ≥ 1; however, it contradicts with 0 ≤ β ≤ α+β+γ < 1,
so we get p = Sp = Rp.
Case (ii). If p = Rp, then we have

G2(p, Sp, Rp
)
= G2(Tp, Sp, Rp

) ≤ βG
(
p, Sp, Sp

)
G
(
p, Rp, Rp

)
= 0. (2.5)

Hence we have G2(p, Sp, Rp) = 0 and so p = Sp = Rp.
Case (iii). If p = Sp, we can also get G2(p, Sp, Rp) = 0. Hence we have p = Sp = Rp. Therefore
p is a common fixed point of T, S and R.

The same conclusion holds if p = Sp or p = Rp.
Step 2. We prove that T , S, and R have a unique common fixed point.

Let x0 ∈ X be an arbitrary point, and define the sequence {xn} by x3n+1 = Tx3n, x3n+2 =
Sx3n+1, x3n+3 = Rx3n+2, n ∈ N. If xn = xn+1, for some n, with n = 3m, then p = x3m is a fixed
point of T and, by the first step, p is a common fixed point of S, T , and R. The same holds
if n = 3m + 1 or n = 3m + 2. Without loss of generality, we can assume that xn /=xn+1, for all
n ∈ N.

Next, we prove sequence {xn} is a G-Cauchy sequence. In fact, by (2.1) and (G3), we
have

G2(x3n+1, x3n+2, x3n+3) = G2(Tx3n, Sx3n+1, Rx3n+2)

≤ αG(x3n, Tx3n, Tx3n)G(x3n+1, Sx3n+1, Sx3n+1)

+ βG(x3n+1, Sx3n+1, Sx3n+1)G(x3n+2, Rx3n+2, Rx3n+2)

+ γG(x3n, Tx3n, Tx3n)G(x3n+2, Rx3n+2, Rx3n+2)

= αG(x3n, x3n+1, x3n+1)G(x3n+1, x3n+2, x3n+2)

+ βG(x3n+1, x3n+2, x3n+2)G(x3n+2, x3n+3, x3n+3)

+ γG(x3n, x3n+1, x3n+1)G(x3n+2, x3n+3, x3n+3)

≤ αG(x3n, x3n+1, x3n+2)G(x3n+1, x3n+2, x3n+3)

+ βG(x3n+1, x3n+2, x3n+3)G(x3n+2, x3n+3, x3n+1)

+ γG(x3n, x3n+1, x3n+2)G(x3n+2, x3n+3, x3n+1).

(2.6)

Which gives that

G(x3n+1, x3n+2, x3n+3) ≤
(
α + γ

)
G(x3n, x3n+1, x3n+2) + βG(x3n+1, x3n+2, x3n+3). (2.7)

It follows that

(
1 − β

)
G(x3n+1, x3n+2, x3n+3) ≤

(
α + γ

)
G(x3n, x3n+1, x3n+2). (2.8)
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From 0 ≤ β < 1 we know that 1 − β > 0. Then, we have

G(x3n+1, x3n+2, x3n+3) ≤
α + γ

1 − β
G(x3n, x3n+1, x3n+2). (2.9)

On the other hand, by using (2.1) and (G3), we have

G2(x3n+2, x3n+3, x3n+4) = G2(Tx3n+3, Sx3n+1, Rx3n+2)

≤ αG(x3n+3, Tx3n+3, Tx3n+3)G(x3n+1, Sx3n+1, Sx3n+1)

+ βG(x3n+1, Sx3n+1, Sx3n+1)G(x3n+2, Rx3n+2, Rx3n+2)

+ γG(x3n+3, Tx3n+3, Tx3n+3)G(x3n+2, Rx3n+2, Rx3n+2)

= αG(x3n+3, x3n+4, x3n+4)G(x3n+1, x3n+2, x3n+2)

+ βG(x3n+1, x3n+2, x3n+2)G(x3n+2, x3n+3, x3n+3)

+ γG(x3n+3, x3n+4, x3n+4)G(x3n+2, x3n+3, x3n+3)

≤ αG(x3n+2, x3n+3, x3n+4)G(x3n+1, x3n+2, x3n+3)

+ βG(x3n+1, x3n+2, x3n+3)G(x3n+2, x3n+3, x3n+4)

+ γG(x3n+2, x3n+3, x3n+4)G(x3n+2, x3n+3, x3n+4).

