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We have presented a numerical integration method to solve a class of singularly perturbed
delay differential equations with small shift. First, we have replaced the second-order singularly
perturbed delay differential equation by an asymptotically equivalent first-order delay differential
equation. Then, Simpson’s rule and linear interpolation are employed to get the three-term
recurrence relation which is solved easily by discrete invariant imbedding algorithm. The method
is demonstrated by implementing it on several linear and nonlinear model examples by taking
various values for the delay parameter δ and the perturbation parameter ε.

1. Introduction

The singularly perturbed delay differential equations with small shift arise very frequently
in the modeling of various physical and biological phenomena, for example, micro scale heat
transfer [1], hydrodynamics of liquid helium [2], second-sound theory [3], thermoelasticity
[4], diffusion in polymers [5], reaction-diffusion equations [6], stability [7], control of
chaotic systems [8], a variety of models for physiological processes or diseases [9] and so
forth. Hence in the recent times, many researchers have been trying to develop numerical
methods for solving these problems. Amiraliyev and Cimen [10] presented numerical
method comprising a fitted difference scheme on a uniform mesh to solve second-order
delay differential equations. Lange and Miura [11, 12] gave an asymptotic approach for a
class of boundary-value problems for linear second-order differential-difference equations.
Kadalbajoo and Sharma [13–15] presented numerical approaches to solve singularly
perturbed differential-difference equations, which contains negative shift in the convention
term (i.e., in the derivative term). Lange and Miura [16] considered the boundary value
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problem for a singularly perturbed nonlinear differential difference equation with shift and
discussed the existence and uniqueness of their solutions. Furthermore, Kadalbajoo and
Sharma [17] have discussed the numerical solution of the singularly perturbed nonlinear
differential equations with small negative shifts.

In this paper, we have presented a numerical integration method for solving a class
of singularly perturbed delay differential equations with small shift. First, the second-
order singularly perturbed delay differential equation is replaced by an asymptotically
equivalent first-order delay differential equation. Then we employed Simpson’s rule and
linear interpolation to get three-term recurrence relation which is solved easily by discrete
invariant imbedding algorithm. The method is demonstrated by implementing it on several
linear and nonlinear model examples by taking various values for the delay and perturbation
parameters.

2. Description of the Method

Consider a class of singularly perturbed boundary value problems of the following form:

Ly ≡ εy′′(x) + a(x)y′(x − δ) + b(x)y(x) = f(x), 0 ≤ x ≤ 1, (2.1)

with the interval and boundary conditions

y(0) = α, −δ ≤ x ≤ 0, (2.2a)

y(1) = β, (2.2b)

where ε is small parameter, 0 < ε � 1, and δ is also a small shifting parameter, 0 < δ � 1; b(x),
andf(x) are bounded continuous functions in (0, 1), and α, β are finite constants. Further, we
assume that a(x) ≥ M > 0 throughout the interval [0, 1], where M is positive constant. This
assumption merely implies that the boundary layer will be in the neighborhood of x = 0.

By using Taylor series expansion in the neighborhood of the point x, we have

y
(
x − √

ε
)
= y(x) − √

εy′(x) +
ε

2
y′′(x) (2.3)

and consequently, (2.1) is replaced by the following first-order differential equation:

y′(x) = p(x)y′(x − δ) + q(x)y
(
x − √

ε
)
+ r(x)y(x) + s(x), (2.4)

where

p(x) =
−a(x)
2
√
ε
, q(x) =

−1√
ε
, r(x) =

2 − b(x)
2
√
ε

, s(x) =
f(x)
2
√
ε
. (2.5)

The transition from (2.1) to (2.4) is admitted, because of the condition that ε is small,
0 < ε � 1. This replacement is significant from the computational point of view. Further
details on the validity of this transition can be found in [18].
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Now we divide the interval [0, 1] into N equal subintervals of mesh size h = 1/N so
that xi = ih, i = 0, 1, 2, . . . ,N.

Integrating (2.4) with respect to x from xi to xi+1 for = 1, 2, . . . ,N − 1, we get

yi+1 − yi = pi+1y(xi+1 − δ) − piy(xi − δ)

+
∫xi+1

xi

(−p′(x)y(x − δ) + q(x)y
(
x − √

ε
)
+ r(x)y(x) + s(x)

)
dx,

(2.6)

where yi = y(xi), pi = p(xi), qi = q(xi), ri = r(xi), si = s(xi).
By using Simpson’s rule to evaluate the integral in (2.6), we get

yi+1 − yi = pi+1y(xi+1 − δ) − piy(xi − δ)

− h

6

(
p′iy(xi − δ) + 4p′i+1/2y(xi+1/2 − δ) + p′i+1y(xi+1 − δ)

)

+
h

6
(
qiy

(
xi −

√
ε
)
+ 4qi+1/2y

(
xi+1/2 −

√
ε
)
+ qi+1y

(
xi+1 −

√
ε
))

+
h

6
(
riyi + 4ri+1/2yi+1/2 + ri+1yi+1

)
+
h

6
(si + 4si+1/2 + si+1).

