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For nonautonomous linear equations x′ = A(t)x, we give a complete characterization of general
nonuniform contractions in terms of Lyapunov functions. We consider the general case of
nonuniform contractions, which corresponds to the existence of what we call nonuniform (D,μ)-
contractions. As an application, we establish the robustness of the nonuniform contraction under
sufficiently small linear perturbations. Moreover, we show that the stability of a nonuniform
contraction persists under sufficiently small nonlinear perturbations.

1. Introduction

We consider nonautonomous linear equations

x′ = A(t)x, (1.1)

where A : R
+
0 → B(X) is a continuous function with values in the space of bounded linear

operators in a Banach space X. Our main aim is to characterize the existence of a general
nonuniform contraction for (1.1) in terms of Lyapunov functions.

We assume that each solution of (1.1) is global, and we denote the corresponding
evolution operator by T(t, s), which is the linear operator such that

T(t, s)x(s) = x(t), t, s ∈ R
+
0 , (1.2)
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for any solution x(t) of (1.1). Clearly, T(t, t) = Id and

T(t, τ)T(τ, s) = T(t, s), t, τ, s ∈ R
+
0 . (1.3)

We shall say that an increasing function μ : R
+
0 → [1,+∞) is a growth rate if

μ(0) = 1, lim
t→+∞

μ(t) = +∞. (1.4)

Given two growth rates μ, ν, we say that (1.1) admits a nonuniform (μ, ν)-contraction if there
exist constants K,α > 0 and ε ≥ 0 such that

‖T(t, s)‖ ≤ K

(
μ(t)
μ(s)

)−α
νε(s), t ≥ s ≥ 0. (1.5)

We emphasize that the notion of nonuniform (μ, ν)-contraction often occurs under reasonably
weak assumptions. We refer the reader to [1] for details.

In this work, we mainly consider more general nonuniform contractions (see (2.1)
below) and we give a complete characterization of such contractions in terms of Lyapunov
functions, especially in terms of quadratic Lyapunov functions, which are Lyapunov
functions defined in terms of quadratic forms. The importance of Lyapunov functions
is well established, particularly in the study of the stability of trajectories both under
linear and nonlinear perturbations. This study goes back to the seminal work of Lyapunov
in his 1892 thesis [2]. For more results, we refer the reader to [3–6] for the classical
exponential contractions and dichotomies, [7–9] for the nonuniform exponential contractions
and nonuniform exponential dichotomies.

The proof of this paper follows from the ideas in [9, 10]. As an application, we provide
a very direct proof of the robustness of the nonuniform contraction, that is, of the persistence
of the nonuniform contraction in the equation

x′ = [A(t) + B(t)]x (1.6)

for any sufficiently small linear perturbation B(t). We remark that the so-called robustness
problem also has a long history. In particular, the problem was discussed by Massera and
Schäffer [11], Perron [12], Coppel [3] and in the case of Banach spaces by Daletskiı̆ and Kreı̆n
[13]. For more recent work we refer to [14–16] and the references therein.

Furthermore, for a large class of nonlinear perturbations f(t, x) with f(t, 0) = 0 for
every t, we show that if (1.1) admits a nonuniform contraction, then the zero solution of the
equation

x′ = A(t)x + f(t, x) (1.7)

is stable. The proof uses the corresponding characterization between the nonuniform contra-
ctions and quadratic Lyapunov functions.
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2. Lyapunov Functions and Nonuniform Contractions

Given a growth rate μ and a functionD : R
+
0 → (0,+∞), we say that (1.1) admits a nonuniform

(D,μ)-contraction if there exists a constant α > 0 such that

‖T(t, s)‖ ≤ D(s)
(
μ(t)
μ(s)

)−α
, t ≥ s ≥ 0. (2.1)

The nonuniform (μ, ν)-contraction is a special case of nonuniform (D,μ)-contraction with
D(s) = Kνε(s).

