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The convergence for the sequential Monte Carlo (SMC) implementations of the multitarget multi-
Bernoulli (MeMBer) filter and cardinality-balanced MeMBer (CBMeMBer) filters is studied here.
This paper proves that the SMC-MeMBer and SMC-CBMeMBer filters, respectively, converge to
the true MeMBer and CBMeMBer filters in the mean-square sense and the corresponding bounds
for the mean-square errors are given. The significance of this paper is in theory to present the
convergence results of the SMC-MeMBer and SMC-CBMeMBer filters and the conditions under
which the two filters satisfy mean-square convergence.

1. Introduction

Recently, the random finite-set- (RFS-) based multitarget tracking (MTT) approaches [1] have
attracted extensive attention. Although theoretically solid, the RFS-based approaches usually
involve intractable computations. By introducing the finite-set statistics (FISSTs) [2], Mahler
developed the probability hypothesis density (PHD) [3], and cardinalized PHD (CPHD) [4]
filters, which have been shown to be a computationally tractable alternative to full multitarget
Bayes filters in the RFS framework. The sequential Monte Carlo (SMC) implementations for
the PHD and CPHD filters were devised by Zajic and Mahler [5], Sidenbladh [6], and Vo
et al. [7]. Vo et al. [8, 9] devised the Gaussian mixture (GM) implementation for the PHD
and CPHD filters under the linear, Gaussian assumption on target dynamics, birth process,
and sensor model. However, the SMC-PHD and SMC-CPHD approaches require clustering
to extract state estimates from the particle population, which is expensive and unreliable
[10, 11].

In 2007, Mahler proposed the multitarget multi-Bernoulli (MeMBer) [2] recursion,
which is an approximation to the full multitarget Bayes recursion using multi-Bernoulli
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RFSs under low clutter density scenarios. In 2009, Vo et al. showed that the MeMBer filter
overestimates the number of targets and proposed a cardinality-balanced MeMBer (CBMeM-
Ber) filter [12] to reduce the cardinality bias. Then, the SMC and GM implementations for
the MeMBer and CBMeMBer filters were, respectively, proposed in nonlinear and linear-
Gaussian dynamic and measurement models. The key advantage of this approach is that the
multi-Bernoulli representation allows reliable and inexpensive extraction of state estimates.
The Monte Carlo simulations given by Vo et al. showed that the SMC-CBMeMBer filter
outperforms the SMC-CPHD (and hence SMC-PHD) filter despite having smaller complexity
under certain range of signal settings.

Although the convergence results for the SMC-PHD and GM-PHD filters were
established by Clark and Bell [13] in 2006 and by Clark and Vo [14] in 2007, respectively, there
have been no results showing the asymptotic convergence for the SMC-MeMBer and SMC-
CBMeMBer filters. This paper demonstrates the mean-square convergence of the errors [15-
17] for the two filters. In other words, given simple sufficient conditions, the approximation
error of the multi-Bernoulli parameter set comprised of a set of weighted samples is proved
to converge to zero as the number of the samples tends to infinity at each stage of the two
algorithms. In addition, the corresponding bounds for the mean-square errors are obtained.

2. MeMBer and CBMeMBer Filters

A Bernoulli RFS Y has probability 1 - ) of being empty, and probability ¥ (0 < r® < 1)
of being a singleton whose only element is distributed according to a probability density p(.
The probability density of Y is

(ro)={1-r Y=o 2.1)
r(l)p(l)(yi) Y@ = {yi}-

A multi-Bernoulli RFS Y is a union of a fixed number of independent Bernoulli RFSs
Y®,i=1,...,M,thatis, Y = UM, Y?. Y is thus completely described by the multi-Bernoulli
parameter set {(r®,p@)}¥ with the mean cardinality 3, 7@ and the probability density

[2]:

yr(Y>=1MI(1-T(”) DI LA L2h (2.2)

j=1 I<ii FopipeMj=1 1 rli)

Throughout this paper, we abbreviate a probability density of the form (2.2) by & =
(0, p™)) 2%

By approximating the multitarget RFS as a multi-Bernoulli RFS at each time step,
Mahler proposed the MeMBer recursion, which propagated the multi-Bernoulli parameters
of the posterior multitarget density forward in time [2]. The MeMBer filter is summarized as
follows.
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MeMBer Prediction

If at time k — 1, the posterior multitarget density is a multi-Bernoulli of the form sx_; =

@ () \y Mk
{(”kl VP i

by

then the predicted multitarget density is also a multi-Bernoulli and is given

e = { (g ) 1 U{(pl) ) (23)

where { (rﬁ(, p? )k } “ are the parameters of the multi-Bernoulli RFS of births at time k:

W _ 0 o
Plk|k1 rkll<pk 1/P5k> i=1,..., Mg, (2.4)

Pg)k“( - <fk\k 1(xk |9, Pk 1P5k>
<Pk_1rps,k>

, i=1,..., M. (2.5)

MeMBer Update

If at time k, the predicted multitarget density is a multi-Bernoulli of the form 1 =

(i) (i) Migi-1,
{ (Mot Pre-) Vit

Bernoulli as follows:

; then the posterior multitarget density can be approximated by a multi-

T = {( f)k,P(LiI)O }:\jlklkil U {Cux(z), pux(520)) ), 0,0 (2.6)

where,

@ 1- <Pl(<i|)k 1/PDk>

rLk Tkjk-1 o ,i=1,., M1, (2.7)
~ Tk 1<pk|k 1/PD’<>
i 1 - poi(Xk)
Pg)k (Xk) = Pl(cl\)k—l (Xk) ) 7 = 1/ ey Mk\k*l/ (28)
- <pk|k—1’Pka>
1 Mf’] (i
ruk(zk) = (zx),  zk € Zk, (2.9)
Rz + S () B
M1
Puk(Xk; zk) = W 2 P (Xk}zk)/ 7y € Zx, (2.10)
(l) (i)
i Tike-1Prfo1 R Pz (k)
pg/)k(xk/'zk) l | - 1= 11---/Mk|k—1/ (211)

