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A delayed neural network model of two neurons with inertial coupling is dealt with in this paper.
The stability is investigated and Hopf bifurcation is demonstrated. Applying the normal form
theory and the center manifold argument, we derive the explicit formulas for determining the
properties of the bifurcating periodic solutions. An illustrative example is given to demonstrate
the effectiveness of the obtained results.

1. Introduction

In recent years, a number of different classes of neural networks with or without delays,
including Hopfield networks, cellular neural networks, Cohen-Grossberg neural networks,
and bidirectional associate memory neural networks have been active research topic as [1],
and substantial efforts have been made in neural network models, for example, Huang et
al. [2] studied the global exponential stability and the existence of periodic solution of a
class of cellular neural networks with delays, Guo and Huang [3] investigated the Hopf
bifurcation natures of a ring of neurons with delays, Yan [4] analyzed the stability and
bifurcation of a delayed tri-neuron network model, Hajihosseini et al. [5] made a discussion
on the Hopf bifurcation of a delayed recurrent neural network in the frequency domain,
and Liao et al. [6] did a theoretical and empirical investigation of a two-neuron system with
distributed delays in the frequency domain. Agranovich et al. [7] considered the impulsive
control of a hysteresis cellular neural network model. For more information, one can see
[8–24]. In 1986 and 1987, Babcock and Westervelt [25, 26] had investigated the stability
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and dynamics of the following simple neural network model of two neurons with inertial
coupling:

dx1
dt

= x3,

dx2
dt

= x4,

dx3
dt

= −2ξx3 − x1 +A2 tanh(x2),

dx4
dt

= −2ξx4 − x2 +A1 tanh(x1),

(1.1)

where xi (i = 1, 2) is the input voltage of the ith neuron, xj (j = 3, 4) denotes the
output of the jth neuron, ξ > 0 is the damping factor, and Ai (i = 1, 2) is the
overall gain of the neuron which determines the strength of the nonlinearity. For a more
detailed interpretation of the parameters, one can see [25, 26]. In 1997, Lin and Li [27]
made a detail discussion on the bifurcation direction of periodic solution for system
(1.1).

From applications point of view, considering that there is a time delay (we assume
that it is τ) in the response of the output voltages to changes in the input, that is, there exists
a feedback delay of the input voltage of the ith neuron to the growth of the output of the jth
neuron, then we modify system (1.1) as follows:

dx1
dt

= x3,

dx2
dt

= x4,

dx3
dt

= −2ξx3 − x1(t − τ) +A2 tanh(x2(t − τ)),

dx4
dt

= −2ξx4 − x2(t − τ) +A1 tanh(x1(t − τ)).

(1.2)

It is well known that the research on the Hopf bifurcation, especially on the stability of
bifurcating periodic solutions and direction of Hopf bifurcation is very critical. When delays
are incorporated into the network models, stability and Hopf bifurcation analysis become
more difficult. To obtain a deep and clear understanding of dynamics of neural network
model of two neurons with inertial coupling, we will make a discussion on system (1.2),
that is, we study the stability, the local Hopf bifurcation for system (1.2).

The remainder of this paper is organized as follows. In Section 2, we investigate the
stability of the equilibrium and the occurrence of local Hopf bifurcations. In Section 3, the
direction and stability of the local Hopf bifurcation are established. In Section 4, numerical
simulations are carried out to illustrate the validity of the main results.
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2. Stability of the Equilibrium and Local Hopf Bifurcations

In this section, we shall study the stability of the equilibrium and the existence of local Hopf
bifurcations. For simplification, we only consider the zero equilibrium. One can check that if
the following condition:

(H1)A1A2 < 1 (2.1)

holds, then (1.2) has a unique equilibrium E(0, 0, 0, 0). The linearization of (1.2) at E(0, 0, 0, 0)
is given by

dx1
dt

= x3,

dx2
dt

= x4,

dx3
dt

= −2ξx3 − x1(t − τ) +A2x2(t − τ),

dx4
dt

= −2ξx4 − x2(t − τ) +A1x1(t − τ),

(2.2)

whose characteristic equation takes the form of

det

⎛
⎜⎜⎜⎜⎜⎝

λ 0 −1 0

0 λ 0 −1
e−λτ −A2e

−λτ λ + 2ξ 0

−A1e
−λτ e−λτ 0 λ + 2ξ

⎞
⎟⎟⎟⎟⎟⎠

= 0, (2.3)

that is,

λ4 + 4ξλ3 + 4ξ2λ2 +
(
2λ2 + 4ξλ

)
e−λτ + (1 −A1A2)e−2λτ = 0. (2.4)