(2.10)

Which implies that

G(x3n+2, x3n+3, x3n+4) ≤
(
α + β

)
G(x3n+1, x3n+2, x3n+3) + γG(x3n+2, x3n+3, x3n+4). (2.11)

It follows that

(
1 − γ

)
G(x3n+2, x3n+3, x3n+4) ≤

(
α + β

)
G(x3n+1, x3n+2, x3n+3). (2.12)

Form the condition 0 ≤ γ ≤ α + β + γ < 1, we know that 1 − γ > 0. Therefore, we have

G(x3n+2, x3n+3, x3n+4) ≤
α + β

1 − γ
G(x3n+1, x3n+2, x3n+3). (2.13)
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Again, using (2.1) and (G3), we can get

G2(x3n+3, x3n+4, x3n+5) = G2(Tx3n+3, Sx3n+4, Rx3n+2)

≤ αG(x3n+3, Tx3n+3, Tx3n+3)G(x3n+4, Sx3n+4, Sx3n+4)

+ βG(x3n+4, Sx3n+4, Sx3n+4)G(x3n+2, Rx3n+2, Rx3n+2)

+ γG(x3n+3, Tx3n+3, Tx3n+3)G(x3n+2, Rx3n+2, Rx3n+2)

= αG(x3n+3, x3n+4, x3n+4)G(x3n+4, x3n+5, x3n+5)

+ βG(x3n+4, x3n+5, x3n+5)G(x3n+2, x3n+3, x3n+3)

+ γG(x3n+3, x3n+4, x3n+4)G(x3n+2, x3n+3, x3n+3)

≤ αG(x3n+3, x3n+4, x3n+5)G(x3n+3, x3n+4, x3n+5)

+ βG(x3n+3, x3n+4, x3n+5)G(x3n+2, x3n+3, x3n+4)

+ γG(x3n+5, x3n+3, x3n+4)G(x3n+2, x3n+3, x3n+4).

(2.14)

Which implies that

G(x3n+3, x3n+4, x3n+5) ≤ αG(x3n+3, x3n+4, x3n+5) +
(
β + γ

)
G(x3n+2, x3n+3, x3n+4). (2.15)

It follows that

(1 − α)G(x3n+3, x3n+4, x3n+5) ≤
(
β + γ

)
G(x3n+2, x3n+3, x3n+4). (2.16)

By the condition 0 ≤ α ≤ α + β + γ < 1, we know that 1 − α > 0. Hence, we have

G(x3n+3, x3n+4, x3n+5) ≤
β + γ

1 − α
G(x3n+2, x3n+3, x3n+4). (2.17)

Let q = max{(α + γ)/(1 − β), (α + β)/(1 − γ), (β + γ)/(1 − α)}, then from 0 ≤ α + β + γ < 1 we
know that 0 ≤ q < 1. Combining (2.9), (2.13), and (2.17), we have

G(xn, xn+1, xn+2) ≤ qG(xn−1, xn, xn+1) ≤ · · · ≤ qnG(x0, x1, x2). (2.18)

Thus, by (G3) and (G5), for every m,n ∈ N, m > n, noting that 0 ≤ q < 1, we have

G(xn, xm, xm) ≤ G(xn, xn+1, xn+1) +G(xn+1, xn+2, xn+2) + · · · +G(xm−1, xm, xm),

≤ G(xn, xn+1, xn+2) +G(xn+1, xn+2, xn+3) + · · · +G(xm−1, xm, xm+1)

≤
(
qn + qn+1 + · · · + qm−1

)
G(x0, x1, x2)

≤ qn

1 − q
G(x0, x1, x2).

(2.19)
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Which implies that G(xn, xm, xm) → 0, as n,m → ∞. Thus {xn} is a G-Cauchy sequence.
Due to the completeness of (X,G), there exists u ∈ X, such that {xn} is G-convergent to u.

Next we prove u is a common fixed point of T, S, and R. By using (2.1), we have

G2(Tu, x3n+2, x3n+3) = G2(Tu, Sx3n+1, Rx3n+2)

≤ αG(u, Tu, Tu)G(x3n+1, Sx3n+1, Sx3n+1)

+ βG(x3n+1, Sx3n+1, Sx3n+1)G(x3n+2, Rx3n+2, Rx3n+2)

+ γG(u, Tu, Tu)G(x3n+2, Rx3n+2, Rx3n+2)

= αG(u, Tu, Tu)G(x3n+1, x3n+2, x3n+2)

+ βG(x3n+1, x3n+2, x3n+2)G(x3n+2, x3n+3, x3n+3)

+ γG(u, Tu, Tu)G(x3n+2, x3n+3, x3n+3).

(2.20)

Letting n → ∞, and using the fact that G is continuous on its variables, we can get

G2(Tu, u, u) = 0. (2.21)

Which gives that Tu = u, that is u is a fixed point of T . By using (2.1) again, we have

G2(x3n+1, Su, x3n+3) = G2(Tx3n, Su, Rx3n+2)

≤ αG(x3n, x3n+1, x3n+1)G(u, Su, Su)

+ βG(u, Su, Su)G(x3n+2, x3n+3, x3n+3)

+ γG(x3n, x3n+1, x3n+1)G(x3n+2, x3n+3, x3n+3).