(i) (@) !
1=1 1<Pk|k 1/PD’<>

(@)
Telk- 1<pk|k 1f‘l’k1k>

1- r,(;ﬁ( 1<pk\k 1/PD’<>,

r (zx) = <puk(xk,zk) 1> i=1,..., M1 (2.12)
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By correcting the cardinality bias in the 7k (zx) of the MeMBer update step, Vo et al.
proposed the CBMeMBer filter [12]. The CBMeMBer recursions are the same as the MeMBer
recursions except the update of rizx(zx), which is revised as

L e (1))

= .
Ki(zk) + 2 (l) K (ze) =1 1- rl(<1|3< 1<P1(<1\)k 1'PD’<>

T (zi) = (2.13)

Note that not (38) in [12] but (2.10) in our paper is used in the CBMeMBer update
step here. The reasons are (1) the (38) in [12] and the (2. 10) in our paper are both the

approximations of (36) in [12] under the same assumption (pklk 1/PDk) = 1, but the latter

is more precise than former; (2) the (38) in [12] is unbounded at rk|;<—1 =1 while (2.10) in our
paper is bounded at r}ﬁ(_l =1aslong as pp(xk) #1.

For the multi-Bernoulli representation sy = {(r,?), Py )}1 1, the probablhty r ) indicates

how likely the ith hypothesized track is a true track, and the posterior density p ) describes
the distribution of the estimated current state of the track. Hence, ZMl" r,il) denotes the
multitarget number and the multitarget state estimate can be obtained by choosing the means
or modes from the posterior densities of the hypothesized tracks with existence probabilities

exceeding a given threshold.

3. SMC-MeMBer and SMC-CBMeMBer Filters

The SMC implementations of the MeMBer and CBMeMBer recursions are summarized as
follows.

SMC-MeMBer and SMC-CBMeMBer Predictions
Lo,
Suppose that at time k —1 the (multi- Bernoulh) posterior multitarget density 7x_; = {(r( i ',

(l)L is given and each p() ¢ 7,1 =1,..., Mk, is comprised of a set of weighted

Lo
samples {w,((l ]1), xl(; ]1) }] ah

kl)}Mkl

(x)
L .
p,(cl)lkl(x E wk 1 <1,)(Xk) i=1,..., Mg. (3-1)

Then, given proposal densities q(l)( | X0 Zy) and b(i)(- | Zi), the predicted (multi-

k1
oL, LM ALY LY M
Bernoulli) multitarget density Zyjx-1 = {(rpk‘k l’pPklk DUl ,prk ")), " can be
computed as follows:
oL, _ oL/ oL, .
rPIklk 1= (Pt psk i=1,..., Mk, (3.2)
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(1)
L(’) _ .
Pklk 1( Xk) = ngl]c?k 16 (Ui (xx), i=1,..., My,
(3.3)

(t)

L(l) )
Fk( )_Zwrk(s('/)(xk) 121,...,Mr,k,

L9 -
where rﬁl (i=1,...,Mrk) is given by birth model; xg’ﬁk_l, Ng ﬁk L (@=1,...,Mk1) and

? i), &3(1 D=1, ., Mr) are, respectively, given by

(@) (i) (@) . () (1]) (i) - (@)
xP/k‘k 1 qk ( |xk_1/Zk>/ ] = 1/ Lk 17 b ( |Z ) ]= 1/ . /Lr Kk’ (34)
P - 1 )
Wp k-1 = T Wp kik-17
i,j)

i=1 Wpklk-1

. . (3.5)
@ij) (i) (i)
ij) “’k 1fk|k 1< Xpko1 | X5 1>PS ( X 1> . 0
“rklk-1 = () ( (@) W) o=l by,
i <XP,k|k—1 | X2 k)
(i)
~ip _ 1 (i) W) _ p“‘( > . )
“rk T " Wryr  Wrp = @ (0D | 7 j=1.. L) (3.6)
T,k 7,
25 Wri k < | )
SMC-MeMBer and SMC-CBMeMBer Updates
)L
Suppose that at time k the predicted (multi-Bernoulli) multitarget density 71 = {(r ;.
o L0

p,(cll)k " 1)}?_/Ilk‘k " is given and each pk‘)k Wi =1,..., M-, is comprised of a set of weighted

W) (i) (L
samples {wk\k 17 Xkk- 1}] =1

(1)L k\k] )
k|k Tk 1( k) Z wklk 16 (1;) (Xk) 1= 1,. . -er\k—l- (37)

Then, the multi-Bernoulli approximation of the SMC-MeMBer-updated multitarget
(l) L (1) (‘)

L
density 7y = {(rL;< K= Pk i Y }Mk”‘ "U (s N Yz k) Py, K v (52x))},,ez, and SMC-CBMeMBer-
0 o L0 L0
updated multitarget density 7 = {( 8{ k- 1’p1(~l,)k k- 1)}?:11"“‘ ! {(ru M (zg), Py P vz ez,
can be computed as follows:
<p<,> Lk " >
LG LG klk-1 7 D,k
(@), k\k 1 ), k\k 1 i=1,..., M1, (3.8)

i - i 4
bk L0 [ 0L
Tee-1 \Pxjk-1 /PDk
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LY _ @i.) )
ki1 (i) 1 pDk( k\k 1

k\kl( L) = Z

klk—l @), L(I)
|
j=1 1- <pk‘k " I/PD,k>

(l) L9

6x1(<l\li),l (Xk), i= 1/ ey Mk|k—l/ (39)

k‘k 1 Mig-1 ), Lk\k
1 1
(zk) = » (1) i D Tar Nzk), zk € Zk, (3.10)
k|k— k|k:
ek (zx) + 2y zk)
Lgfk N(zk) = ! ()
M
Kk (Zk) + Z klk-1 k\k 1 (Zk)
@)Ly (i),LY) (3.11)
Y (1 rk|k lldk 1> klk— 1( )
S,/ 0L, o E L
T=7"er (Pijgr PDE
7 1 My L
Py (Xk;zk) = 5 > Pax " azk),  zk € Zk, (3.12)