Multiplying eλτ on both sides of (2.4), it is easy to obtain

(
λ4 + 4ξλ3 + 4ξ2λ2

)
eλτ + 2λ2 + 4ξλ + (1 −A1A2)e−λτ = 0. (2.5)

In order to investigate the distribution of roots of the transcendental equation (2.5), the
following lemma is helpful.
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Lemma 2.1 (see [28]). For the following transcendental equation:

P
(
λ, e−λτ1 , . . . , e−λτm

)
= λn + p(0)1 λn−1 + · · · + p(0)n−1λ + p(0)n

+
[
p
(1)
1 λn−1 + · · · + p(1)n−1λ + p(1)n

]
e−λτ1 + · · ·

+
[
p
(m)
1 λn−1 + · · · + p(m)

n−1λ + p(m)
n

]
e−λτm = 0,

(2.6)

as (τ1, τ2, τ3, . . . , τm) vary, the sum of orders of the zeros of P(λ, e−λτ1 , . . . , e−λτm) in the open right
half-plane can change, and only a zero appears on or crosses the imaginary axis.

For τ = 0, (2.5) becomes

λ4 + 4ξλ3 +
(
4ξ2 + 2

)
λ2 + 4ξλ + 1 −A1A2 = 0. (2.7)

In view of Routh-Hurwitz criteria, we know that all roots of (2.7) have a negative real part if
the following condition:

(H2)4ξ2 +A1A2 > 0 (2.8)

is fulfilled.
For ω > 0, iω is a root of (2.5) if and only if

(
ω4 − 4ξω3i − 4ξ2ω2

)
(cosωτ + i sinωτ) − 2ω2 + 4ξωi + (1 −A1A2)(cosωτ − i sinωτ) = 0.

(2.9)

Separating the real and imaginary parts gives

(
ω4 − 4ξ2ω2 + 1 −A1A2

)
cosωτ + 4ξω3 sinωτ = 2ω2,

(
ω4 − 4ξ2ω2 − 1 +A1A2

)
sinωτ − 4ξω3 cosωτ = −4ξω.

(2.10)

Then, we obtain

sinωτ =
4ξω5 + 16ξ3ω3 − (1 −A1A2)(
ω4 + 4ξ2ω2

)2 − (1 −A1A2)2
, (2.11)

cosωτ =
2ω6 + 8ξ2ω4 − (1 −A1A2)(
ω4 + 4ξ2ω2

)2 − (1 −A1A2)2
. (2.12)
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In view of sin2ωτ + cos2ωτ = 1, then, we have

[
4ξω5 + 16ξ3ω3 − (1 −A1A2)

]2
+
[
2ω6 + 8ξ2ω4 − (1 −A1A2)

]2

=
[(
ω4 + 4ξ2ω2

)2 − (1 −A1A2)2
]2
,

(2.13)

which is equivalent to

ω16 + l1ω14 + l2ω12 + l3ω10 + l4ω8 + l5ω6 + l6ω5 + l7ω4 + l8ω3 + l9 = 0, (2.14)

where

l1 = 16ξ2, l2 = 96ξ4 − 4, l3 = 256ξ6 − 48ξ2,

l4 = 256ξ8 − 64ξ4 − 128ξ3 − 2(1 −A1A2)
2, l5 = 2(1 −A1A2) − 16(1 −A1A2)

2ξ2 − 256ξ6,

l6 = 2ξ(1 −A1A2), l7 = 16ξ2(1 −A1A2) − 32ξ4(1 −A1A2)
2,

l8 = 32ξ3(1 −A1A2), l9 = −[(1 −A1A2)
4 + (1 −A1A2)

2].

