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We study the complete convergence and complete moment convergence for martingale difference
sequence. Especially, we get the Baum-Katz-type Theorem and Hsu-Robbins-type Theorem for
martingale difference sequence. As a result, the Marcinkiewicz-Zygmund strong law of large
numbers for martingale difference sequence is obtained. Our results generalize the corresponding
ones of Stoica (2007, 2011).

1. Introduction

The concept of complete convergence was introduced by Hsu and Robbins [1] as follows.
A sequence of random variables {Un, n ≥ 1} is said to converge completely to a constant C if
∑∞

n=1 P{|Un − C| > ε} < ∞ for all ε > 0. In view of the Borel-Cantelli lemma, this implies
that Un → C almost surely (a.s.). The converse is true if the {Un, n ≥ 1} are independent.
Hsu and Robbins [1] proved that the sequence of arithmetic means of independent and
identically distributed (i.i.d.) random variables converges completely to the expected value
if the variance of the summands is finite. Erdös [2] proved the converse. The result of Hsu-
Robbins-Erdös is a fundamental theorem in probability theory and has been generalized and
extended in several directions by many authors. One of the most important generalizations
is Baum and Katz [3] for the strong law of large numbers as follows.

Theorem A (see Baum and Katz [3]). Let α > 1/2 and let αp > 1. Let {Xn, n ≥ 1} be a sequence
of independent and identically distributed random variables. Assume further that EX1 = 0 if α ≤ 1.
Then the following statements are equivalent:

(i) E|X1|p < ∞,

(ii)
∑∞

n=1 n
αp−2P(max1≤k≤n|

∑k
i=1 Xi| > εnα) < ∞ for all ε > 0.
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Motivated by Baum and Katz [3] for independent and identically distributed
random variables, many authors studied the Baum-Katz-type Theorem for dependent
random variables; see, for example, ϕ-mixing random variables, ρ-mixing random variables,
negatively associated random variables, martingale difference sequence, and so forth.

Our emphasis in the paper is focused on the Baum-Katz-type Theorem for martingale
difference sequence. Recently, Stoica [4, 5] considered the following series that describes the
rate of convergence in the strong law of large numbers:

∞∑

n=1

nαp−2P

(∣
∣
∣
∣
∣

n∑

i=1

Xi

∣
∣
∣
∣
∣
> εnα

)

. (1.1)

They obtained the follow results.

Theorem B (see Stoica [4]). Let {Xn, n ≥ 1} be an Lp-bounded martingale difference sequence, and
let 0 < 1/α < 2 < p. Then series (1.1) converges for all ε > 0.

Theorem C (see Stoica [5]). (i) Let 1 < p < 2, 1 ≤ 1/α ≤ p and let ε > 0. Then the series (1.1)
converges for any martingale difference sequence {Xn, n ≥ 1} bounded in Lp.

(ii) Let p = α = 1 and ε > 0. Then the series (1.1) converges for any martingale difference
sequence {Xn, n ≥ 1} satisfying supn≥1E(|Xn|ln+|Xn|) < ∞.

The main purpose of the paper is to further study the Baum-Katz-type Theorem for
martingale difference sequence. We have the following generalizations.

(i) Our results include Baum-Katz-type Theorem and Hsu-Robbins-type Theorem (see
Hsu and Robbins [1]) as special cases.

(ii) Our results generalize Theorems B and C for the partial sum to the case of maximal
partial sum.

(iii) Our results not only generalize Theorem B for 0 < 1/α < 2 < p and Theorem C (i)
for 1 < p < 2, 1 ≤ 1/α ≤ p to the case of α > 1/2, p > 1 and αp ≥ 1 but also generalize
Theorem C (ii) for α = 1 to the case of α ≥ 1.

Throughout the paper, let {Xn, n ≥ 1} be a sequence of random variables defined on
a fixed probability space (Ω,F, P). Denote Sn =

∑n
i=1 Xi, S0 = 0, ln+x = ln max(x, e), x+ =

xI(x ≥ 0), andF0 = {Ω, ∅}. an � bn stands for an = O(bn). C, C1–C4 denote positive constants
which may be different in various places. �x	 denotes the integer part of x. Let I(A) be the
indicator function of the set A.