Now we introduce the notion of Lyapunov functions. We say that a continuous
function V : (0,+∞) ×X → R

−
0 is a strict Lyapunov function to (1.1) if

(1) for every t > 0 and x ∈ X,

‖x‖ ≤ |V (t, x)| ≤ D(t)‖x‖, (2.2)

(2) for every t ≥ s > 0 and x ∈ X,

V (s, x) ≤ V (t, T(t, s)x), (2.3)

(3) there exists a constant γ > 0 such that for every t ≥ s > 0 and x ∈ X,

|V (t, T(t, s)x)| ≤
(
μ(t)
μ(s)

)−γ
|V (s, x)|. (2.4)

The following result gives an optimal characterization of nonuniform (D,μ)-
contractions in terms of strict Lyapunov functions.

Theorem 2.1. (1.1) admits a nonuniform (D,μ)-contraction if and only if there exists a strict
Lyapunov function for (1.1).

Proof. We assume that there exists a strict Lyapunov function for (1.1). By (1) and (3), for
every t ≥ s > 0 and x ∈ X, we have

‖T(t, s)x‖ ≤ |V (t, T(t, s)x)|

≤
(
μ(t)
μ(s)

)−γ
|V (s, x)|

≤ D(s)
(
μ(t)
μ(s)

)−γ
‖x‖.

(2.5)

Therefore, (1.1) admits a nonuniform (D,μ)-contraction with α = γ .



4 Abstract and Applied Analysis

Next we assume that (1.1) admits a nonuniform (D,μ)-contraction. For t > 0 and x ∈
X, we set

V (t, x) = − sup
{
‖T(τ, t)x‖

(
μ(τ)
μ(t)

)α

: τ ≥ t

}
. (2.6)

By (2.1), we have |V (t, x)| ≤ D(t)‖x‖. Moreover, setting τ = t, we obtain |V (t, x)| ≥ ‖x‖. This
establishes (1). Furthermore, for t ≥ s, we have

|V (t, T(t, s)x)| = sup
{
‖T(τ, t)T(t, s)x‖

(
μ(τ)
μ(t)

)α

: τ ≥ t

}

=
(
μ(s)
μ(t)

)α

sup
{
‖T(τ, s)x‖

(
μ(τ)
μ(s)

)α

: τ ≥ t

}

≤
(
μ(s)
μ(t)

)α

sup
{
‖T(τ, s)x‖

(
μ(τ)
μ(s)

)α

: τ ≥ s

}

=
(
μ(t)
μ(s)

)−α
|V (s, x)|.

(2.7)

Therefore, V is a strict Lyapunov function for (1.1).

Next we consider another class of Lyapunov functions, namely, those defined in terms
of quadratic forms.

Let S(t) ∈ B(X) be a symmetric positive-definite operator for each t > 0. A quadratic
Lyapunov function V is given as

H(t, x) = 〈S(t)x, x〉, V (t, x) = −
√
H(t, x). (2.8)

Given linear operators M,N, we write M ≤ N if 〈Mx,x〉 ≤ 〈Nx, x〉 for x ∈ X.

Theorem 2.2. Assume that there exist constants c > 0 and d ≥ 1 such that

‖T(t, s)‖ ≤ c whenever μ(t) ≤ dμ(s), t ≥ s > 0. (2.9)

Then (1.1) admits a nonuniform (D,μ)-contraction (up to a multiplicative constant) if and only if
there exist symmetric positive definite operators S(t) and constants C,K > 0 such that S(t) is of class
C1 in t > 0 and

‖S(t)‖ ≤ CD(t)2, (2.10)

S′(t) +A∗(t)S(t) + S(t)A(t) ≤ −(Id +KS(t))
μ′(t)
μ(t)

. (2.11)
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Proof. We first assume that (1.1) admits a nonuniform (D,μ)-contraction. Consider the linear
operators

S(t) =
∫∞

t

T(τ, t)∗T(τ, t)
(
μ(τ)
μ(t)

)2(α−ρ)μ′(τ)
μ(τ)

dτ, (2.12)

for some constant ρ ∈ (0, α). Clearly, S(t) is symmetric for each t > 0. Moreover, by (2.8), we
have

‖H(t, x)‖ =
∫∞

t

‖T(τ, t)x‖2
(
μ(τ)
μ(t)

)2(α−ρ)μ′(τ)
μ(τ)

dτ

≤ D(t)2‖x‖2
∫∞

t

(
μ(τ)
μ(t)

)−2ρ μ′(τ)
μ(τ)

dτ

=
D(t)2

2ρ
‖x‖2.