Denote

h(ω) = ω16 + l1ω14 + l2ω12 + l3ω10 + l4ω8 + l5ω6 + l6ω5 + l7ω4 + l8ω3 + l9. (2.15)

Since l9 < 0 and limω→+∞h(ω) = +∞, thenwe can conclude that (2.14) has at least one positive
root. Without loss of generality, we assume that (2.14) has sixteen positive roots, denoted by
ωk (k = 1, 2, 3, . . . , 16). Then, by (2.12), we have

τ
(j)
k =

1
ωk

{
arccos

[
2ω6 + 8ξ2ω4 − (1 −A1A2)(
ω4 + 4ξ2ω2

)2 − (1 −A1A2)2

]
+ 2jπ

}
, (2.16)

where k = 1, 2, 3, . . . , 16; j = 0, 1, . . ., then ±iωk are a pair of purely imaginary roots of (2.4)
with τ (j)

k
. Define

τ0 = τ
(0)
k0

= min
k∈{1,2,3,...,16}

{
τ
(0)
k

}
. (2.17)

The above analysis leads to the following result.

Lemma 2.2. If (H1) and (H2) hold, then all roots of (2.4) have a negative real part when τ ∈
[0, τ0) and (2.4) admits a pair of purely imaginary roots ±ωk when τ = τ

(j)
k
(k = 1, 2, 3, . . . , 16; j =

0, 1, 2, . . .).

Let λ(τ) = α(τ)+iω(τ) be a root of (2.5) near τ = τ (j)k , α(τ (j)k ) = 0, andω(τ (j)k ) = ωk. Due

to functional differential equation theory, for every τ (j)
k
, k = 1, 2, 3, . . . , 16; j = 0, 1, 2, . . ., there
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exists ε > 0 such that λ(τ) is continuously differentiable in τ for |τ − τ (j)
k
| < ε. Substituting

λ(τ) into the left hand side of (2.5) and taking derivative with respect to τ , we have

[
dλ

dτ

]−1
=

(
4λ3 + 12ξλ2 + 8ξ2λ

)
eλτ + 4λ + 4ξ

λ(1 −A1A2)e−λτ − λ
(
λ4 + 4ξλ3 + 4ξ2λ2

)
eλτ

− τ

λ
. (2.18)

Noting that

[
4λ3 + 12ξλ2 + 8ξ2λ

)
eλτ + 4λ + 4ξ

]
τ=τ (j)

k

= K1 +K2i,

[
λ(1 −A1A2)e−λτ − λ

(
λ4 + 4ξλ3 + 4ξ2λ2

)
eλτ

]
τ=τ (j)

k

= P1 + P2i,
(2.19)

where

K1 = 4ξ − 12ξω2
k cosωkτ

(j)
k − (18ξ2ωk − 4ω3

k) sinωkτ
(j)
k ,

K2 = 4ωk + (8ξ2ωk − 4ω3
k
) cosωkτ

(j)
k

− 12ξω2
k
sinωkτ

(j)
k
.

P1 = 4ξω4
k cosωkτ

(j)
k + [(1 −A1A2)ωk −ω5

k − 4ξ2ω3
k] sinωkτ

(j)
k

P2 = [(1 −A1A2)ωk −ω5
k
− 4ξ2ω3

k
] cosωkτ

(j)
k

− 4ξω4
k
sinωkτ

(j)
k
,

we derive

[
d(Reλ(τ))

dτ

]−1
τ=τ (j)

k

= Re

{ (
4λ3 + 12ξλ2 + 8ξ2λ

)
eλτ + 4λ + 4ξ

λ(1 −A1A2)e−λτ − λ
(
λ4 + 4ξλ3 + 4ξ2λ2

)
eλτ

}

τ=τ (j)
k

= Re
{
K1 +K2i

P1 + P2i

}
=
K1P1 −K2P2

P 2
1 + P 2

2

.

(2.20)

We assume that the following condition holds:

(H3)K1P1 /=K2P2. (2.21)

According to above analysis and the results of Kuang [29] and Hale [30], we have the
following.

Theorem 2.3. If (H1) and (H2) hold, then the equilibrium E(0, 0, 0, 0) of system (1.2) is
asymptotically stable for τ ∈ [0, τ0). Under the conditions (H1) and (H2), if the condition (H3)
holds, then system (1.2) undergoes a Hopf bifurcation at the equilibrium E(0, 0, 0, 0) when τ = τ

(j)
k ,

k = 1, 2, 3, . . . , 16; j = 0, 1, 2, . . ..