(2.7)

By the means of Taylor series expansion and then by approximating y′(x) by linear inter-
polation, we get

y(xi − δ) = y(xi) − δy′(xi) = yi − δ

(
yi − yi−1

h

)
=
(
1 − δ

h

)
yi +

δ

h
yi−1, (2.8a)

y(xi+1 − δ) = y(xi+1) − δy′(xi+1) = yi+1 − δ

(
yi+1 − yi

h

)
=
(
1 − δ

h

)
yi+1 +

δ

h
yi, (2.8b)

y
(
xi −

√
ε
)
= y(xi) −

√
εy′(xi) = yi −

√
ε

(
yi − yi−1

h

)
=
(
1 −

√
ε

h

)
yi +

√
ε

h
yi−1, (2.8c)

y
(
xi+1 −

√
ε
)
= y(xi+1) −

√
εy′(xi+1) = yi+1 −

√
ε

(
yi+1 − yi

h

)
=
(
1 −

√
ε

h

)
yi+1 +

√
ε

h
yi. (2.8d)

In similar way,

y(xi+1/2 − δ) = y(xi+1/2) − δy′(xi+1/2) = yi+1/2 − δ

(
yi+1 − yi

h

)
= yi+1/2 − δ

h
yi+1 +

δ

h
yi. (2.8e)
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Hence, by making use of (2.8a)–(2.8e) in (2.7) we obtain

yi+1 − yi =
[
−δ
h
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6
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)
+
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6
qi

]
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6

[
−p′i+1/2 + qi+1/2 + ri+1/2

]
yi+1/2 +

h

6
[si + 4si+1/2 + si+1].

(2.9)

To make (2.9) a three-term recurrence relation, we can express yi+1/2 in terms of yi−1, yi and
yi+1 using Hermite’s interpolation as follows:

yi+1/2 =
1
2
[
yi + yi+1

]
+
h

8
[
y′
i − y′

i+1

]
+O

(
h4
)
. (2.10)

In view of (2.4) and (2.10), we get

yi+1/2 =
1
2
[
yi + yi+1

]
+
h

8
[
piy

′(xi − δ) + qiy
(
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√
ε
)
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8
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√
ε
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]
.

(2.11)

By making use of (2.8a)–(2.8e) in (2.11) and finite difference approximations, we get
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δ
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8
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8
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+
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1
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8
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)
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(
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√
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)
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8
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]
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h

8
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(2.12)

Finally, making use of (2.12) in (2.9) and rearranging as three-term recurrence relation, we
get

Eiyi−1 − Fiyi +Giyi+1 = Hi, (2.13)
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for i = 1, 2, . . . ,N − 1, where
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(2.14)

This tridiagonal system is solved by using method of discrete invariant imbedding algorithm
which is described in the next section.

3. Discrete Invariant Imbedding Algorithm

We now describe the Thomas algorithm which is also called discrete invariant imbedding
[19] to solve the three-term recurrence relation:

Eiyi−1 − Fiyi +Giyi+1 = Hi, for i = 1, 2 . . . ,N − 1. (3.1)

Let us set a difference relation of the form

yi = Wiyi+1 + Ti for i = N − 1,N − 2, . . . , 2, 1, (3.2)

where Wi = W(xi) and Ti = T(xi) are to be determined.
From (3.2), we have

yi−1 = Wi−1yi + Ti−1. (3.3)

Substituting (3.3) in (3.1), we have

yi =
(

Gi

Fi − EiWi−1

)
yi+1 +

(
EiTi−1 −Hi

Fi − EiWi−1

)
. (3.4)
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By comparing (3.2) and (3.4), we get the recurrence relations

Wi =
(

Gi

Fi − EiWi−1

)
, (3.5)

Ti =
(
EiTi−1 −Hi

Fi − EiWi−1

)
. (3.6)

To solve these recurrence relations for i = 1, 2, 3, . . . ,N − 1, we need the initial conditions for
W0 and T0. If we chooseW0 = 0, then we get T0 = α. With these initial values, we computeWi

and Ti for i = 1, 2, 3, . . . ,N − 1 from (3.5) and (3.6) in forward process and then obtain yi in
the backward process from (3.2).