Let {Fn, n ≥ 1} be an increasing sequence of σ fields with Fn ⊂ F for each n ≥ 1. If
Xn is Fn measurable for each n ≥ 1, then σ fields {Fn, n ≥ 1} are said to be adapted to the
sequence {Xn, n ≥ 1}, and {Xn,Fn, n ≥ 1} is said to be an adapted stochastic sequence.

Definition 1.1. If {Xn,Fn, n ≥ 1} is an adapted stochastic sequence with

E(Xn | Fn−1) = 0 a.s. (1.2)

and E|Xn| < ∞ for each n ≥ 1, then the sequence {Xn,Fn, n ≥ 1} is called a martingale
difference sequence.

The following two definitions will be used frequently in the paper.
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Definition 1.2. A real-valued function l(x), positive and measurable on (0,∞), is said to be
slowly varying if

lim
x→∞

l(xλ)
l(x)

= 1 (1.3)

for each λ > 0.

Definition 1.3. A sequence {Xn, n ≥ 1} of random variables is said to be stochastically
dominated by a random variable X if there exists a positive constant C, such that

P(|Xn| > x) ≤ CP(|X| > x) (1.4)

for all x ≥ 0 and n ≥ 1.

Our main results are as follows.

Theorem 1.4. Let α > 1/2, p > 1 and let αp ≥ 1. Let {Xn,Fn, n ≥ 1} be a martingale difference
sequence, which is stochastically dominated by a random variable X. Let l(x) > 0 be a slowly varying
function as x → ∞. Supposing that supi≥1E(X

2
i | Fi−1) ≤ C a.s. if p ≥ 2 and

E|X|pl
(
|X|1/α

)
< ∞, (1.5)

then for any ε > 0,

∞∑

n=1

nαp−2l(n)P
(

max
1≤j≤n

∣
∣Sj

∣
∣ ≥ εnα

)

< ∞. (1.6)

Theorem 1.5. Let α > 1/2, p > 1 and let αp > 1. Let {Xn,Fn, n ≥ 1} be a martingale difference
sequence, which is stochastically dominated by a random variable X. Let l(x) > 0 be a slowly varying
function as x → ∞. Supposing that supi≥1E(|Xi|2 | Fi−1) ≤ C a.s. if p ≥ 2 and (1.5) holds, then for
any ε > 0,

∞∑

n=1

nαp−2l(n)P

(

sup
j≥n

∣
∣
∣
∣
Sj

jα

∣
∣
∣
∣ ≥ ε

)

< ∞. (1.7)

For p = 1 and l(x) = 1, we have the following theorem.

Theorem 1.6. Let α ≥ 1, and let {Xn,Fn, n ≥ 1} be a martingale difference sequence, which is
stochastically dominated by a random variable X. Supposing that

E|X|ln+|X| < ∞, (1.8)

then for any ε > 0,

∞∑

n=1

nα−2P
(

max
1≤j≤n

∣
∣Sj

∣
∣ ≥ εnα

)

< ∞. (1.9)
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The following theorem presents the complete moment convergence for martingale
difference sequence.

Theorem 1.7. Letting the conditions of Theorem 1.4 hold, then for any ε > 0,

∞∑

n=1

nαp−2−αl(n)E
(

max
1≤j≤n

∣
∣Sj

∣
∣ − εnα

)+

< ∞. (1.10)

Remark 1.8. If we take l(x) ≡ 1 in Theorem 1.4, then we can not only get the Baum-Katz-
type Theorem for martingale difference sequence but also consider the case of pα = 1.
Furthermore, if we take l(x) ≡ 1, α = 1, and p = 2 in Theorem 1.4, then we can get the
Hsu-Robbins-type Theorem (see Hsu and Robbins [1]) for martingale difference sequence.

Remark 1.9. As stated above, our Theorems 1.4 and 1.5 not only generalize the corresponding
results of Theorems B and C for the partial sum to the maximal partial sum but also expand
the scope of α and p.

Remark 1.10. If we take l(x) ≡ 1 in Theorem 1.4, then we can get the Marcinkiewicz-Zygmund
strong law of large numbers for martingale difference sequence as follows:

1
nα

n∑

i=1

Xi −→ 0, a.s. (1.11)

2. Preparations

To prove the main results of the paper, we need the following lemmas.