(2.22)

Letting n → ∞ at both sides, for G is continuous on its variables, it follows that

G2(u, Su, u) = 0. (2.23)

Therefore, Su = u; that is, u is a fixed point of S. Similarly, by (2.1), we can also get

G2(x3n+1, x3n+2, Ru) = G2(Tx3n, Sx3n+1, Ru)

≤ αG(x3n, x3n+1, x3n+1)G(x3n+1, x3n+2, x3n+2)

+ βG(x3n+1, x3n+2, x3n+2)G(u,Ru,Ru)

+ γG(x3n, x3n+1, x3n+1)G(u,Ru,Ru).

(2.24)

On taking n → ∞ at both sides, since G is continuous on its variables, we get that

G2(u, u, Ru) = 0. (2.25)
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Which gives that u = Ru, therefore, u is fixed point of R. Consequently, we have u = Tu =
Su = Ru, and u is a common fixed point of T, S and R. Suppose v is another common fixed
point of T, S, and R, and we have v = Tv = Sv = Rv, then by (2.1), we have

G2(u, u, v) = G2(Tu, Su, Rv)

≤ αG(u, Tu, Tu)G(u, Su, Su) + βG(u, Su, Su)G(v,Rv, Rv)

+ γG(u, Tu, Tu)G(v,Rv, Rv)

= αG(u, u, u)G(u, u, u) + βG(u, u, u)G(v, v, v)

+ γG(u, u, u)G(v, v, v)

= 0.

(2.26)

Which implies that G2(u, u, v) = 0, hence, u = v. Then we know the common fixed point of
T, S, and R is unique.

To show that T is G-continuous at u, let {yn} be any sequence in X such that {yn} is
G-convergent to u. For n ∈ N, we have

G2(Tyn, u, u
)
= G2(Tyn, Su, Ru

)

≤ αG
(
yn, Tyn, Tyn

)
G(u, Su, Su) + βG(u, Su, Su)G(u,Ru,Ru)

+ γG
(
yn, Tyn, Tyn

)
G(u,Ru,Ru)

= αG
(
yn, Tyn, Tyn

)
G(u, u, u) + βG(u, u, u)G(u, u, u)

+ γG
(
yn, Tyn, Tyn

)
G(u, u, u)

= 0.

(2.27)

Which implies that limn→∞G2(Tyn, u, u) = 0. Hence {Tyn} is G-convergent to u = Tu. So T is
G-continuous at u. Similarly, we can also prove that S,R are G-continuous at u. Therefore, we
complete the proof.

Corollary 2.2. Let (X,G) be a complete G-metric space. Suppose the three self-mappings T, S, R :
X → X satisfy the condition:

G2(Tpx, Ssy, Rrz
) ≤ αG(x, Tpx, Tpx)G

(
y, Ssy, Ssy

)
+ βG

(
y, Ssy, Ssy

)
G(z, Rrz, Rrz)

+ γG(x, Tpx, Tpx)G(z, Rrz, Rrz),
(2.28)

for all x, y, z ∈ X, where p, s, r ∈ N, α, β, γ are nonnegative real numbers and α + β + γ < 1. Then
T, S, and R have a unique common fixed point (say u) and Tp, Ss, Rr are all G-continuous at u.

Proof. From Theorem 2.1 we know that Tp, Ss, Rr have a unique common fixed point (say u);
that is, Tpu = u, Ssu = u, Rru = u, and Tp, Ss, Rr are G-continuous at u. Since Tu = TTpu =
Tp+1u = TpTu, so Tu is another fixed point of Tp, Su = SSsu = Ss+1u = gsgu, so Su is another
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fixed point of Ss, and Ru = RRru = Rr+1u = RrRu, so Ru is another fixed point of Rr . By (G3)
and the condition (2.28) in Corollary 2.2, we have

G2(Tu, SsTu, RrTu) = G2(TpTu, SsTu, RrTu)

≤ αG(Tu, TpTu, TpTu)G(Tu, SsTu, SsTu)

+ βG(Tu, SsTu, SsTu)G(Tu,RrTu, RrTu)

+ γG(Tu, TpTu, TpTu)G(Tu,RrTu, RrTu)

= βG(Tu, SsTu, SsTu)G(Tu,RrTu, RrTu)

≤ βG(Tu, SsTu, RrTu)G(Tu, SsTu, RrTu).

(2.29)

Since 0 ≤ β < 1, we can get G2(Tu, SsTu, RrTu) = 0. That means Tu = TpTu = SsTu = RrTu,
hence Tu is another common fixed point of Tp, Ss-and Rr . Since the common fixed point
of Tp, Ss-and Rr is unique, we deduce that u = Tu. By the same argument, we can prove
u = Su, u = Ru. Thus, we have u = Tu = Su = Ru. Suppose v is another common fixed point
of T, S, and R, then v = Tpv = Ssv = Rrv, and by using the condition (2.28) in Corollary 2.2
again, we have

G2(v, u, u) = G2(Tpv, Ssu, Rru)

≤ αG(v, Tpv, Tpv)G(u, Ssu, Ssu) + βG(u, Ssu, Ssu)G(u,Rru, Rru)

+ γG(v, Tpv, Tpv)G(u,Rru, Rru)

= αG(v, v, v)G(u, u, u) + βG(u, u, u)G(u, u, u) + γG(v, v, v)G(u, u, u)

= 0.