3. Direction and Stability of the Hopf Bifurcation

In the previous section, we obtained conditions for Hopf bifurcation to occur when τ =
τ
(j)
k
, k = 1, 2, 3, . . . , 16; j = 0, 1, 2, . . .. In this section, we shall obtain the explicit formulae
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for determining the direction, stability, and periods of these periodic solutions bifurcating
from the equilibrium E(0, 0, 0, 0) at these critical value of τ , by using techniques from normal
form and center manifold theory [31]. Throughout this section, we always assume that
system (1.2) undergoes Hopf bifurcation at the equilibrium E(0, 0, 0, 0) for τ = τ

(j)
k , k =

1, 2, 3, . . . , 16; j = 0, 1, 2, . . ., and then ±iωk are corresponding purely imaginary roots of the
characteristic equation at the equilibrium E(0, 0, 0, 0).

For convenience, let xi(t) = xi(τt) (i = 1, 2, 3, 4) and τ = τ
(j)
k

+ μ, where τ (j)
k

is defined
by (2.16) and μ ∈ R, drop the bar for the simplification of notations, then system (2.2) can be
written as an FDE in C = C([−1, 0]), R4) as

u̇(t) = Lμ(ut) + F
(
μ, ut

)
, (3.1)

where u(t) = (x1(t), x2(t), x3(t), x4(t))
T ∈ C and ut(θ) = u(t + θ) = (x1(t + θ), x2(t + θ), x3(t +

θ), x4(t + θ))
T ∈ C, and Lμ : C → R, F : R × C → R are given by

Lμφ =
(
τ
(j)
k

+ μ
)

⎛
⎜⎜⎜⎜⎜⎝

0 0 1 0

0 0 0 1

0 0 −2ξ 0

0 0 0 −2ξ

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

φ1(0)

φ2(0)

φ3(0)

φ4(0)

⎞
⎟⎟⎟⎟⎟⎠

+
(
τ
(j)
k

+ μ
)

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 0

−1 A2 0 0

A1 −1 0 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

φ1(−1)
φ2(−1)
φ3(−1)
φ4(−1)

⎞
⎟⎟⎟⎟⎟⎠
,

f
(
μ, φ

)
=
(
τ
(j)
k

+ μ
)

⎛
⎜⎜⎜⎜⎜⎝

0

0

A2φ
3
2(−1) + h.o.t.

A1φ
3
1(−1) + h.o.t.

⎞
⎟⎟⎟⎟⎟⎠
,

(3.2)

respectively, where φ(θ) = (φ1(θ), φ2(θ), φ3(θ), φ4(θ))
T ∈ C.

From the discussion in Section 2, we know that if μ = 0, then system (3.1) undergoes a
Hopf bifurcation at the equilibrium E(0, 0, 0, 0) and the associated characteristic equation of
system (3.1) has a pair of simple imaginary roots ±ωkτ

(j)
k
.

By the representation theorem, there is a matrix function with bounded variation
components η(θ, μ), θ ∈ [−1, 0] such that

Lμφ =
∫0

−1
dη

(
θ, μ

)
φ(θ) for φ ∈ C. (3.3)
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In fact, we can choose

η
(
θ, μ

)
=

(
τ
(j)
k

+ μ
)
⎛
⎜⎜⎝

0 0 1 0
0 0 0 1
0 0 −2ξ 0
0 0 0 −2ξ

⎞
⎟⎟⎠δ(θ)

−
(
τ
(j)
k + μ

)
⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
−1 A2 0 0
A1 −1 0 0

⎞
⎟⎟⎠δ(θ + 1),

(3.4)

where δ is the Dirac delta function.
For φ ∈ C([−1, 0], R4), define

A
(
μ
)
φ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dφ(θ)
dθ

, −1 ≤ θ < 0,

∫0

−1
dη

(
s, μ

)
φ(s), θ = 0,

Rφ =

⎧
⎨
⎩
0, −1 ≤ θ < 0,

f
(
μ, φ

)
, θ = 0.

(3.5)

Then, (3.1) is equivalent to the following abstract differential equation:

u̇t = A
(
μ
)
ut + R

(
μ
)
ut, (3.6)

where ut(θ) = u(t + θ), θ ∈ [−1, 0]. For ψ ∈ C([0, 1], (R4)∗), define

A∗ψ(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−dψ(s)
ds

, s ∈ (0, 1],

∫0

−1
dηT (t, 0)ψ(−t), s = 0.