Lemma 2.1 (see [6, Theorem 2.11]). If {Xi,Fi, 1 ≤ i ≤ n} is a martingale difference and q > 0,
then there exists a constant C depending only on p such that

E

(

max
1≤k≤n

∣
∣
∣
∣
∣

k∑

i=1

Xi

∣
∣
∣
∣
∣

q)

≤ C

⎧
⎨

⎩
E

(
n∑

i=1

E
(
X2

i | Fi−1
)
)q/2

+ E

(

max
1≤i≤n

|Xi|q
)
⎫
⎬

⎭
. (2.1)

Lemma 2.2. Let {Xn, n ≥ 1} be a sequence of random variables, which is stochastically dominated by
a random variable X. Then for any a > 0 and b > 0, the following two statements hold:

E
[|Xn|aI(|Xn| ≤ b)

] ≤ C1[EXaI(|X| ≤ b)] + baP(|X| > b),

E
[|Xn|aI(|Xn| > b)

] ≤ C2E
[|X|aI(|X| > b)

]
,

(2.2)

where C1 and C2 are positive constants.

Lemma 2.3 (cf. [7]). If l(x) > 0 is a slowly varying function as x → ∞, then

(i) limx→∞(l(tx)/l(x)) = 1 for each t > 0; limx→∞(l(x + u)/l(x)) = 1 for each u ≥ 0,

(ii) limk→∞sup2k≤x<2k+1(l(x)/l(2
k)) = 1,

(iii) limx→∞xδl(x) = ∞, limx→∞x−δl(x) = 0 for each δ > 0,
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(iv) C12kr l(ε2k) ≤
∑k

j=1 2
jr l(ε2j) ≤ C22kr l(ε2k) for every r > 0, ε > 0, positive integer k and

some C1 > 0, C2 > 0,

(v) C32kr l(ε2k) ≤
∑∞

j=k 2
jr l(ε2j) ≤ C42kr l(ε2k) for every r < 0, ε > 0, positive integer k and

some C3 > 0, C4 > 0.

3. Proofs of the Main Results

Proof of Theorem 1.4. For fixed n ≥ 1, denote

Yni = XiI(|Xi| ≤ nα) − E[XiI(|Xi| ≤ nα) | Fi−1], i = 1, 2, . . . . (3.1)

Since Xi = XiI(|Xi| > nα) + Yni + E[XiI(|Xi| ≤ nα) | Fi−1], we can see that

∞∑

n=1

nαp−2l(n)P
(

max
1≤j≤n

∣
∣Sj

∣
∣ ≥ εnα

)

≤
∞∑

n=1

nαp−2l(n)P

(

max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

XiI(|Xi| > nα)

∣
∣
∣
∣
∣
≥ εnα

3

)

+
∞∑

n=1

nαp−2l(n)P

(

max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

E[XiI(|Xi| ≤ nα) | Fi−1]

∣
∣
∣
∣
∣
≥ εnα

3

)

+
∞∑

n=1

nαp−2l(n)P

(

max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

Yni

∣
∣
∣
∣
∣
≥ εnα

3

)

:= H + I + J.

(3.2)

For H, we have by Markov’s inequality, Lemma 2.2, and (1.5) that

H �
∞∑

n=1

nαp−2−αl(n)E

(

max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

XiI(|Xi| > nα)

∣
∣
∣
∣
∣

)

≤
∞∑

n=1

nαp−2−αl(n)
n∑

i=1

E[|Xi|I(|Xi| > nα)]

�
∞∑

n=1

nαp−1−αl(n)E[|X|I(|X| > nα)]

=
∞∑

n=1

nαp−1−αl(n)
∞∑

m=n
E
[
|X|I
(
m < |X|1/α ≤ m + 1

)]

=
∞∑

m=1

E
[
|X|I
(
m < |X|1/α ≤ m + 1

)] m∑

n=1

nαp−1−αl(n)

≤
∞∑

m=1

E
[
|X|I
(
m < |X|1/α ≤ m + 1

)]�log2m	+1∑

i=1

2i∑

n=2i−1
nαp−1−αl(n)
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�
∞∑

m=1

E
[
|X|I
(
m < |X|1/α ≤ m + 1

)]�log2m	+1∑

i=1

2iα(p−1)l
(
2i
)

�
∞∑

m=1

E
[
|X|I
(
m < |X|1/α ≤ m + 1

)]
2(�log2m	+1)α(p−1)l

(
2�log2m	+1

)

�
∞∑

m=1

E
[
|X|I
(
m < |X|1/α ≤ m + 1

)]
mα(p−1)l(m)

� E|X|pl
(
|X|1/α

)
< ∞.