(2.30)

Which implies that G2(v, u, u) = 0, hence v = u. So the common fixed of T, S, and R is unique.
It is obvious that every fixed point of T is a fixed point of S and R and conversely.

Corollary 2.3. Let (X,G) be a complete G-metric space. Suppose the self-mapping T : X → X
satisfies the following condition:

G2(Tx, Ty, Tz
) ≤ αG(x, Tx, Tx)G

(
y, Ty, Ty

)
+ βG

(
y, Ty, Ty

)
G(z, Tz, Tz)

+ γG(x, Tx, Tx)G(z, Tz, Tz),
(2.31)

for all x, y, z ∈ X, where α, β, γ are nonnegative real numbers and α+ β + γ < 1. Then T has a unique
fixed point (say u) and T is G-continuous at u.

Proof. Let T = S = R in Theorem 2.1, we can get this conclusion holds.
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Corollary 2.4. Let (X,G) be a complete G-metric space. Suppose the self-mapping T : X → X
satisfies the following condition:

G2(Tpx, Tpy, Tpz
) ≤ αG(x, Tpx, Tpx)G

(
y, Tpy, Tpy

)
+ βG

(
y, Tpy, Tpy

)
G(z, Tpz, Tpz)

+ γG(x, Tpx, Tpx)G(z, Tpz, Tpz).
(2.32)

for all x, y, z ∈ X, where α, β, γ are nonnegative real numbers and α+ β + γ < 1. Then T has a unique
fixed point (say u) and Tp is G-continuous at u.

Proof. Let T = S = R, p = s = r in Corollary 2.2, we can get this conclusion holds.

Theorem 2.5. Let (X,G) be a complete G-metric space, and let T, S, R : X → X be three self-
mappings in X, which satisfy the following condition.

G2(Tx, Sy, Rz
) ≤ αG

(
x, Tx, Sy

)
G
(
y, Sy, Rz

)
+ βG

(
y, Sy, Rz

)
G(z, Rz, Tx)

+ γG
(
x, Tx, Sy

)
G(z, Rz, Tx).

(2.33)

for all x, y, z ∈ X, α, β, γ are nonnegative real numbers and α + β + γ < 1. Then T, S and R have a
unique common fixed point (say u) and T, S, R are all G-continuous at u.

Proof. We will proceed in two steps.
Step 1. We prove any fixed point of T is a fixed point of S and R and conversely. Assume that
p ∈ X is such that Tp = p. Now we prove that p = Sp and p = Rp. If it is not the case, then for
p /=Sp and p /=Rp, by (2.33) and (G3) we have

G2(Tp, Sp, Rp
) ≤ αG

(
p, Tp, Sp

)
G
(
p, Sp, Rp

)
+ βG

(
p, Sp, Rp

)
G
(
p, Rp, Tp

)

+ γG
(
p, Tp, Sp

)
G
(
p, Rp, Tp

)

= αG
(
p, p, Sp

)
G
(
p, Sp, Rp

)
+ βG

(
p, Sp, Rp

)
G
(
p, Rp, p

)

+ γG
(
p, p, Sp

)
G
(
p, Rp, p

)

≤ αG
(
p, Rp, Sp

)
G
(
p, Sp, Rp

)
+ βG

(
p, Sp, Rp

)
G
(
p, Rp, Sp

)

+ γG
(
p, Rp, Sp

)
G
(
p, Rp, Sp

)

=
(
α + β + γ

)
G2(p, Rp, Sp

)
.

(2.34)

It follows that

G2(p, Sp, Rp
)
= G2(Tp, Sp, Rp

) ≤ (
α + β + γ

)
G2(p, Sp, Rp

)
. (2.35)

SinceG2(p, Sp, Rp) > 0, hence we have α+β+γ ≥ 1, however it contradicts with the condition
0 ≤ α + β + γ < 1, so we can have p = Sp = Rp, hence p is a common fixed point of T, S, and R.