The conditions for the discrete invariant imbedding algorithm to be stable are (see
[18–21])

Ei > 0, Gi > 0, Fi ≥ Ei +Gi, |Ei| ≤ |Gi|. (3.7)

In our method, one can easily show that if the assumptions a(x) > 0, b(x) < 0 and
(ε − δa(x)) > 0 hold, then the above conditions (3.7) hold, and thus the discrete invariant
imbedding algorithm is stable.

4. Numerical Experiments

To demonstrate the applicability of the method, we have implemented it on two linear and
two nonlinear problems with left-end boundary layers. Computational results are compared
with exact solutions wherever exact solutions are available. When exact solution is not
available, we have tested the effect of small delay parameter on solution of the problem for
different values of δ of o(ε).

4.1. Linear Problems

Example 4.1. Consider an example of singularly perturbed delay differential equation with
left layer:

εy′′(x) + y′(x − δ) − y(x) = 0; x ∈ [0, 1] with y(0) = 1, y(1) = 1. (4.1)

The exact solution is given by

y(x) =
(1 − em2)em1x + (em1 − 1)em2x

em1 − em2
, (4.2)

where m1 = −1 −
√
1 + 4(ε − δ)/2(ε − δ) and m2 = −1 +

√
1 + 4(ε − δ)/2(ε − δ).

The computational results are presented in Tables 1, 2, 3, and 4 for ε = 0.001 and 0.0001
for different values of δ.
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Table 1: Numerical results of Example 4.1 for ε = 0.001, δ = 0.0001, N = 100.

x Numerical solution Exact solution Absolute error
0.00 1.0000000 1.0000000 0.000E + 00
0.01 0.3724909 0.3719167 5.743E − 04
0.02 0.3753635 0.3756417 2.781E − 04
0.03 0.3791343 0.3794135 2.792E − 04
0.04 0.3829441 0.3832233 2.791E − 04
0.06 0.3906790 0.3909578 2.788E − 04
0.08 0.3985702 0.3988485 2.784E − 04
0.20 0.4493791 0.4496520 2.730E − 04
0.50 0.6065730 0.6068032 2.302E − 04
0.60 0.6703575 0.6705610 2.035E − 04
0.90 0.9048500 0.9049187 6.870E − 05
1.00 1.0000000 1.0000000 0.000E + 00

Table 2: Numerical results of Example 4.1 for ε = 0.001, δ = 0.0008, N = 100.

x Numerical solution Exact solution Absolute error
0.00 1.0000000 1.0000000 0.000E + 00
0.02 0.3785059 0.3753847 3.121E − 03
0.03 0.3786281 0.3791566 5.284E − 04
0.04 0.3827057 0.3829664 2.607E − 04
0.05 0.3865343 0.3868145 2.802E − 04
0.06 0.3904227 0.3907013 2.786E − 04
0.08 0.3983141 0.3985924 2.782E − 04
0.20 0.4491281 0.4494008 2.728E − 04
0.40 0.5486277 0.5488775 2.498E − 04
0.60 0.6701703 0.6703736 2.033E − 04
0.90 0.9047868 0.9048555 6.870E − 05
1.00 1.0000000 1.0000000 0.000E + 00

Table 3: Numerical results of Example 4.1 for ε = 0.0001, δ = 0.00001, N = 100.

x Numerical solution Exact solution Absolute error
0.00 1.0000000 1.0000000 0.000E + 00
0.01 0.3737204 0.3716098 2.111E − 03
0.02 0.3754769 0.3753442 1.327E − 04
0.03 0.3792426 0.3791161 1.264E − 04
0.04 0.3830523 0.3829260 1.264E − 04
0.08 0.3986781 0.3985520 1.261E − 04
0.20 0.4494850 0.4493613 1.237E − 04
0.40 0.5489547 0.5488413 1.134E − 04
0.50 0.6066623 0.6065580 1.043E − 04
0.80 0.8188018 0.8187455 5.630E − 05
0.90 0.9048767 0.9048455 3.120E − 05
1.00 1.0000000 1.0000000 0.000E + 00
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Table 4: Numerical results of Example 4.1 for ε = 0.0001, δ = 0.00008, N = 100.

x Numerical solution Exact solution Absolute error
0.00 1.0000000 1.0000000 0.000E + 00
0.02 0.3754557 0.3753185 1.372E − 04
0.03 0.3792183 0.3790904 1.279E − 04
0.04 0.3830281 0.3829003 1.279E − 04
0.06 0.3907630 0.3906352 1.278E − 04
0.08 0.3986540 0.3985264 1.276E − 04
0.20 0.4494613 0.4493362 1.251E − 04
0.40 0.5489329 0.5488182 1.146E − 04
0.60 0.6704187 0.6703254 9.330E − 05
0.70 0.7409000 0.7408227 7.730E − 05
0.90 0.9048707 0.9048392 3.150E − 05
1.00 1.0000000 1.0000000 0.000E + 00