(3.3)

For I, we have by Markov’s inequality and (3.3) that

I �
∞∑

n=1

nαp−2−αl(n)E

(

max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

E[XiI(|Xi| ≤ nα) | Fi−1]

∣
∣
∣
∣
∣

)

=
∞∑

n=1

nαp−2−αl(n)E

(

max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

E[XiI(|Xi| > nα) | Fi−1]

∣
∣
∣
∣
∣

)

≤
∞∑

n=1

nαp−2−αl(n)
n∑

i=1

E[|Xi|I(|Xi| > nα)]

� E|X|pl
(
|X|1/α

)
< ∞.

(3.4)

To prove (1.6), it suffices to show that

J :=
∞∑

n=1

nαp−2l(n)P

(

max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

Yni

∣
∣
∣
∣
∣
≥ εnα

3

)

< ∞. (3.5)

For fixed n ≥ 1, it is easily seen that {Yni,Fi, i ≥ 1} is still a martingale difference. By Markov’s
inequality and Lemma 2.1, we have that for any q ≥ 2,

J �
∞∑

n=1

nαp−2−αql(n)E

(

max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

Yni

∣
∣
∣
∣
∣

)q

�
∞∑

n=1

nαp−2−αql(n)
n∑

i=1

E|Yni|q +
∞∑

n=1

nαp−2−αql(n)E

[
n∑

i=1

E
(
Y 2
ni | Fi−1

)
]q/2

:= J1 + J2.

(3.6)

We consider the following three cases.
Case 1 (αp > 1 and p ≥ 2). Take q large enough such that q > max(p, (αp − 1)/(α − 1/2)),
which implies that αp − 2 − αq + q/2 < −1.
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For J1, we have by Cr ’s inequality, Lemma 2.2, (3.3), Lemma 2.3, and (1.5) that

J1 �
∞∑

n=1

nαp−2−αql(n)
n∑

i=1

E
[|Xi|qI(|Xi| ≤ nα)

]

�
∞∑

n=1

nαp−2−αql(n)
n∑

i=1

E
[|X|qI(|X| ≤ nα)

]
+

∞∑

n=1

nαp−2−αql(n)
n∑

i=1

nαqP(|X| > nα)

=
∞∑

n=1

nαp−1−αql(n)E
[|X|qI(|X| ≤ nα)

]
+

∞∑

n=1

nαp−1l(n)P(|X| > nα)

≤
∞∑

n=1

nαp−1−αql(n)E
[|X|qI(|X| ≤ nα)

]
+

∞∑

n=1

nαp−1−αl(n)E[|X|I(|X| > nα)]

�
∞∑

n=1

nαp−1−αql(n)E
[|X|qI(|X| ≤ nα)

]

≤
∞∑

n=1

nα(p−q)−1l(n)
n∑

j=1

jαqP
(
j − 1 < |X|1/α ≤ j

)

=
∞∑

j=1

jαqP
(
j − 1 < |X|1/α ≤ j

) ∞∑

n=j

nα(p−q)−1l(n)

≤
∞∑

j=1

jαqP
(
j − 1 < |X|1/α ≤ j

) ∞∑

i=�log2j	

2i+1∑

n=2i
nα(p−q)−1l(n)

�
∞∑

j=1

jαqP
(
j − 1 < |X|1/α ≤ j

) ∞∑

i=�log2j	
2iα(p−q)l

(
2i
)

�
∞∑

j=1

jαqP
(
j − 1 < |X|1/α ≤ j

)
jα(p−q)l

(
j
)

=
∞∑

j=1

jαpl
(
j
)
P
(
j − 1 < |X|1/α ≤ j

)

� E|X|pl
(
|X|1/α

)
< ∞.

(3.7)

Note that supi≥1E(X
2
i | Fi−1) ≤ C, a.s. if p ≥ 2. We have by Lemma 2.3 that

J2 ≤
∞∑

n=1

nαp−2−αql(n)E

[
n∑

i=1

E
(
X2

i I(|Xi| ≤ nα) | Fi−1
)
]q/2

≤
∞∑

n=1

nαp−2−αql(n)E

[
n∑

i=1

sup
i≥1

E
(
X2

i | Fi−1
)
]q/2

�
∞∑

n=1

nαp−2−αq+q/2l(n) < ∞.