Analogously, following the similar arguments to those given above, we can obtain a
contradiction for p /=Sp and p = Rp or p = Sp and p /=Rp. Hence in all the cases, we conclude
that p = Sp = Rp. The same conclusion holds if p = Sp or p = Rp.
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Step 2. We prove that T , S andR have a unique common fixed point. Let x0 ∈ X be an arbitrary
point, and define the sequence {xn} by x3n+1 = Tx3n, x3n+2 = Sx3n+1, x3n+3 = Rx3n+2, n ∈ N. If
xn = xn+1, for some n, with n = 3m, then p = x3m is a fixed point of T and, by the first step, p is
a common fixed point of S, T , and R. The same holds if n = 3m+ 1 or n = 3m+ 2. Without loss
of generality, we can assume that xn /=xn+1, for all n ∈ N. We first prove the sequence {xn} is
a G-Cauchy sequence. In fact, by using (2.33) and (G3), we have

G2(x3n+1, x3n+2, x3n+3) = G2(Tx3n, Sx3n+1, Rx3n+2)

≤ αG(x3n, x3n+1, x3n+2)G(x3n+1, x3n+2, x3n+3)

+ βG(x3n+1, x3n+2, x3n+3)G(x3n+2, x3n+3, x3n+1)

+ γG(x3n, x3n+1, x3n+2)G(x3n+2, x3n+3, x3n+1).

(2.36)

Which gives that

G(x3n+1, x3n+2, x3n+3) ≤
(
α + γ

)
G(x3n, x3n+1, x3n+2) + βG(x3n+1, x3n+2, x3n+3). (2.37)

It follows that

(
1 − β

)
G(x3n+1, x3n+2, x3n+3) ≤

(
α + γ

)
G(x3n, x3n+1, x3n+2). (2.38)

From 0 ≤ β < 1, we know that 1 − β > 0. Then, we have

G(x3n+1, x3n+2, x3n+3) ≤
α + γ

1 − β
G(x3n, x3n+1, x3n+2). (2.39)

On the other hand, by using (2.33) and (G3), we have

G2(x3n+2, x3n+3, x3n+4) = G2(Tx3n+3, Sx3n+1, Rx3n+2)

≤ αG(x3n+3, x3n+4, x3n+2)G(x3n+1, x3n+2, x3n+3)

+ βG(x3n+1, x3n+2, x3n+3)G(x3n+2, x3n+3, x3n+4)

+ γG(x3n+3, x3n+4, x3n+2)G(x3n+2, x3n+3, x3n+4).

(2.40)

Which implies that

G(x3n+2, x3n+3, x3n+4) ≤
(
α + β

)
G(x3n+1, x3n+2, x3n+3) + γG(x3n+2, x3n+3, x3n+4). (2.41)

It follows that

(
1 − γ

)
G(x3n+2, x3n+3, x3n+4) ≤

(
α + β

)
G(x3n+1, x3n+2, x3n+3). (2.42)
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Since 0 ≤ γ < 1, we know that 1 − γ > 0. So, we have

G(x3n+2, x3n+3, x3n+4) ≤
α + β

1 − γ
G(x3n+1, x3n+2, x3n+3). (2.43)

Again, using (2.33) and (G3), we can get

G2(x3n+3, x3n+4, x3n+5) = G2(Tx3n+3, Sx3n+4, Rx3n+2)

≤ αG(x3n+3, x3n+4, x3n+5)G(x3n+4, x3n+5, x3n+3)

+ βG(x3n+4, x3n+5, x3n+3)G(x3n+2, x3n+3, x3n+4)

+ γG(x3n+2, x3n+3, x3n+4)G(x3n+3, x3n+4, x3n+5).

(2.44)

Which implies that

G(x3n+3, x3n+4, x3n+5) ≤ αG(x3n+3, x3n+4, x3n+5) +
(
β + γ

)
G(x3n+2, x3n+3, x3n+4). (2.45)

It follows that

(1 − α)G(x3n+3, x3n+4, x3n+5) ≤
(
β + γ

)
G(x3n+2, x3n+3, x3n+4). (2.46)

Since 0 ≤ α ≤ α + β + γ < 1, we know that 1 − α > 0. So we have

G(x3n+3, x3n+4, x3n+5) ≤
β + γ

1 − α
G(x3n+2, x3n+3, x3n+4). (2.47)

Let q = max{(α+ γ)/(1− β), (α+ β)/(1− γ), (β + γ)/(1−α)}, then 0 ≤ q < 1, and by combining
(2.39), (2.43), and (2.47), we have

G(xn, xn+1, xn+2) ≤ qG(xn−1, xn, xn+1) ≤ · · · ≤ qnG(x0, x1, x2). (2.48)

Thus, by (G3) and (G5), for every m,n ∈ N, ifm > n, noting that 0 ≤ q < 1, we have

G(xn, xm, xm) ≤ G(xn, xn+1, xn+1) +G(xn+1, xn+2, xn+2) + · · · +G(xm−1, xm, xm)

≤ G(xn, xn+1, xn+2) +G(xn+1, xn+2, xn+3) + · · · +G(xm−1, xm, xm+1)

≤
(
qn + qn+1 + · · · + qm−1

)
G(x0, x1, x2)

≤ qn

1 − q
G(x0, x1, x2).