Table 5: Numerical results of Example 4.2 for ε = 0.001, N = 100, and different values of δ.

x
Numerical solutions

δ = 0.0001 δ = 0.0003 δ = 0.0006 δ = 0.0008
0.00 1.0000000 1.0000000 1.0000000 1.0000000
0.02 0.2608070 0.2574476 0.2531103 0.2507717
0.04 0.2666194 0.2664989 0.2663023 0.2661506
0.05 0.2696995 0.2695796 0.2694007 0.2692834
0.06 0.2728263 0.2727058 0.2725251 0.2724043
0.08 0.2792234 0.2791020 0.2789198 0.2787981
0.20 0.3220214 0.3218944 0.3217039 0.3215766
0.40 0.4142966 0.4141648 0.4139674 0.4138352
0.60 0.5434980 0.5433738 0.5431879 0.5430634
0.80 0.7285067 0.7284169 0.7282822 0.7281920
0.90 0.8508641 0.8508093 0.8507276 0.8506728
1.00 1.0000000 1.0000000 1.0000000 1.0000000

Example 4.2. Now we consider an example of variable coefficient singularly perturbed delay
differential equation with left layer:

εy′′(x) + e−0.5xy′(x − δ) − y(x) = 0 with y(0) = 1, y(1) = 1. (4.3)

For which the exact solution is not known. This example is considered to show the effect of
the small shift on the boundary layer solution.

The computational results are presented in Tables 5 and 6 for ε = 0.001 and 0.0001 for
different values of δ.

4.2. Nonlinear Problems

Nonlinear problems are linearized by the quasilinearization process. Then we have applied
the present method.
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Table 6: Numerical results of Example 4.2 for ε = 0.0001, N = 100, and different values of δ.

x
Numerical solutions

δ = 0.00001 δ = 0.00003 δ = 0.00006 δ = 0.00008
0.00 1.0000000 1.0000000 1.0000000 1.0000000
0.01 0.4289609 0.4278078 0.4260698 0.4249051
0.02 0.2612188 0.2608663 0.2603437 0.2599993
0.03 0.2637076 0.2636943 0.2636772 0.2636673
0.04 0.2667407 0.2667287 0.2667109 0.2666990
0.06 0.2729484 0.2729363 0.2729184 0.2729064
0.09 0.2826190 0.2826068 0.2825886 0.2825764
0.20 0.3221486 0.3221358 0.3221169 0.3221042
0.60 0.5436167 0.5436044 0.5435862 0.5435733
0.70 0.6275683 0.6275574 0.6275409 0.6275294
0.90 0.8509144 0.8509088 0.8509008 0.8508952
1.00 1.0000000 1.0000000 1.0000000 1.0000000

Example 4.3. Consider a singularly perturbed nonlinear delay differential equation:

εy′′(x) + y(x)y′(x − δ) − y(x) = 0 (4.4)

under the interval and boundary conditions

y(x) = 1, −δ ≤ x ≤ 0, y(1) = 1. (4.5)

The exact solution is not known.
The computational results are presented in Tables 7 and 8 for ε = 0.01 for different

values of δ.

Example 4.4. Consider an example of singularly perturbed nonlinear delay differential
equation:

εy′′(x) + 2y′(x − δ) + ey(x) = 0 (4.6)

under the interval and boundary conditions

y(x) = 0, −δ ≤ x ≤ 0, y(1) = 0. (4.7)

The exact solution is not known.
The computational results are presented in Tables 9 and 10 for ε = 0.01 and 0.001 for

different values of δ.

5. Discussions and Conclusions

We have presented a numerical integration method to solve singularly perturbed delay
differential equations. The scheme is repeated for different choices of the delay parameter,
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Table 7: Numerical results of Example 4.3 for ε = 0.001, N = 100, and different values of δ.

x
Numerical solutions

δ = 0.0001 δ = 0.0003 δ = 0.0006 δ = 0.0008
0.00 1.0000000 1.0000000 1.0000000 1.0000000
0.01 0.3724909 0.3596174 0.3392884 0.3250014
0.03 0.3791343 0.3790570 0.3788695 0.3786281
0.04 0.3829441 0.3828712 0.3827668 0.3827057
0.05 0.3867922 0.3867193 0.3866106 0.3865343
0.06 0.3906790 0.3906061 0.3904977 0.3904227
0.08 0.3985702 0.3984973 0.3983891 0.3983141
0.20 0.4493791 0.4493076 0.4492016 0.4491281
0.40 0.5488575 0.5487921 0.5486948 0.5486277
0.60 0.6703575 0.6703041 0.6702249 0.6701703
0.90 0.9048500 0.9048320 0.9048053 0.9047868
1.00 1.0000000 1.0000000 1.0000000 1.0000000