(2.13)

Since S(t) is symmetric, we obtain

‖S(t)‖ = sup
x /= 0

|H(t, x)|
‖x‖2

≤ D(t)2

2ρ
(2.14)

and therefore (2.10) holds. Since

∂

∂t
T(τ, t) = −T(τ, t)A(t),

∂

∂t
T(τ, t)∗ = −A(t)∗T(τ, t)∗, (2.15)

we find that S(t) is of class C1 in t with derivative

S′(t) = −μ
′(t)
μ(t)

−
∫∞

t

A(t)∗T(τ, t)∗T(τ, t)
(
μ(τ)
μ(t)

)2(α−ρ)μ′(τ)
μ(τ)

dτ

−
∫∞

t

T(τ, t)∗T(τ, t)A(t)
(
μ(τ)
μ(t)

)2(α−ρ)μ′(τ)
μ(τ)

dτ

− 2
(
α − ρ

)μ′(t)
μ(t)

∫∞

t

T(τ, t)∗T(τ, t)
(
μ(τ)
μ(t)

)2(α−ρ)μ′(τ)
μ(τ)

dτ,

(2.16)

which implies that

S′(t) = −μ
′(t)
μ(t)

−A(t)∗S(t) − S(t)A(t) − 2
(
α − ρ

)μ′(t)
μ(t)

S(t). (2.17)
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Therefore,

S′(t) +A(t)∗S(t) + S(t)A(t) = −μ
′(t)
μ(t)

(
Id + 2

(
α − ρ

)
S(t)

)
, (2.18)

which establishes (2.11) with K = 2(α − ρ).
Now we assume that conditions (2.9) and (2.10)-(2.11) hold. Set x(t) = T(t, τ)x(τ). By

(2.10), we have

‖H(t, x(t))‖ ≤ ‖S(t)‖ · ‖x(t)‖2 ≤ CD(t)2‖x(t)‖2. (2.19)

Lemma 2.3. There exists a constant η > 0 such that

H(t, x(t)) ≥ η‖x(t)‖2. (2.20)

Proof of Lemma 2.3. Note that

d

dt
H(t, x(t)) =

〈
S′(t)x(t), x(t)

〉
+ 〈S(t)A(t)x(t), x(t)〉 + 〈S(t)x(t), A(t)x(t)〉

=
〈(
S′(t) + S(t)A(t) +A(t)∗S(t)

)
x(t), x(t)

〉
.

(2.21)

Hence, by condition (2.11), and the fact that K > 0 we obtain

d

dt
H(t, x(t)) ≤ −μ

′(t)
μ(t)

‖x(t)‖2. (2.22)

Now given τ > 0, take t > τ such that μ(t) = dμ(τ)with d as in (2.9). Then

H(t, x(t)) −H(τ, x(τ)) =
∫ t

τ

d

dv
H(v, x(v))dv

≤ −
∫ t

τ

μ′(v)
μ(v)

‖x(v)‖2dv

= −
∫ t

τ

μ′(v)
μ(v)

‖T(v, τ)x(τ)‖2dv

≤ −‖x(τ)‖2
∫ t

τ

μ′(v)
μ(v)

1

‖T(τ, v)‖2
dv.

(2.23)
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It follows from (2.9) that

H(t, x(t)) −H(τ, x(τ)) ≤ − 1
c2
‖x(τ)‖2

∫ t

τ

μ′(v)
μ(v)

dv

= − logd
c2

‖x(τ)‖2.
(2.24)

Since H(t, x(t)) ≥ 0, we have

H(τ, x(τ)) ≥ H(τ, x(τ)) −H(t, x(t)) ≥ logd
c2

‖x(τ)‖2 (2.25)

which yields (2.20) with η = (logd)/c2 > 0.

Lemma 2.4. For t ≥ τ , one has

H(t, x(t)) ≤
(
μ(t)
μ(τ)

)−K
H(τ, x(τ)). (2.26)

Proof of Lemma 2.4. By conditions (2.11) and (2.21), we have

d

dt
H(t, x(t)) ≤ −Kμ′(t)

μ(t)
H(t, x(t)). (2.27)

Therefore,

H(t, x(t)) −H(τ, x(τ)) =
∫ t

τ

d

dv
H(v, x(v))dv

≤ −K
∫ t

τ

μ′(v)
μ(v)

H(v, x(v))dv.