My (DL

i e () T

, 5y i) Ly @i,j)
LY St Wig 1rk\k 1 Pk, Zk( Xk (k- 1> )
Par " (kizK) = D 6un (xk), i=1,...,Mik-1,  (3.13)

i (l) L) LY Xklk-1
=1 klk-1 klk-1
=g <Pk|k 1 rPD,k>
()L (i),L?
ra,k K|k 1(Zk) _ <pak klk— 1(xk/ Zk) 1>
(1) LY (i),L?
Telk- - 1<Pk|k v 1,(I/'k,zk> (3.14)

= , i=1,..., Mjk-1.
(@), Lk\k 1 (@, Lk\k 1 -
T=7er (Prgr /PDE

Resampling

To reduce the effect of degeneracy, we resample the particles for the multi-Bernoulli parame-
ter set after the update step.

4. Convergence of the Mean-Square Errors for the SMC-MeMBer and
SMC-CBMeMBer Filters

To show the convergence results for the SMC-MeMBer and SMC-CBMeMBer filters, certain
conditions on the functions need to be met:

(1) the transition kernel fiji—1(xx | k1) satisfies the Feller property [18], that is, for all
¢ € Cp(R), [ p(xk-1)Pri—1 (X | Xk-1)dxx—1 € Cp(RY);



Journal of Applied Mathematics 7
(2) single-sensor/target likelihood density ¢ 5, (x) € B(R?);

(3) 1(:) are rational-valued random variables such that there exists p > 1, some constant
C,and a <p -1 so that

N o .
e[S et -t

p
] < CN*||q|), with ZQ<‘> (4.1)

for all vectors g = (g, ...,q™));

(4) the importance sampling ratios are bounded, that is, there exists constants B; and
B, such that [|p{ /b\ | < By,i=1,..., Mrx, and || fux1 /401 < Bayi=1,..., Miy;

(5) the resampling strategy is multinomial and hence unbiased [19].

First, the convergence of the mean-square errors for the initialization steps of the two
filters can easily be established by Lemma 0 in [13]. Assuming that at time k = 0, we can

sample exactly from the initial distribution p(l) (i=1,...,My). Then, for all p € B(R?),

Ly o )
(-] v
0
@)Ly d .
[<<Pol Ap> <P((;)/‘P>>]—||90”2 o, =1, M

(4.2)

hold for some real numbers ¢y > 0 and dy > 0 which are independent of the number Lg) of
the sampled particles at time k =0,i=1,..., M.

Also, the convergence of the mean-square errors for the resampling steps of the two
filters can easily be established by Assumption 5 and Lemma 5 in [19].

The main difficulty and greatest challenge is to prove the mean-square convergence
for the prediction steps and update steps of the two filters. They are, respectively, established
by Propositions 4.1 and 4.2.

Proposition 4.1. Suppose that, for all ¢ € B(R?),

L Ck— .
E[( -2, ] <O o1, M, (43)
Lk—l

@)L, i z di- .
E[(<p Hp) - (pw)) ] <lolPE8E =1 M (4.4
k-1

hold for some real numbers cx_1 > 0 and dx—y > 0 which are independent of the number L,(:zl of the
resampled particles at timek —1,i=1,..., M.



8 Journal of Applied Mathematics

Then, after the prediction steps of the SMC-MeMBer and SMC-CBMeMBer filters at
time k:

OLY G 21 coprper
E[<rp,k|kki Torkr ) | < o =L Mi, (4.5)
L,
()L (i) z 2dpk-1 .

45[(<Pak£&f¢>-<PéHk4/w> <llolP=G— =1 M, (4.6)

k-1

2
@@, (i) 2drk .

E[<<prklk 1,(p> <prlk|k P >> ] <ol o = 1,...,Mrg, (4.7)

Tk

hold for a constant drx > 0 and some real numbers cpijx-1 > 0 and dpkk-1 > 0 which are
independent of Ll(cl)l’ i = 1,..., Mi_1. cprk—1 and dpgj—1 are defined by (A.8) and (A.18),
respectively. The proof of Proposition 4.1 can be found in Appendix A.1.

Proposition 4.2. Suppose that, for all ¢ € B(R9),

2
()L i Cklk-1 .
E[(rklk e —r,£1|3<71> ] < L(II) , i=1,..., Mgk, (4.8)
Klk-1
2

()L (i) 2dkjk-1

E[(<pkk ve) - () ] SIS, i1 Macr (a9)
Klk-1

hold for some real numbers cg—1 > 0 and dij—1 > 0 which are independent of the number L1(<|)k 1

of the predicted particles, i = 1,..., Myx-1. Then, after the update steps of the SMC-MeMBer and
SMC-CBMeMBer filters at time k:

2
@,L i c .
EK¢HM‘4D]<<?'1:LMJ@Hf (410)
Lk|k 1
2
@)L i 2 drk .
E[((p “p) - (plhe)) ] <Ml it M, @
klk-1
Ll(cll)kl ? Cuk
E (zi) —ruk(zc) ) | € i 2k € Zk, (4.12)
Lk|k 1
E ;s\)kl « ? Uk
(zi) = 1, (zk) me , Zk €2k, (4.13)
klk-1

2
E[((puk;w ), <p>—<pu,k<-;Zk>,<p>)]<||(.o|| SU geze @

klk-1
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hold for some real numbers cp i >0, dpx >0, cux >0, Ciz,k > 0, and dyx > 0, which are independent
of L) 1 cLi drj cug, ¢y and duy are defined by (A.29), (A.35), (A.47), (A.55), and (A.61),

klk-1°
respectively. Lﬁ,i(“,l = min(L,(j“)(fl, . ,L,({?,fi‘fl)), min(-) denotes the minimum. In addition, cux, c;; .,
and dy i depend on the number of targets and decrease with the increase of the target number. From
L

(A47) and (A.55), it can also be seen that cj;, > cux. It indicates that r; "
(i)

particles than 1, (zx) to achieve the same mean-square error bound. The proof of the Proposition 4.2

can be found in Appendix A.2.