Table 8: Numerical results of Example 4.3 for ε = 0.0001, N = 100, and different values of δ.

x
Numerical solutions

δ = 0.00001 δ = 0.00003 δ = 0.00006 δ = 0.00008
0.00 1.0000000 1.0000000 1.0000000 1.0000000
0.01 0.3737204 0.3724622 0.3705641 0.3692932
0.03 0.3792426 0.3792360 0.3792249 0.3792183
0.04 0.3830523 0.3830458 0.3830347 0.3830281
0.05 0.3869004 0.3868939 0.3868828 0.3868762
0.08 0.3986781 0.3986716 0.3986605 0.3986540
0.20 0.4494850 0.4494785 0.4494676 0.4494613
0.40 0.5489547 0.5489486 0.5489386 0.5489329
0.50 0.6066623 0.6066567 0.6066476 0.6066423
0.70 0.7409147 0.7409106 0.7409040 0.7409000
0.90 0.9048767 0.9048751 0.9048723 0.9048707
1.00 1.0000000 1.0000000 1.0000000 1.0000000

Table 9: Numerical results of Example 4.4 for ε = 0.001, N = 100, and different values of δ.

x
Numerical solutions

δ = 0.0001 δ = 0.0003 δ = 0.0006 δ = 0.0008
0.00 0.0000000 0.0000000 0.0000000 0.0000000
0.02 −0.2107353 −0.2105360 −0.2098469 −0.2090868
0.04 −0.2053359 −0.2053088 −0.2052677 −0.2052346
0.05 −0.2026495 −0.2026230 −0.2025854 −0.2025608
0.06 −0.1999765 −0.1999504 −0.1999132 −0.1998883
0.08 −0.1946704 −0.1946451 −0.1946091 −0.1945850
0.10 −0.1894171 −0.1893927 −0.1893577 −0.1893344
0.30 −0.1396748 −0.1396577 −0.1396331 −0.1396166
0.60 −0.0737937 −0.0737854 −0.0737733 −0.0737652
0.80 −0.0350537 −0.0350500 −0.0350445 −0.0350408
0.90 −0.0170888 −0.0170870 −0.0170844 −0.0170827
1.00 0.0000000 0.0000000 0.0000000 0.0000000
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Table 10: Numerical results of Example 4.4 for ε = 0.0001, N = 100, and different values of δ.

x
Numerical Solutions

δ = 0.00001 δ = 0.00003 δ = 0.00006 δ = 0.00008
0.00 0.0000000 0.0000000 0.0000000 0.0000000
0.02 −0.2107172 −0.2107119 −0.2106993 −0.2106895
0.03 −0.2080040 −0.2080019 −0.2079975 −0.2079955
0.04 −0.2053046 −0.2053025 −0.2052982 −0.2052962
0.05 −0.2026187 −0.2026166 −0.2026124 −0.2026104
0.08 −0.1946411 −0.1946391 −0.1946350 −0.1946331
0.10 −0.1893887 −0.1893868 −0.1893829 −0.1893810
0.30 −0.1396550 −0.1396536 −0.1396509 −0.1396495
0.60 −0.0737842 −0.0737834 −0.0737821 −0.0737814
0.80 −0.0350494 −0.0350491 −0.0350485 −0.0350481
0.90 −0.0170868 −0.0170866 −0.0170863 −0.0170862
1.00 0.0000000 0.0000000 0.0000000 0.0000000

δ, and perturbation parameter, ε. The choice of δ is not unique but can assume any number
of values satisfying the condition δ(ε) = τε with τ = O(1) and τ is not too large Lange and
Miura [12]. To demonstrate the efficiency of the method, we have implemented it on two
linear and two nonlinear model examples with the boundary layer on the left for different
values of ε and δ. From the computational results, it is observed that the proposed method
approximates the exact solution very well (see Tables 1–4), and the small shift, δ, affects
the boundary layer solutions. That is, as δ increases, the size/thickness of the left boundary
layer decreases (see Tables 5–10). This method does not depend on asymptotic expansion as
well as on the matching of the coefficients. Thus, we have devised an alternative technique
of solving boundary value problems for singularly perturbed delay differential equations,
which is easily implemented on computer and is also practical.
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