(3.7)

For φ ∈ C([−1, 0], R4) and ψ ∈ C([0, 1], (R4)∗), define the following bilinear form:

〈
ψ, φ

〉
= ψ(0)φ(0) −

∫0

−1

∫θ

ξ=0
ψT (ξ − θ)dη(θ)φ(ξ)dξ, (3.8)
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where η(θ) = η(θ, 0), and the A = A(0) and A∗ are adjoint operators. By the discussions in
Section 2, we know that ±iωkτ

(j)
k

are eigenvalues ofA(0), and they are also eigenvalues ofA∗

corresponding to iωkτ
(j)
k and −iωkτ

(j)
k , respectively. By direct computation, we can obtain

q(θ) =
(
1, α, β, γ

)T
eiωkτ

(j)
k
θ, q∗(s) = D

(
1, α∗, β∗, γ∗

)
eiωkτ

(j)
k
s, (3.9)

where

α =
iωk(iωk + 2ξ) + e−iωkτ

(j)
k

A2e
−iωkτ

(j)
k

, β = −iωk, γ =
iωke

−iωkτ
(j)
k −ω2

k(iωk + 2ξ)

A2e
−iωkτ

(j)
k

,

α∗ =
iωk(2ξ − iωk) − e−iωkτ

(j)
k

A1e
−iωkτ

(j)
k

, β∗ =
1

2ξ − iωk
, γ∗ =

ω2
k(iωk + 2ξ) − iωke

−iωkτ
(j)
k

A2e
−iωkτ

(j)
k

,

D =
1

1 + αα∗ + ββ∗ + γγ∗ + τ (j)k

[
γ(A1 − α∗) − β(A2α∗ + 1)

]
eiωkτ

(j)
k

.

(3.10)

Furthermore, 〈q∗(s), q(θ)〉1 and 〈q∗(s), q(θ)〉0.
Next, we use the same notations as those in Hassard et al. [31] and we first compute

the coordinates to describe the center manifold C0 at μ = 0. Let ut be the solution of (3.1),
when μ = 0.

Define

z(t) =
〈
q∗, ut

〉
, W(t, θ) = ut(θ) − 2Re

{
z(t)q(θ)

}
, (3.11)

on the center manifold C0, and we have

W(t, θ) =W(z(t), z(t), θ), (3.12)

where

W(z(t), z(t), θ) =W(z, z) =W20
z2

2
+W11zz +W02

z2

2
+ · · · , (3.13)

and z and z are local coordinates for center manifold C0 in the direction of q∗ and q∗. Noting
thatW is also real if ut is real, we consider only real solutions. For solutions ut ∈ C0 of (3.1),
we have

ż(t) = iωkτ
(j)
k
z + q∗(θ)f

(
0,W(z, z, θ) + 2Re

{
zq(θ)

}) def= iωkτ
(j)
k
z + q∗(0)f0. (3.14)
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That is,

ż(t) = iωkτ
(j)
k z + g(z, z), (3.15)

where

g(z, z) = g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
+ · · · . (3.16)

Hence, we have

g(z, z) = q∗(0)f0(z, z) = q
∗(0)f(0, ut)

= τ
(j)
k
D
(
1, α∗, β

∗
, γ∗

)
⎛
⎜⎜⎜⎜⎝

0
0

A2x
3
2t(−1) + h.o.t.

A1x
3
1t(−1) + h.o.t.

⎞
⎟⎟⎟⎟⎠

= Dτ
(j)
k

[
3β∗e−iωkτ

(j)
k + 3γ∗α2αe−2iωkτ

(j)
k

]
z2z + h.o.t,

(3.17)

and we obtain

g20 = g11 = g02 = 0, (3.18)

g21 = 2Dτ (j)
k

[
3β∗e−iωkτ

(j)
k + 3γ∗α2αe−2iωkτ

(j)
k

]
. (3.19)

Thus, we derive the following values:

c1(0) =
i

2ωkτ
(j)
k

(
g20g11 − 2

∣∣g11
∣∣2 −

∣∣g02
∣∣2

3

)
+
g21
2
,

μ2 = − Re{c1(0)}
Re

{
λ′
(
τ
(j)
k

)} ,

β2 = 2Re(c1(0)),

T2 = −
Im{c1(0)} + μ2 Im

{
λ′
(
τ
(j)
k

)}

ωkτ
(j)
k

,

(3.20)

which determine the quantities of bifurcation periodic solutions of (3.1) on the center
manifold at the critical value τ = τ

(j)
k , (k = 1, 2, 3, . . . , 16; j = 0, 1, 2, 3, . . .). Summarizing

the results obtained above leads to the following theorem.
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Theorem 3.1. The periodic solution is forward (backward) if μ2 > 0 (μ2 < 0). The bifurcating
periodic solutions on the center manifold are orbitally asymptotically stable with asymptotical phase
(unstable) if β2 < 0 (β2 > 0). The periods of the bifurcating periodic solutions increase (decrease)
if T2 > 0 (T2 < 0).