(zx) may need more

Propositions 4.1 and 4.2 show that the bounds for the mean-square error of the SMC-
MeMBer and SMC-CBMeMBer prediction steps and update steps at each stage depend on the
number of particles. The mean-square errors tend to zero as the number of particles tends to
infinity. The bounds for the mean-square errors of these quantities are inversely proportional
to the corresponding particle number.

Moreover, from the proofs of Propositions 4.1 and 4.2, it can be seen that

(1) Assumptions 1, 3, and 4 ensure that (4.6) holds;

(2) Assumption 4 ensures that (4.7) holds;

(3) Assumption 2 ensures that (4.12), (4.13), and (4.14) hold;
)

(4) Assumption 5 ensures the convergence of the mean-square errors for the
resampling steps of the two filters.

Assumptions 3, 4, and 5 are concerned with the SMC method. They can be satisfied as
long as the appropriate sampling strategies are chosen. Assumptions 1 and 2 are concerned
with the likelihood and target transition kernel. They may be too restrictive or unrealistic
for some practical applications. However, these convergence results give justification to the
SMC implementations of the MeMBer and CBMeMBer filters and show how the order of the
mean-square errors are reduced as the number of particles increases.

5. Simulations

Here, we briefly describe the application of the convergence results for the SMC-CBMeMBer
filter to the nonlinear MTT example presented in Example 1 of [12]. The experiment settings

are the same as those of Example 1 except that the number of the particles L,(:) used for each

hypothesized track at time k. For convenience, we assume L,(ci) = L. Assumptions 1-5 are
satisfied in this example. So, the SMC-CBMeMBer filter converges to the ground truth in the
mean-square sense.

For the SMC-CBMeMBer filter, the estimates of the multitarget number and states,
which are derived from the particle multi-Bernoulli parameter set, are unbiased. Therefore,
via comparing the tracking performance of the algorithm in the various particle number L,
the convergence results for the SMC-CBMeMBer filter can be verified to a great extent.

The standard deviation of the estimated cardinality distribution and the optimal
subpattern assignment (OSPA) multitarget miss-distance [20] of order p = 2 with cut-off
¢ = 100 m, which jointly captures differences in cardinality and individual elements between
two finite sets, are used to evaluate the performance of the method. Table 1 shows the time-
averaged standard deviation of the estimated cardinality distribution and the time-averaged
OSPA in various L via 200 MC simulation experiments.
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Table 1: Time-averaged standard deviation of the estimated cardinality distribution and time-averaged
OSPA (m) in various L.

Particle number L 100 500 1000 1500 2000
Time-averaged standard deviation of the estimated

cardinality distribution from the SMC-CBMeMBer filter 269 2.03 148 123 1.04
OSPA (m) from the SMC-CBMeMBer filter 65.2 51.9 42.3 34.8 27.7

Table 1 shows that both the standard deviation of the estimated cardinality distribu-
tion and OSPA decrease with the increase of the particle number L. This phenomenon can be
reasonably explained by the convergence results derived in this paper: first, the mean-square
error of the particle multi-Bernoulli parameter set decreases as the number of the particles
increases; then, the more precise estimates of the cardinality distribution and multitarget
states can be derived from the more precise particle multi-Bernoulli parameter set, which
eventually leads to the results presented in Table 1.

6. Conclusions and Future Work

This paper presents the mathematical proofs of the convergence for the SMC-MeMBer and
SMC-CBMeMBer filters and gives the bounds for the mean-square errors. In the linear-
Gaussian condition, Vo et al. presented the analytic solutions to the MeMBer and CBMeMBer
recursions: GM-MeMBer and GM-CBMeMBer filters [12]. The future work is focused on
studying the convergence results and error bounds for the two filters.

Appendix
A.

In deriving the proofs, we use the Minkowski inequality, which states that, for any two ran-
dom variables X and Y in L2,

E[(xX+Y)] V2o E[x?] Y2, E[Xz]l/z. (A1)

Using Minkowski’s inequality, we obtain that, for all ¢ € B(R9),

E [<r(i),L(i) <P(i)'L(i)r‘P> _ 0 <P(i),(p>>2] 1/2
(A.2)

. 2 . r11/2 _ ,11/2
< E[<p(i),L(l>I(p> (T(i),m _ r(i)> +7OF [<<p(i)'””,(p> 3 <p(i),(P>> ] (A3)

1/2 1/2

<llollE [(T“”Lm —rOY | e [<<P(i)’L(i)f<P> - <P(i)/90>>2] (A4)

holds, i =1,..., M, for the multi-Bernoulli density o = { (r(i),p(i)) ) IZ\:/Il and its particle approx-
imation orL” = {(r(i),L(i),p(i),L(i>)}11_\:/11'
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A.1. Proof of Proposition 4.1

We first prove (4.5). From (2.4) and (3.2), we have

_ 172 _ .
OLY WLy, / oL G /0
E[<rp,k|kki ~Tpkjk-1 =E| (e (P psk ) m g <p k-17PSk

(by (A.4))

_ 1/2 . 2
oLl _ o\ 0 i1y 0)
<lpskllE [(Tk1 e + L E| (Pt ™o psk ) = <pk171,p5,k>

(by (4.3), (44),and 0 <, < 1)