(2.49)

Which implies that G(xn, xm, xm) → 0, as n,m → ∞. Thus {xn} is a G-Cauchy sequence.
Due to the completeness of (X,G), there exists u ∈ X, such that {xn} is G-convergent to u.
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Now we prove u is a common fixed point of T, S, and R. By using (2.33), we have

G2(Tu, x3n+2, x3n+3) = G2(Tu, Sx3n+1, Rx3n+2)

≤ αG(u, Tu, Sx3n+1)G(x3n+1, Sx3n+1, Rx3n+2)

+ βG(x3n+1, Sx3n+1, Rx3n+2)G(x3n+2, Rx3n+2, Tu)

+ γG(u, Tu, Sx3n+1)G(x3n+2, Rx3n+2, Tu)

= αG(u, Tu, x3n+2)G(x3n+1, x3n+2, x3n+3)

+ βG(x3n+1, x3n+2, x3n+3)G(x3n+2, x3n+3, Tu)

+ γG(u, Tu, x3n+2)G(x3n+2, x3n+3, Tu).

(2.50)

Letting n → ∞, and using the fact that G is continuous on its variables and γ < 1, we can get

G2(Tu, u, u) ≤ γG2(u, u, Tu). (2.51)

Which gives that Tu = u, hence u is a fixed point of T . By using (2.33) again, we have

G2(x3n+1, Su, x3n+3) = G2(Tx3n, Su, Rx3n+2)

≤ αG(x3n, x3n+1, Su)G(u, Su, x3n+3) + βG(u, Su, x3n+3)G(x3n+2, x3n+3, x3n+1)

+ γG(x3n, x3n+1, Su)G(x3n+2, x3n+3, x3n+1).
(2.52)

Letting n → ∞ at both sides, for G is continuous in its variables, it follows that

G2(u, Su, u) ≤ αG2(u, Su, u). (2.53)

For 0 ≤ α < 1, Therefore, we can get G2(u, Su, u) = 0, hence Su = u, hence u is a fixed point of
S. Similarly, by (2.33), we can also get

G2(x3n+1, x3n+2, Ru) = G2(Tx3n, Sx3n+1, Ru)

≤ αG(x3n, x3n+1, x3n+2)G(x3n+1, x3n+2, Ru)

+ βG(x3n+1, x3n+2, Ru)G(u,Ru, x3n+1)

+ γG(x3n, x3n+1, x3n+2)G(u,Ru, x3n+1).

(2.54)

On taking n → ∞ at both sides, since G is continuous in its variables, we get that

G2(u, u, Ru) ≤ βG2(u, u, Ru). (2.55)
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Since 0 ≤ β < 1, so we get G2(u, u, Ru) = 0, hence u = Ru, therefore, u is a fixed point of R.
Consequently, we have u = Tu = Su = Ru, and u is a common fixed point of T, S, and R.
Suppose v /=u is another common fixed point of T, S, and R, and we have v = Tv = Sv = Rv,
then by (2.33), we have

G2(u, u, v) = G2(Tu, Su, Rv)

≤ αG(u, Tu, Su)G(u, Su, Rv) + βG(u, Su, Rv)G(v,Rv, Tu)

+ γG(u, Tu, Su)G(v,Rv, Tu)

= αG(u, u, u)G(u, u, v) + βG(u, u, v)G(v, v, u) + γG(u, u, u)G(v, v, u).

(2.56)

Which gives that

G2(u, u, v) ≤ βG(u, u, v)G(v, v, u). (2.57)

Hence, we can get G(u, u, v) ≤ βG(v, v, u). By using (2.33) again, we get

G2(u, v, v) = G2(Tu, Sv, Rv)

≤ αG(u, Tu, Sv)G(v, Sv, Rv) + βG(v, Sv, Rv)G(v,Rv, Tu)

+ γG(u, Tu, Sv)G(v,Rv, Tu)

= αG(u, u, v)G(v, v, v) + βG(v, v, v)G(v, v, u) + γG(u, u, v)G(v, v, u).

(2.58)

Which implies that

G2(u, v, v) ≤ γG(u, u, v)G(v, v, u). (2.59)

Hence, we can get

G(u, v, v) ≤ γG(u, u, v). (2.60)

By combining G(u, u, v) ≤ βG(v, v, u), we can have

G(u, v, v) ≤ γG(u, u, v) ≤ βγG(v, v, u). (2.61)

Since v /=u,G(u, v, v) > 0, so we have that βγ ≥ 1. Since 0 ≤ β, γ < 1, we know 0 ≤ βγ < 1, so
it’s a contradiction. Hence, we get u = v. Then we know the common fixed point of T, S, and
R is unique.
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To show that T is G-continuous at u, let {yn} be any sequence in X such that {yn} is
G-convergent to u. For n ∈ N, we have

G2(Tyn, u, u
)
= G2(Tyn, Su, Ru

)

≤ αG
(
yn, Tyn, Su

)
G(u, Su, Ru) + βG(u, Su, Ru)G

(
u,Ru, Tyn

)

+ γG
(
yn, Tyn, Su

)
G
(
u,Ru, Tyn

)

= αG
(
yn, Tyn, u

)
G(u, u, u) + βG(u, u, u)G

(
u, u, Tyn

)

+ γG
(
yn, Tyn, u

)
G
(
u, u, Tyn

)

= γG
(
yn, Tyn, u

)
G
(
u, u, Tyn

)
.