(3.8)
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Case 2 (αp > 1 and p < 2). Take q = 2. Similar to the proof of (3.6) and (3.7), we can get that

J �
∞∑

n=1

nαp−2−2αl(n)
n∑

i=1

E
[
X2

i I(|Xi| ≤ nα)
]
< ∞. (3.9)

Case 3 (αp = 1). Note that p = 1/α < 2. Take q = 2, and similar to the proof of (3.9), we still
have J < ∞.

From the statements mentioned previously, we have proved (3.5). This completes the
proof of the theorem.

Proof of Theorem 1.5. We have by Lemma 2.3 that

∞∑

n=1

nαp−2l(n)P

(

sup
j≥n

∣
∣
∣
∣
Sj

jα

∣
∣
∣
∣ > ε

)

=
∞∑

m=1

2m−1∑

n=2m−1
nαp−2l(n)P

(

sup
j≥n

∣
∣
∣
∣
Sj

jα

∣
∣
∣
∣ > ε

)

�
∞∑

m=1

P

(

sup
j≥2m−1

∣
∣
∣
∣
Sj

jα

∣
∣
∣
∣ > ε

)
2m−1∑

n=2m−1
2m(αp−2)l(2m)

�
∞∑

m=1

2m(αp−1)l(2m)P

(

sup
j≥2m−1

∣
∣
∣
∣
Sj

jα

∣
∣
∣
∣ > ε

)

=
∞∑

m=1

2m(αp−1)l(2m)P

(

sup
k≥m

max
2k−1≤j<2k

∣
∣
∣
∣
Sj

jα

∣
∣
∣
∣ > ε

)

≤
∞∑

m=1

2m(αp−1)l(2m)
∞∑

k=m

P

(

max
1≤j≤2k

∣
∣Sj

∣
∣ > ε2α(k−1)

)

=
∞∑

k=1

P

(

max
1≤j≤2k

∣
∣Sj

∣
∣ > ε2α(k−1)

)
k∑

m=1

2m(αp−1)l(2m)

�
∞∑

k=1

2k(αp−1)l
(
2k
)
P

(

max
1≤j≤2k

∣
∣Sj

∣
∣ > ε2α(k−1)

)

�
∞∑

k=1

2k+1−1∑

n=2k
nαp−2l(n)P

(

max
1≤j≤n

∣
∣Sj

∣
∣ >
( ε

4α
)
nα

)

�
∞∑

n=1

nαp−2l(n)P
(

max
1≤j≤n

∣
∣Sj

∣
∣ >
( ε

4α
)
nα

)

.

(3.10)

The desired result (1.7) follows from the inequality above and (1.6) immediately.

Proof of Theorem 1.6. We use the same notation as that in Theorem 1.4. According to the proof
of Theorem 1.4, we can see that J < ∞ for p = 1 and l(x) = 1 under the conditions of
Theorem 1.6. So it suffices to show that H < ∞ and I < ∞ for p = 1 and l(x) = 1.
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Similar to the proof of (3.3), we have

H �
∞∑

n=1

n−1E[|X|I(|X| > nα)]

=
∞∑

n=1

n−1
∞∑

m=n
E
[
|X|I
(
m < |X|1/α ≤ m + 1

)]

=
∞∑

m=1

E
[
|X|I
(
m < |X|1/α ≤ m + 1

)] m∑

n=1

n−1

�
∞∑

m=1

E
[
|X|I
(
m < |X|1/α ≤ m + 1

)]
ln+m

� E|X|ln+|X| < ∞.

(3.11)

Similar to the proof of (3.4) and (3.11), we can get that

I �
∞∑

n=1

n−2
n∑

i=1

E[|Xi|I(|Xi| > nα)]

�
∞∑

n=1

n−1E[|X|I(|X| > nα)] < ∞.

(3.12)

This completes the proof of the theorem.