VCk—1 + Vdika

< ”PS,k“ \/LT
k-1

So that (4.5) is proved with

2
CPKk-1 = ”PS,k”Z(\/Ck—l + \/dk—1> .

Now turn to (4.6). From (2.5), we have

()L (i) 2
E|:<<pP,k|kk—11’(P> - <pP,k\k—1’(P>

1/2

(0 29172
@)L <f klk=1,Px_1PSk >
=E <pp,k|k-1r‘l’> - @ )
<Pk_1, Psk >
(adding and subtracting a new term)
@)L,
) <fk|k—1rPk_1 ‘ Ps,k>
=E (R} _
Ppxjk-1-9 L0 P
<Pk_1 71/P5,k>

@)L, :
< <fk|k*1’pk—1 ‘ Ps,k> > < <fk|k—1/P;(<11PS,k> >
+ ) -

N - ;P
DL (i
<P,(<1'1Lk’l , Ps,k> <Pk—1’ Psk >

2~ 1/2

11

(A.5)

(A.6)

(A7)

(A.8)

(A.9)

(A.10)
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(using Minkowski’s inequality)

N ) 24 1/2

@@),L,
@) L@ <fk|k_1/ pkfl . PS,k>
<E < b (P> _ < ,(P>

= p 17 . i
Pklk-1 L,
Px-1 /Psk

@)L, ;
e <pk—1 rPS,k<fk|k—1r(P>> <P,(<21/P5,k<fk\k—1/(l)>>

s (A.11)
2

i) LY (i)
<P,(21 “, Ps,k> <Pk—1' Psk >

+

By Assumption 3 and Lemma 1 in [13], we easily obtain that the first term in (A.11)
becomes

(i),L(i) 2~ 1/2
Ny aYl <fk|k—1/ Pk—l k_lps,k>
E (@),Ly,
Prix-179 ) ~ I ¢
k-1
<pk—1 s PS,k>
(A.12)
2 1/2
el frlk-1Psk ,
=0 5|l * I ferapskl

\/I; qx

(since || fxjk-1 /6],(:) | < B, by Assumption 4 and fyjk-1psk € C»(R?) by Assumption 1)

1/2

< = (IlpsklI*B2 + [l fiw-1psill®) (A13)

Adding and subtracting a new term in the second term of (A.11), we have

2~ 1/2

@)L, ;
. <Pk_1k /Ps,k<fk\k71/<P>> <p,ifl,p5,k<fk|k_1,<p>>

R ,L(i) - ()
<PI(<131 kilrpS,k> <pk—1’p5rk>
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()L (i),L
<Pk_1 sk fi k|k—1/<P>> <Pk_1 sk fi k|k—1/<P>>

- E _
i), (i) (i)
<P;(<11L “, Ps,k> <Pk_1, Psk >
(i)/LQl G 2712
Pei1 " ps il fulk-1, ) <Pk_1rPS,k<fk|k—1,(P>>
+ : _ :
<P;(31, Psk > <P;(<21, Psk >
(A.14)
(using Minkowski’s inequality)
J 1/2
ML 2
1 <Pk—1 k l,PS,k <fk|k—1/ (P>> ® L0
S (l) E (1) L(,’) <<pk,1l pS,k > - <pk7'1 k-1 , Ps/k >>
<Pk—1/ psk > <pk_'1 =y Ps,k>
(A.15)

1 WL, i z
+ m—E <<Pk71 K ,pS,k<fk|k—1,(P>> - <P;(<11;P5,k<fk|k—lr(/’>>> ]
<Pk71'PS,k> L

- 1/2

k=1, i @)L, ?

< ZME <<<p]((21/ PS,k> - <Pk_1 /PS,k>)> (A16)
<Pk_1/ PS,k> |

1/2

(by (44))

<ol dipsell | dis
inf(psk) \[ L,

(A.17)

where inf(-) denotes the infimum.
Finally, substituting (A.12) and (A.17) into (A.11), (4.6) is proved with

2
2”PS,k” \ dk—1> _ (A.18)

2 2
dpijk-1 = <\/”P5k” BY + || fiw-1psll” + inf(psk)

Now, turn to (4.7). By Lemma 0 in [13] and the boundedness of ||p§i)k/ b](:)|| <Bi(i=

1,..., Mk_1) in Assumption 4, we get that (4.7) holds for a constant dr k. This completes the
proof.
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A.2. Proof of Proposition 4.2
Now turn to (4.10). From (2.7) and (3.8), we have

1/2
E (@) @, Lk\kl Y
ik~ Tk

o, LG 24 1/2
o) _ k|k 1
=E r -7
klk-1 1— r(l) <p(l) PDk> k\k 1 @, Lk|k : @, Lk|k ,
Klk-1 \Pk|k-17 1- Tiker \ Prik-1 ,PD,k>
(A.19)
(adding and subtracting a new term)
- . 4172
. L) ?
(l) 1 _ k|k-1
(i) 1- <pk|k—1'pDk> @@, Ll(cl\)k 1 <pk‘k71 Pk
k|k-1 @) ~ Tklk-1 @)
L =7 <Pk|k 1/PD’<> 1=k <pk\k 17PD, k>
= E 1 B (1) Lk\k 1 1 B (l) Lk\k 1 (AZO)
iy, NPt PPR) g Pk Pk
r -
k|k-1 (i) < > klk-1 (l) L(l) @), L
1- Tk‘k 1 pklk 1rpDk 1- klk llf\k 1<pk|k ’i|k l,PD,k>
(using Minkowski’s inequality)
1/2
El(® 0 OLges (1 [/ OLige ’
Tk=1\* = \Pjk-1PDk ) ) = T “\Pk-1 PDk
< (@)
1
1= T <Pk|k 1PD, k>
24 1/2