(2.62)

Which implies that

G
(
Tyn, u, u

) ≤ γG
(
yn, Tyn, u

)
. (2.63)

On taking n → ∞ at both sides, considering γ < 1, we get limn→∞G(Tyn, u, u) = 0. Hence
{Tyn} is G-convergent to u = Tu. So T is G-continuous at u. Similarly, we can also prove that
S,R are G-continuous at u. Therefore, we complete the proof.

Now we introduce an example to support Theorem 2.5.

Example 2.6. Let X = [0, 1], and let (X,G) be a G-metric space defined by G(x, y, z) = |x −y|+
|y − z| + |z − x|, for all x, y, z in X. Let T , S, and R be three self-mappings defined by

Tx =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, x ∈
[
0,

1
2

]

6
7
, x ∈

(
1
2
, 1
] , Sx =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

7
8
, x ∈

[
0,

1
2

]

6
7
, x ∈

(
1
2
, 1
] , Rx =

6
7
, x ∈ [0, 1]. (2.64)

Next we proof the mappings T , S, and R are satisfying Condition (2.33) of Theorem 2.5
with α = 1/7, β = 1/7 and γ = 4/7.

Case 1. If x, y ∈ [0, 1/2], z ∈ [0, 1], then

G2(Tx, Sy, Rz
)
= G2

(
1,

7
8
,
6
7

)
=

4
49

,

G
(
x, Tx, Sy

)
= G

(
x, 1,

7
8

)
= |x − 1| +

∣∣∣∣x − 7
8

∣∣∣∣ +
1
8
≥ 1

2
+
3
8
+
1
8
= 1,

G
(
y, Sy, Rz

)
= G

(
y,

7
8
,
6
7

)
=
∣∣∣∣y − 7

8

∣∣∣∣ +
∣∣∣∣y − 6

7

∣∣∣∣ +
1
56

≥ 3
8
+

5
14

+
1
56

=
3
4
,

G(z, Rz, Tx) = G

(
z,

6
7
, 1
)

=
∣∣∣∣z − 6

7

∣∣∣∣ +
1
7
+ |z − 1| ≥ 0 +

1
7
+ 0 =

1
7
.

(2.65)
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Thus, we have

G2(Tx, Sy, Rz
)
=

4
49

≤ α · 1 · 3
4
+ β · 3

4
· 1
7
+ γ · 1 · 1

7

≤ αG
(
x, Tx, Sy

)
G
(
y, Sy, Rz

)
+ βG

(
y, Sy, Rz

)
G(z, Rz, Tx)

+ γG
(
x, Tx, Sy

)
G(z, Rz, Tx).

(2.66)

Case 2. If x ∈ [0, 1/2], y ∈ (1/2, 1], z ∈ [0, 1], then we can get

G2(Tx, Sy, Rz
)
= G2

(
1,

6
7
,
6
7

)
=

4
49

,

G
(
x, Tx, Sy

)
= G

(
x, 1,

6
7

)
= |x − 1| +

∣∣∣∣x − 6
7

∣∣∣∣ +
1
7
≥ 1

2
+

5
14

+
1
7
= 1,

G
(
y, Sy, Rz

)
= G

(
y,

6
7
,
6
7

)
=
∣∣∣∣y − 6

7

∣∣∣∣ +
∣∣∣∣y − 6

7

∣∣∣∣ ≥ 0 + 0 = 0,

G(z, Rz, Tx) = G

(
z,

6
7
, 1
)

=
∣∣∣∣z − 6

7

∣∣∣∣ +
1
7
+ |z − 1| ≥ 0 +

1
7
+ 0 =

1
7
.

(2.67)

Thus, we have

G2(Tx, Sy, Rz
)
=

4
49

≤ α · 1 · 0 + β · 0 · 1
7
+ γ · 1 · 1

7

≤ αG
(
x, Tx, Sy

)
G
(
y, Sy, Rz

)
+ βG

(
y, Sy, Rz

)
G(z, Rz, Tx)

+ γG
(
x, Tx, Sy

)
G(z, Rz, Tx).