Proof of Theorem 1.7. For any ε > 0, we have by Theorem 1.4 that

∞∑

n=1

nαp−2−αl(n)E
(

max
1≤j≤n

∣
∣Sj

∣
∣ − εnα

)+

=
∞∑

n=1

nαp−2−αl(n)
∫∞

0
P

(

max
1≤j≤n

∣
∣Sj

∣
∣ − εnα > t

)

dt

=
∞∑

n=1

nαp−2−αl(n)
∫nα

0
P

(

max
1≤j≤n

∣
∣Sj

∣
∣ − εnα > t

)

dt

+
∞∑

n=1

nαp−2−αl(n)
∫∞

nα

P

(

max
1≤j≤n

∣
∣Sj

∣
∣ − εnα > t

)

dt

≤
∞∑

n=1

nαp−2l(n)P
(

max
1≤j≤n

∣
∣Sj

∣
∣ > εnα

)

+
∞∑

n=1

nαp−2−αl(n)
∫∞

nα

P

(

max
1≤j≤n

∣
∣Sj

∣
∣ > t

)

dt

�
∞∑

n=1

nαp−2−αl(n)
∫∞

nα

P

(

max
1≤j≤n

∣
∣Sj

∣
∣ > t

)

dt.

(3.13)
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Hence, it suffices to show that

Q :=
∞∑

n=1

nαp−2−αl(n)
∫∞

nα

P

(

max
1≤j≤n

∣
∣Sj

∣
∣ > t

)

dt < ∞. (3.14)

For t > 0, denote

Zti = XiI(|Xi| ≤ t) − E[XiI(|Xi| ≤ t) | Fi−1], i = 1, 2, . . . . (3.15)

Since Xi = XiI(|Xi| > t) + Zti + E[XiI(|Xi| ≤ t) | Fi−1], it follows that

Q ≤
∞∑

n=1

nαp−2−αl(n)
∫∞

nα

P

(

max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

XiI(|Xi| > t)

∣
∣
∣
∣
∣
>

t

3

)

dt

+
∞∑

n=1

nαp−2−αl(n)
∫∞

nα

P

(

max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

E[XiI(|Xi| ≤ t) | Fi−1]

∣
∣
∣
∣
∣
>

t

3

)

dt

+
∞∑

n=1

nαp−2−αl(n)
∫∞

nα

P

(

max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

Zti

∣
∣
∣
∣
∣
>

t

3

)

dt

=: Q1 +Q2 +Q3.

(3.16)

Similar to the proof of (3.3), we have by Markov’s inequality and Lemma 2.2 that

Q1 �
∞∑

n=1

nαp−2−αl(n)
∫∞

nα

t−1E

(

max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

XiI(|Xi| > t)

∣
∣
∣
∣
∣

)

dt

�
∞∑

n=1

nαp−1−αl(n)
∫∞

nα

t−1E[|X|I(|X| > t)]dt

=
∞∑

n=1

nαp−1−αl(n)
∞∑

m=n

∫ (m+1)α

mα

t−1E[|X|I(|X| > t)]dt

�
∞∑

n=1

nαp−1−αl(n)
∞∑

m=n
m−1E[|X|I(|X| > mα)]

=
∞∑

m=1

m−1E[|X|I(|X| > mα)]
m∑

n=1

nαp−1−αl(n)

�
∞∑

m=1

m−1E[|X|I(|X| > mα)]mαp−αl(m)

=
∞∑

n=1

nαp−1−αl(n)E[|X|I(|X| > nα)] < ∞.

(3.17)
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According to the proof of (3.17), we have by Markov’s inequality and Lemma 2.2 that

Q2 �
∞∑

n=1

nαp−2−αl(n)
∫∞

nα

t−1E

(

max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

E[XiI(|Xi| ≤ t) | Fi−1]

∣
∣
∣
∣
∣

)

dt

=
∞∑

n=1

nαp−2−αl(n)
∫∞

nα

t−1E

(

max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

E[XiI(|Xi| > t) | Fi−1]

∣
∣
∣
∣
∣

)

dt

�
∞∑

n=1

nαp−1−αl(n)
∫∞

nα

t−1E[|X|I(|X| > t)]dt < ∞.