(2.28)

It follows from Gronwall’s lemma that

H(t, x(t)) ≤
(
μ(t)
μ(τ)

)−K
H(τ, x(τ)), (2.29)

which yields the desired result.
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By Lemmas 2.3 and 2.4 together with (2.19), we obtain

‖T(t, τ)x(τ)‖2 = ‖x(t)‖2

≤ η−1H(t, x(t))

≤ η−1
(
μ(t)
μ(τ)

)−K
H(τ, x(τ))

≤ η−1CD(τ)2
(
μ(t)
μ(τ)

)−K
‖x(τ)‖2,

(2.30)

and therefore,

‖T(t, τ)‖2 ≤ η−1CD(τ)2
(
μ(t)
μ(τ)

)−K
, (2.31)

which implies that (1.1) admits a nonuniform (D,μ)-contraction.

As an application of Theorem 2.2, we establish the robustness of nonuniform (D,μ)-
contractions. Roughly speaking, a nonuniform contraction for (1.1) is said to be robust if (1.6)
still admits a nonuniform contraction for any sufficiently small perturbation B(t).

Theorem 2.5. Let A,B : R
+
0 → B(X) be continuous functions such that (1.1) admits a nonuniform

(D,μ)-contraction with condition (2.9). Suppose further that D(t) ≥ 1 for every t > 0 and

‖B(t)‖ ≤ δD−2(t)
μ′(t)
μ(t)

, t > 0 (2.32)

for some δ > 0 sufficiently small. Then (1.6) admits a nonuniform (D,μ)-contraction.

Proof. Let U(t, s) be the evolution operator associated to (1.6). It is easy to verify that

U(t, s) = T(t, s) +
∫ t

s

T(t, τ)B(τ)U(τ, s)dτ. (2.33)

For every t ≥ s > 0 with μ(t) ≤ dμ(s), we have

‖U(t, s)‖ ≤ c +
∫ t

s

cδD−2(τ)
μ′(τ)
μ(τ)

‖U(τ, s)‖dτ

≤ c + cδ

∫ t

s

μ′(τ)
μ(τ)

‖U(τ, s)‖dτ.
(2.34)
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Using Gronwall’s inequality, we obtain

‖U(t, s)‖ ≤ c exp

(
cδ

∫ t

s

μ′(τ)
μ(τ)

dτ

)
≤ c exp

(
cδ logd

)
(2.35)

for every t ≥ s > 0 with μ(t) ≤ dμ(s). Therefore condition (2.9) also holds for the perturbed
equation (1.6).

Nowwe consider the matrices S(t) in (2.12). Condition (2.10) can be obtained as in the
proof of Theorem 2.2. For condition (2.11), it is sufficient to show that

S(t)B(t) + B(t)∗S(t) ≤ ϑ
μ′(t)
μ(t)

Id (2.36)

for some constant ϑ < 1. Using (2.10) and (2.32), we have

S(t)B(t) + B(t)∗S(t) ≤ 2‖S(t)‖ · ‖B(t)‖

≤ 2CD(t)2δD(t)−2
μ′(t)
μ(t)

= 2Cδ
μ′(t)
μ(t)

,

(2.37)

and taking δ sufficiently small, we find that (2.36) holds with some ϑ < 1.

3. Stability of Nonlinear Perturbations

Before stating the result, we fist prove an equivalent characterization of property (3). Given
matrices S(t) ∈ B(X) for each t ∈ R

+
0 , we consider the functions

Ḣ(t, x) =
d

dh
H(t + h, T(t + h, h)x) |h=0,

V̇ (t, x) =
d

dh
V (t + h, T(t + h, h)x) |h=0,

(3.1)

whenever the derivatives are well defined and H,V are given as (2.8).