(i)'L;‘i‘)kfl L k\kl
(I)LH“ 1 <Pk\k—1 /PD,k ()L;(ffk] 1 pk|k1 ,PDk

+E|| r -
klk-1 @) k|k-1 (1) Lo (i),L(n
1= 1<pk\k 1/PDk> I 1<pk|k_’1‘k’l,;91),k>

(A.21)
The numerator of the first term in (A.21) is
271/2
(0 (i (@)L (@)L
E|:<rkl|k 1( <pkl|k 1/PDk>> Tielk- P (1= Prjk- 1 PDk
(A.22)
1/2

1 2
(@) @, Lk\k 1 @), Ll(d)k 1/ @) Lk\k 1 (z)
E[<<rk|k—l Thk-1 A k-1 \Pijk—1 7PDk )~ T 1<pk\k 1/PD’<>
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(using Minkowski’s inequality and then (A.4))

5o\ 2 o \2
(i) (OF L;q)k 1 (i) @), Lk
< E[(%k 17 Tifk-1 S L

1/2 1/2

B (A23)
(i) E (OF Lk\k 1 (i) :
* k-1 Pik-1  +PDk )~ <pk|k—1’pD/k>
(by (4.8) and (4.9))
1+ ||pol) v/Erea +7 Poi||\/ Aklk-1
< ( ” ”) | - klk 1” ” | . (A24)
1
Ly
The second term in (A.21) is
. . 1/2
@)L (@)L 2
o 1= <Pk|k—§|k lfPD,k> ) 1- <Pk\k_§‘k 1/PDJ<>
E r(l) Lk\k 1 _ r( ) Lk\k 1
klk-1 (i) k|k-1 ()L(l) ('),L(i)
L= 1<pk\k 1/PDk> 1- kl‘k f“<pk1|k_§‘k_l,PD,k>
()L ()L i), L0 2
r k\k] —r k|k1<p k|k— l,pDk>
e klk-1 klk-1 klk-1 (A.25)
1— (’) Ll(:\>k 1 @, Lk\k 1
Tek-1 \Prjk-1 +PDk
9= 1/2
() L /DL
rkllk 1<Pk|k 1/PDk> Thelke- e Prik- U pok
(i)
1- Tk\k 1<Pk|k 1/PDk>
(i) Ligk s
(by 0 < Thik-1 <1)
. 1/2
E|:<r(l) (Pl Po ) - p O <P(i)’L<kl')k'1 PDk>>2
) klk-1 \Pklk-1 Klk-1 kik-1 7PD, (A26)
- (i)
T =7 1<Pk|k 1/PD’<>
(by (A.4), (4.8) and (4.9))
(i)
PDk|[v/Chk—1 + Ty PDA || \/ Diik-1
. ol v/ pra | IIF' (A2

(1 - rl(<1|;< 1<pk|k 1/PDk>>m
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Substituting (A.24) and (A.27) into (A.21), and then using 0 < r) <

k-1 =
. N\ 2
e (- )]
3 (1+ 2llpocll) vemi + 2rd s poxlly/dik-1
= /0 G
(1 - rkl|k—1 <pkl|k—1’prk >> Lk1|k—1

1+2 Crl—1 + 2 Aiele—
) (1+2[lppkll) vere= + 2[|poll/dik 3

(1= lpocl) VL

Finally, (4.10) is proved with

1/2

2
(L+2|lpoll) veri + 2|lpolly/dkic
1- lpokll '

CLk =

Now turn to (4.11). From (2.8) and (3.9), we have

; LY, 2
(ot G5

1/2

(i) (i),L§f|)H 11— 212
B <Pk|k-1f p(1- PDJ<)> Pkjk-1 ,9(1-ppi)
- @) a L0
1= <pk|k—1'pD,k> 1- <Pl(<|)kfli‘k_]/ lek>
(adding and subtracting a new term)
(i) (i)’L;fi\)kfl (1 _ )
B <pk|k—1’ ¢(1-ppx) > Prje-1 -9 PDk
- (i) B (i)
1- <pk‘k_1/ PD,k> 1- <Pk|k_1/ PD,k>
24 1/2

DL LY,
<Pk|k—?k Le(l- PD'k)> <Pk|k-§'k (1~ PD,k)>

(@) - )L
1- <Pk|k—1’pD’k > 1- <P1(<Z|)1<—Tk_1/PD,k>

(A.28)

(A.29)

(A.30)

(A31)
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(using Minkowski’s inequality)

1/2

E[<<pl(<l|)k el —PD,k)> <p](<’|)k I;\k Lol _Ple)>>2:|

1= {piarpox)

(A32)
2 2~ 1/2
@, L’(‘t‘)" 1 (1) (OF LI(:\k 1
pk|k 1 7 (P(l - pD/k) <pk|k71/ PD,k> - Pk|k 1 /PDk
+E 0 . T
1- <pl(<1|)k T 1/PD,1<> 1- <pk\k—1’pD/k>
MLy 21172
e (¢t -0 - (A5 0100 |
- (@)
- <Pk\k-1/PDrk>
(A.33)
- ML 7112
||w||E[(<p,ifk_1,pD,k> (B0 o)) ]
+
(i)
1- <pk|k—1’lek>
(by (4.9))
lloll/ e
< —. (A34)
(1= lposl)VLH
Finally, (4.11) is proved with
Ay = dijk-1 (A35)
Lk — T .
(1= lpoxl)

Now, turn to (4.12). From (2.9) and (3.10), we have

@ 2 1/2
E[( Lk‘“(zk) —TUk(Zk)> ]

2q1/2 A.36
Mik-1 (l) Lk\k 1 ( )

Zl 1 ak (Z ) Zsz‘k ! r(l) (Zk)

() + 3 g et + S 1 )
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(adding and subtracting a new term)

Mijk-1 (l> k|k 1 Mijk-1 (l> k|k 1

-E 211 ak ( k) le ak ( k)

Kk (zk) + ZM“k L Lk'k "(zk) Kk(Zk) + 20 e Irk(Zk)

12 (A.37)

Zlf\/fllqk 1 ;;{ k\k 1( ) ZMHk 1 (l) (Z )