(3.18)

For any t > 0, it is easily seen that {Zti,Fi, i ≥ 1} is still a martingale difference. By Markov’s
inequality and Lemma 2.1, we have that for any q ≥ 2,

Q3 �
∞∑

n=1

nαp−2−αl(n)
∫∞

nα

t−qE

⎛

⎝max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

Zti

∣
∣
∣
∣
∣

q
⎞

⎠dt

�
∞∑

n=1

nαp−2−αl(n)
∫∞

nα

t−q
n∑

i=1

E|Zti|qdt

+
∞∑

n=1

nαp−2−αl(n)
∫∞

nα

t−qE

[
n∑

i=1

E
(
Z2

ti | Fi−1
)
]q/2

dt

:= Q31 +Q32.

(3.19)

We still consider the following three cases.
Case 1 (αp > 1 and p ≥ 2). Take q large enough such that q > max(p, (αp − 1)/(α − 1/2)),
which implies that αp − 2 − αq + q/2 < −1. We have by Lemma 2.2 and (3.17) that

Q31 �
∞∑

n=1

nαp−2−αl(n)
∫∞

nα

t−q
n∑

i=1

E
[|Xi|qI(|Xi| ≤ t)

]
dt

�
∞∑

n=1

nαp−1−αl(n)
∫∞

nα

t−qE
[|X|qI(|X| ≤ t)

]
dt

+
∞∑

n=1

nαp−1−αl(n)
∫∞

nα

P(|X| > t)dt

≤
∞∑

n=1

nαp−1−αl(n)
∫∞

nα

t−qE
[|X|qI(|X| ≤ t)

]
dt

+
∞∑

n=1

nαp−1−αl(n)
∫∞

nα

t−1E[|X|I(|X| > t)]dt

�
∞∑

n=1

nαp−1−αl(n)
∫∞

nα

t−qE
[|X|qI(|X| ≤ t)

]
dt.

(3.20)
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Hence, similar to the proof of (3.7), we can see that

Q31 �
∞∑

n=1

nαp−1−αl(n)
∞∑

m=n

∫ (m+1)α

mα

t−qE
[|X|qI(|X| ≤ t)

]
dt

≤
∞∑

n=1

nαp−1−αl(n)
∞∑

m=n
mα−1−αqE

[|X|qI(|X| ≤ (m + 1)α
)]

=
∞∑

m=1

mα−1−αqE
[|X|qI(|X| ≤ (m + 1)α

)] m∑

n=1

nαp−1−αl(n)

�
∞∑

m=1

mα−1−αqE
[|X|qI(|X| ≤ (m + 1)α

)]
mαp−αl(m)

=
∞∑

n=1

nαp−1−αql(n)E
[|X|qI(|X| ≤ (n + 1)α

)]

=
∞∑

n=1

nαp−1−αql(n)E
[|X|qI(nα < |X| ≤ (n + 1)α

)]

+
∞∑

n=1

nαp−1−αql(n)E
[|X|qI(|X| ≤ nα)

]

�
∞∑

n=1

n−1E
[
|X|pl

(
|X|1/α

)
I
(
nα < |X| ≤ (n + 1)α

)]
+ E|X|pl

(
|X|1/α

)

� E|X|pl
(
|X|1/α

)
< ∞.

(3.21)

Note that supi≥1E(X
2
i | Fi−1) ≤ C, a.s. if p ≥ 2. We have by Lemma 2.3 that

Q32 ≤
∞∑

n=1

nαp−2−αl(n)
∫∞

nα

t−qE

[
n∑

i=1

E
(
X2

i I(|Xi| ≤ nα) | Fi−1
)
]q/2

dt

�
∞∑

n=1

nαp−2−αl(n)
∫∞

nα

t−qE

[
n∑

i=1

sup
i≥1

E
(
X2

i | Fi−1
)
]q/2

dt

�
∞∑

n=1

nαp−2−α+q/2l(n)
∫∞

nα

t−qdt

�
∞∑

n=1

nαp−2−αq+q/2l(n) < ∞.

(3.22)

Case 2 (αp > 1 and p < 2). Take q = 2. Similar to the proof of (3.19) and (3.21), we can get that

Q3 �
∞∑

n=1

nαp−2−αl(n)
∫∞

nα

t−2
n∑

i=1

E|Zti|2dt < ∞. (3.23)
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Case 3 (αp = 1). Note that p = 1/α < 2. Take q = 2, and similar to the proof of (3.23), we still
have Q3 < ∞.

From the statements mentioned previously, we have proved (3.14). This completes the
proof of the theorem.
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