(2.68)

Case 3. If x ∈ (1/2, 1], y ∈ [0, 1/2], z ∈ [0, 1], then we have

G2(Tx, Sy, Rz
)
= G2

(
6
7
,
7
8
,
6
7

)
=

1
784

,

G
(
x, Tx, Sy

)
= G

(
x,

6
7
,
7
8

)
=
∣∣∣∣x − 6

7

∣∣∣∣ +
∣∣∣∣x − 7

8

∣∣∣∣ +
1
56

≥ 0 + 0 +
1
56

=
1
56

,

G
(
y, Sy, Rz

)
= G

(
y,

7
8
,
6
7

)
=
∣∣∣∣y − 7

8

∣∣∣∣ +
∣∣∣∣y − 6

7

∣∣∣∣ +
1
56

≥ 3
8
+

5
14

+
1
56

=
3
4
,

G(z, Rz, Tx) = G

(
z,

6
7
,
6
7

)
=
∣∣∣∣z − 6

7

∣∣∣∣ +
∣∣∣∣z − 6

7

∣∣∣∣ ≥ 0 + 0 = 0.

(2.69)
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Thus, we have

G2(Tx, Sy, Rz
)
=

1
784

≤ α · 1
56

· 3
4
+ β · 3

4
· 0 + γ · 1

56
· 0

≤ αG
(
x, Tx, Sy

)
G
(
y, Sy, Rz

)
+ βG

(
y, Sy, Rz

)
G(z, Rz, Tx)

+ γG
(
x, Tx, Sy

)
G(z, Rz, Tx).

(2.70)

Case 4. If x, y ∈ (1/2, 1], z ∈ [0, 1], then we have

G2(Tx, Sy, Rz
)
= G2

(
6
7
,
6
7
,
6
7

)
= 0. (2.71)

Thus, we have

G2(Tx, Sy, Rz
)
= 0

≤ αG
(
x, Tx, Sy

)
G
(
y, Sy, Rz

)
+ βG

(
y, Sy, Rz

)
G(z, Rz, Tx)

+ γG
(
x, Tx, Sy

)
G(z, Rz, Tx).

(2.72)

Then in all of the above cases, the mappings T, S, and R satisfy the contractive
condition (2.33) of Theorem 2.5 with α = 1/7, β = 1/7, γ = 4/7. So that all the conditions of
Theorem 2.5 are satisfied. Moreover, 6/7 is the unique common fixed point for all of the three
mappings T, S, and R.

At last, we prove T, S, and R are allG-continuous at the common fixed point 6/7. Since
6/7 ∈ (1/2, 1], and let the sequence {yn} ⊂ (0, 1] and yn → (6/7)(n → ∞), then there exists
N ∈ N such that {yn} ⊂ (1/2, 1], for all n > N. Without loss of generality, we can assume that
{yn} ⊂ (1/2, 1], and so Tyn = 6/7, Syn = 6/7 and Ryn = 6/7. Therefore,

lim
n→∞

Tyn = lim
n→∞

Syn = lim
n→∞

Ryn =
6
7
. (2.73)

Which implies that T, S, and R are all G-continuous at the common fixed point 6/7.

Corollary 2.7. Let (X,G) be a complete G-metric space. Suppose the three self-mappings T, S, R :
X → X satisfy the condition:

G2(Tpx, Ssy, Rrz
) ≤ αG

(
x, Tpx, Ssy

)
G
(
y, Ssy, Rrz

)
+ βG

(
y, Ssy, Rrz

)
G(z, Rrz, Tpx)

+ γG
(
x, Tpx, Ssy

)
G(z, Rrz, Tpx),

(2.74)

for all x, y, z ∈ X, where p, s, r ∈ N, α, β, γ are nonnegative real numbers and α + β + γ < 1. Then
T, S, and R have a unique common fixed point (say u) and Tp, Ss, Rr are all G-continuous at u.

Proof. Since the proof of Corollary 2.7 is very similar to that of Corollary 2.2, so we delete
it.
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Corollary 2.8. Let (X,G) be a complete G-metric space, and let T : X → X be a self-mapping in X,
which satisfies the following condition:

G2(Tx, Ty, Tz
) ≤ αG

(
x, Tx, Ty

)
G
(
y, Ty, Tz

)
+ βG

(
y, Ty, Tz

)
G(z, Tz, Tx)

+ γG
(
x, Tx, Ty

)
G(z, Tz, Tx).

(2.75)

for all x, y, z ∈ X, where α, β, γ are nonnegative real numbers and α+ β + γ < 1. Then T has a unique
fixed point (say u) and T is G-continuous at u.

Corollary 2.9. Let (X,G) be a complete G-metric space, and let T : X → X be a self-mapping in X,
which satisfies the following condition:

G2(Tpx, Tpy, Tpz
) ≤ αG

(
x, Tpx, Tpy

)
G
(
y, Tpy, Tpz

)
+ βG

(
y, Tpy, Tpz

)
G(z, Tpz, Tpx)

+ γG
(
x, Tpx, Tpy

)
G(z, Tpz, Tpx).

(2.76)

for all x, y, z ∈ X, where p ∈ N, α, β, γ are nonnegative real numbers and α + β + γ < 1. Then T has
a unique fixed point (say u) and Tp is G-continuous at u.
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