Kk(zk) +Z Migk-1 (l) (Zk) - (Zk) " ZMkum (i) (Zk)

(using Minkowski’s inequality)

()L 212
M M
L0 Z Klk-1 (1) k) Z Klk-1 klk— 1( )

<E k‘“(k) Sy (l)
Kk(Zk) + 3 (Zk)

e (A.38)

ZIM1Hk 1 i;{ k|I< 1( ) Z Mijk-1 (l) (Zk)

Kk (zi) + St i (zi)

+E

o
(using xk(zk) > 0,0 < rL"'k Yzx) £1)

. (A.39)

()L : 21
zsz“E[( ) - “,L(zu)]

Mijk-1

25:1 (1) (Z )

From (2.12) and (3.14), the expectation in the summation of (A.39) is

o[ (5 -z |

® SO /O L
rk|k 1 <Pk|k 17 (Ifk Zk> k|k 1 pk|k—1 ’(Pkfzk

_ 0 @)Ly ()L,
1="ig 1<Pk\k 1’pDk> T-rg 1<pk|k—§‘k 1'pD'k>

29172 (A.40)
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(adding and subtracting a new term)

DLy /DL 4 .
) Thk-1 Prik-1  » Pz r,illl_l <p,(;|)k_1, Pz >
- DLy [ DL, DLy | DL
T="er (Prjgr /PDE T=7r (P PDk
»e 12 (A41)
(@) (@) (@) (@)
Thk-1 <Pk|k-1f P,z > Telk-1 <Pk‘k_1, Pk 2y >
LY ./ L0 _ M < ) >
-1y 1<Pk|k-§‘k 1IPD,k> 1= 11 (Prii-1- PO
(using Minkowski’s inequality)
NG G 29172
DL [ OLg @ )
rklk—l pk|k—1 1Pz )~ k|k-1 Pk‘k_lz Bk,z
< E ) )
1_ @/ Ly /- DLy
Ti-r \Prjk-1 /PDk
N T, 29 1/2
(i) (1) (1)’L§(|)k—1 (1)’L;c\)kfl _ (1) (1)
Thk-1 <Pk|k_1,qfk,zk> Ti-r \Prjk-1 7PDk )~ Tigie—1 \ Pjk-1-PD.k
O] (i) (), L9 (i), LY
1 klk-1 <pk|k—1’ pD,k> 1-— rk‘k_li\k 1 <pk|k_§\k 1,pD,k>
(A.42)

N
(by 0 < 1',:;(_;”"1 <1, Assumption 2 and (A.4))

O @\ v (i) L (i) i
iz | E (rk|k—1 _rk|k—1) + T B <<pk|k—1 "l’erk>_<Pk|k71"/’k1k>>

<
1= |lpoll
(i) (i)
Thik-1 <Pk|k_1, Pr,z >
(i) (i)
L =7 <Pk\k_1/ PD,k>
i 271/2 ‘ 12
O _ ) (0 DL 0
”pD,k”E[<rk|k1 " k-1 e B | ( (Prir /PO ) = <pk|k—1rpD,k>
X
1 {lpoll

(A.43)
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(by (4.8), (4.9),and 0 < 7, ; <1)

AT

. (A.44)
2 (@)
(1= llpoxl) \ Lkl\k—l
From (2.12),0 < r,((&_l <1 and Assumption 2, the denominator of (A.39) is
(i) (@)
Mig1 M1 1 p s Wka, > Mig1 )
(i _ k|k—1< klk-1 Zk (i) 6)
.Z ok (k) = Z @ /0 z Z Tkk-1 <pklk71"”"fzk>
i=1 i=1 1— Thjk-1 <pk|k_1,pp,k> i=1 (A45)
Mijk-1 )
2 inf(q’kllk) Z rl(cl\k—l = inf(‘l’k,zk)nﬂk‘l’
i-1
where ny_1 = Zf\flk‘k'l rg;(_l is the number of the predicted targets at time k.
Substituting (A.44) and (A.43) into (A.39), we get
0, 212 2| g || (VERiT + /e ) M 1
B (it @) - nusta@n)) | < - L
(1= llposl)”inf(gra) e =0\ /L,
(A.46)
) 2||¢kze || <w/Ck|k—1 + '\/dklk—leHk.—l ’
inf (¢,z,) -1 (1 = [| o))"/ L
where Lgl‘}:‘_l = min(Ll(:“)(_l,. .., in?lff‘;_n)' min(-) denotes the minimum.
Finally, (4.12) is proved with
2
2| ¢k 2 || («/Ck\k—l + '\/dk|k—1>Mk|k—1
Cu,k = (A47)

inf (g2, ) et (1 - [|poil])®

Now, turn to (4.13). First, from (2.12), 0 < rg;(_l <1 and Assumption 2, we have

W /a0
0 rkllk—1<pl:\k—1"”’<f1k> o _lgrad

r ,k(Zk) = - . < )
’ 1- 1(<l|3<—1 <p1(<l|)k_1/PD,k> 1- ”F’D,k”

(A.48)
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Then, from (2.13), (3.11), and (A.39), we get

Q) 211/2
E * Ly o
[(ru,k (z0) ru,k<zk>)]

21

2+ 1/2
(’) Lk\k 1 (l) Lk\k 1 \
/ Tok (z k)< Thk-1
2y 1/2 )
(‘) Lk\k 1 (D) Ly @, Lk\k 1
sMur| g (zx) +E =T (Prkr -PDk
= (l)
(Zk) (l) (Zk)< I£l|;< 1)
B (i)

\ AN 1<Pk|k 1'PD’<> | /
<
< Mo

S iz

(A.49)

(adding and subtracting a new term in the second expectation in the summation)