4. Numerical Examples

In this section, we present some numerical results of system (1.2) to verify the analytical
predictions obtained in the previous section. Let us consider the following system:

dx1
dt

= x3,

dx2
dt

= x4,

dx3
dt

= −0.8x3 − x1(t − τ) + 0.2 tanh(x2(t − τ)),

dx4
dt

= −0.8x4 − x2(t − τ) + 0.4 tanh(x1(t − τ)),

(4.1)

which has an equilibrium E0(0, 0, 0, 0) and satisfies the conditions indicated in Theorem 2.3.
The equilibrium E0(0, 0, 0, 0) is asymptotically stable for τ = 0. Using the software MATLAB
(here take j = 0 for example), we derive ω0 ≈ 4.1208, τ0 ≈ 0.6801, λ′(τ0) ≈ 0.3307 −
3.1524i, g21 ≈ −1.4203−4.5518i. Thus by algorithm (3.20) derived in Section 3, we have c1(0) ≈
−0.7102−2.1609i, μ2 ≈ −2.1476, β2 ≈ −1.4202, T2 ≈ 3.1867. Furthermore, it follows that μ2 > 0
and β2 < 0. Thus, the equilibrium E0(0, 0, 0, 0) is stable when τ < τ0 ≈ 0.6801. Figures 1(a)–1(j)
show that the equilibrium E0(0, 0, 0, 0) is asymptotically stable when τ = 0.65 < τ0 ≈ 0.6801.
It is observed from Figures 1(a)–1(j) that the input voltage of the i (i = 1, 2)th neuron and
the output of the j (j = 3, 4)th neuron converge to their steady states in finite time. If we
gradually increase the value of τ and keep other parameters fixed, when τ passes through
the critical value τ0 ≈ 0.6801, the equilibrium E0(0, 0, 0, 0) loses its stability and a Hopf
bifurcation occurs, that is, the input voltage of the i (i = 1, 2)th neuron the output of the
j (j = 3, 4)th neuron will keep an oscillary mode near the equilibrium E0(0, 0, 0, 0). Due to
μ2 > 0 and β2 < 0, the direction of the Hopf bifurcation is τ > τ0 ≈ 0.6801, and these
bifurcating periodic solutions from E0(0, 0, 0, 0) at τ0 ≈ 0.6801 are stable. Figures 1(j)–2(d)
suggest that Hopf bifurcation occurs from the equilibrium E0(0, 0, 0, 0) when τ = 0.8 > τ0 ≈
0.6801.

5. Conclusions

In this paper, we have studied the bifurcation natures of a delayed neural network model
of two neurons with inertial coupling. Regarding delay as the bifurcation parameter and
analyzing the characteristic equation of the linearized system of the original system at
the equilibrium E0(0, 0, 0, 0), we proposed the conditions to define the parameters for
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Figure 1: Continued.
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Figure 1: The time histories and phase trajectories of system (4.1)with τ = 0.65 < τ0 ≈ 0.6801 and the initial
value (0.05, 0.05, 0.05, 0.025). The equilibrium E0(0, 0, 0, 0) is asymptotically stable.

the occurrence of Hopf bifurcation and the oscillatory solutions of the models equations.
It is shown that if conditions (H1) and (H2) hold, the equilibrium E0(0, 0, 0, 0) of
system (1.2) is asymptotically stable for all τ ∈ [0, τ0). Under conditions (H1) and
(H2), if condition (H3) is satisfied, as the delay τ increases and crosses a threshold
value τ

(j)
k
, the equilibrium loses its stability and the delayed network model of two
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Figure 2: Continued.
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Figure 2: The time histories and phase trajectories of system (4.1) with τ = 0.8 > τ0 ≈ 0.6801 and the initial
value (0.05, 0.05, 0.05, 0.025). Hopf bifurcation occurs from the equilibrium E0(0, 0, 0, 0).

neurons with inertial coupling enters into a Hopf bifurcation. In addition, using the
normal form method and center manifold theorem, explicit formulaes for determining
the properties of periodic solutions are worked out. Simulations are included to verify
the theoretical findings. The obtained findings are useful in applications of network
control.
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