Lemma 3.1. Let V, μ be C1 functions. Then property (3) is equivalent to

V̇ (t, T(t, τ)x) ≥ −γV (t, T(t, τ)x)
μ′(t)
μ(t)

, t > τ. (3.2)
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Proof. Now we assume that property (3) holds. If t > τ and h > 0, then

V (t + h, T(t + h, τ)x) = V (t + h, T(t + h, t)T(t, τ)x)

≥
(
μ(t + h)
μ(t)

)−γ
V (t, T(t, τ)x),

lim
h→ 0+

V (t + h, T(t + h, τ)x) − V (t, T(t, τ)x)
h

≥ V (t, T(t, τ)x) lim
h→ 0+

(
μ(t + h)/μ(t)

)−γ − 1
h

= −γV (t, T(t, τ)x)
μ′(t)
μ(t)

.

(3.3)

Similarly, if h < 0 is such that t + h > τ , then

V (t + h, T(t + h, τ)x) ≤
(
μ(t + h)
μ(t)

)−γ
V (t, T(t, τ)x),

lim
h→ 0−

V (t + h, T(t + h, τ)x) − V (t, T(t, τ)x)
h

≥ V (t, T(t, τ)x) lim
h→ 0−

(
μ(t + h)/μ(t)

)−γ − 1
h

= −γV (t, T(t, τ)x)
μ′(t)
μ(t)

.

(3.4)

This establishes (3.2).
Next we assume that (3.2) holds. We rewrite (3.2) in the form

V̇ (t, T(t, τ)x)
V (t, T(t, τ)x)

≥ −γ μ
′(t)
μ(t)

, t > τ, (3.5)

which implies that

log
(
V (t, T(t, τ)x)

V (τ, x)

)
=
∫ t

τ

V̇ (v, T(v, τ)x)
V (v, T(v, τ)x)

dv

≥ −γ
∫ t

τ

μ′(v)
μ(v)

dv

= log
(
μ(t)
μ(τ)

)−γ
,

(3.6)

and hence property (3) holds.
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Theorem 3.2. Assume that (1.1) admits a nonuniform (D,μ)-contraction satisfying (2.9). Suppose
further that there exists a constant l > 0 such that l < α and

∥∥f(t, x)∥∥ ≤ l
μ′(t)
μ(t)

‖x‖, t > 0, x ∈ X. (3.7)

Then for each k > −α + l, there exists C > 0 such that

∥∥y(t)∥∥ ≤ CD(s)
(
μ(t)
μ(s)

)k∥∥y(s)∥∥, t ≥ s (3.8)

for every solution y(t) of (1.7).

Proof. For S(t) as in (2.12) and H(t, x(t)) as in (2.8), we have, for every t ≥ s,

H(t, T(t, s)x(s)) =
∫∞

t

‖T(v, s)x(s)‖2
(
μ(v)
μ(t)

)2(α−ρ)μ′(v)
μ(v)

dv

=
(
μ(t)
μ(s)

)−2(α−ρ) ∫∞

t

‖T(v, s)x(s)‖2
(
μ(v)
μ(s)

)2(α−ρ)μ′(v)
μ(v)

dv

≤
(
μ(t)
μ(s)

)−2(α−ρ) ∫∞

s

‖T(v, s)x(s)‖2
(
μ(v)
μ(s)

)2(α−ρ)μ′(v)
μ(v)

dv

=
(
μ(t)
μ(s)

)−2(α−ρ)
H(s, x(s)).

(3.9)

Since V (t, x) = −
√
H(t, x), we have

V (t, T(t, s)x(s)) ≥
(
μ(t)
μ(s)

)−(α−ρ)
V (s, x(s)), t ≥ s. (3.10)

Applying Lemma 3.1, we obtain

V̇ (t, T(t, s)x(s)) ≥ −(α − ρ
)μ′(t)
μ(t)

V (t, T(t, s)x(s)), t ≥ s. (3.11)

In particular, for t = s,

V̇ (s, x(s)) ≥ −(α − ρ
)μ′(s)
μ(s)

V (s, x(s)). (3.12)

From the identity Ḣ = 2V V̇ that for every s > 0 and x ∈ X, we have

Ḣ(s, x) ≤ −2(α − ρ
)μ′(s)
μ(s)

H(s, x). (3.13)
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On the other hand,

Ḣ(s, x) =
〈(
S′(s) + S(s)A(s) +A(s)∗S(s)

)
x, x

〉
. (3.14)

Therefore,

0 ≥ Ḣ(s, x) + 2
(
α − ρ

)μ′(s)
μ(s)

H(s, x)