2172
/E|:< (i),L k|k 1( ) (1) (Zk)> ] \
- Y 24 1/2
(i),L k‘k 1 ( i), Lk\k 1
/ Tak (2 k)< Tklk-1 (1) (Zk)< k|k 1) \
S WLl / (L) oLl GLl
i=1 7Sklk-1 7Sklk-1 k|k -1 klk-1
CE L P <pk|k—1 ok ) 1=1 <pk\k 1 +PDk
@ (- nia) @) (1)
N _
@,LY @),LY (@) < (@) >
\ \ 1Tk " 1<pk\k T 1,PD,k> L =Ty (Prie1/ PR ) )
< = )
YRR AACH)

(A.50)

It holds that (using Minkowski’s inequality for the second term in the summation)

. 1/2
(i),L(1)7 . 2
/E[(ra,k @) -1 @) \
)o1/2
<l> @)Ly @)Ly
k|k 1(Z ) (1) (Zk) n r(l) (Zk)rklk Tk Klk— 1( k) k|k Klk-1
M +E a
Z. klk=1 @@, Lk\k 1 (D) Ly
i=1 I=7"gkr (Pijer -PDk
DLO, / QL ) 212
k| k-] k| k-]
r (zk)< i 1) Tkt 1<pk‘k1‘ 1/PD,k> Tk 1<pk‘k 1/PDk>
E
(@) LY L
\ 1 Tk‘k 1 <pk‘k*1’ pD,k> 1 ](gllzc lldk 1<p](:|)k_}i‘k_l,pD,k> /
<
= Mg
S ()

(A.51)
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L0
(by0<r Db <1, (A.4), and Minkowski’s inequality)
YUS Tk quality
271/2
),LY
/(2 ||PDk||)E[< T (z) -1 (Zk)> ] )
2172
<z> (i) 0) i).Ly)
+E k (Zk )rk|k 1Tk (2T Thlk-1 T
Migk-1 (1) Ll(dk 1 (@) L:\)k 1 @@, Ll?k 1
P k()T k|k “Tur (ZO)T Thik-1 s
2
0, (i)
(l) (zk)<l rl(<1|k 1) ”PD,k”E[<rk|k 1= rkl|k—1) ]
(@) (i) [0) 27172
1-r /PDk 6) @)L (i)
klk— 1<Pk\k P > +rkl|k E Pite- ;lk ', PDk —<pkl|k_1,pD,k> /
<

(1= llpokll) " (z0)
(A.52)

LY

(using 0 < 1, 1" < 1 and Minkowski’s inequality again for the second term in the
summation)
()L 27172 OLO \2 1/
-1 i i ! 1
(3~ ||PDk||)E[< ) -, (zk>>] i) (z@E[(hﬁL et ) ]
o oL 27172
Klk-1 ; : t 1 (1)
S| (o) [Iree| () |
N
1,0 o l O i 27172
klk- 1<Pk|k 17PD, > +r,(<|3< 1E|:<<pk|k K- ,PD,k>—<P,(<|)k,1,PD,k>>
<
(1= lpoxll) £ (o)
(A.53)
(by 0 < r,g;(_l <1, (48), (4.9) (A.44), (A.45), and Assumption 2)
k| (et + 4/t Mﬁ*’ 4= (rfhs + 1) llpox]
T (1= |lpoll)’ inf (e z ) s S Lis
(A.54)

ll 9ok (x/cld? + \/dk|k—1> (4Miji-1 = (mjk-1 + Mige-1) [|[po )
< .
(1= lpoill)” inf (g )L
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Finally, (4.13) is proved with

Cuk =

2
k| (/@R + k1) 7 (4 sl Mg
~|lpokll ) | - (A.55)

(1= |lpokll)’ inf(yi,z,) Mijk-1

Now turn to (4.14). From (2.10) and (3.12), we get

172
E[((Pu,k(‘}zk)r‘P) - <Pllk|’i Gz, (P>> ]

M (l)
(i mine) (22 )

ZMklkl (i), Lk\k 1( ) walk\kl (1k(z )

i=1 ak

29172 (A.56)

(adding and subtracting a new term)

<Zf\:41k\k1 ak k\k 1( Zk) ‘/’> <Zf\:/11k\k1 ﬂ(!)kLk\k 1( Zk) (P>
E

T R
(A.57)
1/2
ZMHH @.L k\m( z), M1 (i) ’
=1 Pak k)P <Zl 1 Pak( Zk)/(P>
Sy S rok(e)
(using Minkowski’s inequality)
2 1/2
@.L 1 (i
<E <M§_lp<)Li’fm( ; Zk) (,0> Z?flklkl Tok k‘kl( k)~ wak'k ()(Z )
B i=1 ak ’ ZMk\k 1 (1) ( )ZMk\k 1 (D), Lk|k 1(Zk)
(A.58)

0 L0 2q1/2
E|:<<le\z/flkk1 Pu,]; k‘k’l(-,‘zk) _ ZMk\k 1 szl)lc( Zk),(p>> ]

wak\kl (i) (Zk)

+

(by (2.12) and (3.14))

2 1/2
2 M1y 1) Mg
Il EKZ(”W> Z%WO] (A59)

Qi LA B
ZM”" ! (') (1) i-1 i=1



24

(by (A.39) and (A.47))
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el

<
min
\/ Lk|k—1

Cuk- (A.60)

Finally, (4.14) is proved with

dux = cux =

2
2|t [ (/o + W)Mklk—l- (A.61)
inf (i g ) M1 (1 — ||PDJ<”)2 .

This completes the proof.

Nomenclature

Xk

Zj:

Nng:

Mmy:

Xk = {xix )i

Zy = {zix )5
Freer (Xxe | Xg-1):
Psk(Xk-1):

Pk (Xk):

Kk (Zk):

Pz (Xi) = fi(Zk | Xk):
6x('):

R4:

Cp(R9):

B(R%):

a(Y®D):

a(Y):

= {(r®,p@) M

~ ST (0) ST (0)
= {(r@OLY, pOLTy) M

- 1I:
(-):
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