=
〈(

S′(s) + S(s)A(s) +A(s)∗S(s) + 2
(
α − ρ

)μ′(s)
μ(s)

S(s)
)
x, x

〉
,

(3.15)

and hence

S′(t) + S(t)A(t) +A(t)∗S(t) + 2
(
α − ρ

)μ′(t)
μ(t)

S(t) ≤ 0. (3.16)

Therefore, if y(t) is a solution of (1.7), then

d

dt
H
(
t, y(t)

)
=
〈
S′(t)y(t), y(t)

〉
+
〈
S(t)A(t)y(t), y(t)

〉
+
〈
S(t)y(t), A(t)y(t)

〉

+
〈
S(t)f

(
t, y(t)

)
, y(t)

〉
+
〈
S(t)y(t), f

(
t, y(t)

)〉
=
〈(
S′(t) + S(t)A(t) +A(t)∗S(t)

)
y(t), y(t)

〉
+
〈(
S(t) + S(t)∗

)
y(t), f

(
t, y(t)

)〉

≤ −2(α − ρ
)μ′(t)
μ(t)

‖S(t)‖ · ∥∥y(t)∥∥2 +
〈(
S(t) + S(t)∗

)
y(t), f

(
t, y(t)

)〉

≤ −2(α − ρ
)μ′(t)
μ(t)

‖S(t)‖ · ∥∥y(t)∥∥2 + 2‖S(t)‖ · ∥∥f(t, y(t))∥∥ · ∥∥y(t)∥∥

≤ −2(α − ρ
)μ′(t)
μ(t)

‖S(t)‖ · ∥∥y(t)∥∥2 + 2l
μ′(t)
μ(t)

‖S(t)‖ · ∥∥y(t)∥∥2

= −2(α − ρ − l
)μ′(t)
μ(t)

‖S(t)‖ · ∥∥y(t)∥∥2
.

(3.17)

If ρ is small enough such that α − ρ − l > 0, then

d

dt
H
(
t, y(t)

) ≤ −2(α − ρ − l
)μ′(t)
μ(t)

H
(
t, y(t)

)
, (3.18)

and hence

H
(
t, y(t)

) −H
(
s, y(s)

) ≤ −2(α − ρ − l
) ∫ t

s

μ′(τ)
μ(τ)

H
(
τ, y(τ)

)
dτ. (3.19)
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It follows from Gronwall’s inequality that

H
(
t, y(t)

) ≤ H
(
s, y(s)

)( μ(t)
μ(s)

)−2(α−ρ−l)
, t ≥ s. (3.20)

Now given s > 0, take t > s such that μ(t) = dμ(s)with d as in (2.9). Then

H
(
s, y(s)

)
=
∫∞

s

∥∥T(τ, s)y(s)∥∥2
(
μ(τ)
μ(s)

)2(α−ρ)μ′(τ)
μ(τ)

dτ

≥
∫ t

s

∥∥T(τ, s)y(s)∥∥2
(
μ(τ)
μ(s)

)2(α−ρ)μ′(τ)
μ(τ)

dτ

≥ 1
c2
∥∥y(s)∥∥2

∫ t

s

(
μ(τ)
μ(s)

)2(α−ρ)μ′(τ)
μ(τ)

dτ

=
1

2c2
(
α − ρ

)∥∥y(s)∥∥2

{(
μ(t)
μ(s)

)2(α−ρ)
− 1

}

=
1

2c2
(
α − ρ

)∥∥y(s)∥∥2
{
d2(α−ρ) − 1

}
.

(3.21)

Taking

κ =
1

2c2
(
α − ρ

){d2(α−ρ) − 1
}
> 0, (3.22)

then

H
(
s, y(s)

) ≥ κ
∥∥y(s)∥∥2

. (3.23)

It follows from (2.13) and (3.20) that

∥∥y(t)∥∥ ≤ κ1/2
√
H
(
t, y(t)

)

≤ κ1/2
√
H
(
s, y(s)

)( μ(t)
μ(s)

)−(α−ρ−l)

≤ κ1/2

√
1
2ρ

D(s)
(
μ(t)
μ(s)

)−(α−ρ−l)∥∥y(s)∥∥.

(3.24)

Now the proof is finished.
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