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The circular Sitnikov problem is revisited, using matched asymptotic expansions. In the case of
large oscillation periods, approximate analytical expressions for the period and the orbit of the
third body are found. The results are compared with those described in the literature and show
that the movement of the third body can be well described by two analytical solutions, the inner
and outer solutions.

1. Introduction

The Sitnikov problem [1] is a particular case of the restricted three-body problem. The
configuration of the Sitnikov problem is defined by: two point-like bodies of equal masses
(called primaries) orbiting around their common centre of mass due to their mutual
gravitational forces, and a third body of negligible mass moving along a line, perpendicular
to the orbital plane of the primaries, going through their barycentre and performs oscillations
along of the straight line (Figure 1).

The circular Sitnikov problem is obtained when the two primary bodies describe
circular orbits. This situation was originally discussed by MacMillan [2], demonstrating that
this problem can be reduced to elliptic integrals. Later, several authors have analyzed the
general and circular Sitnikov problem. The case when the two primaries bodies describe
elliptical orbits was first investigated by Sitnikov [1], who proved the existence of oscillatory
solutions for this problem. Subsequently, Moser [3] proved the existence the chaotic orbits.
Perdios and Markellos [4] examined the stability and bifurcations of straight line motions
of the third body. Dvorak [5] studied, by numerical means, motion of the planetoid limited
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Figure 1: Sitnikov problem geometry.

to a small region around the barycentre of the primaries and found that invariant curves
exist for very small oscillations centering the barycentre. For bounded orbits with moderate
amplitudes, Hagel [6] showed that the equations of motion can be expressed in a polynomial
form. Liu and Sun [7] derived a mapping model to investigate the problem. Wodnar [8]
introduced a new formulation for the equation of motion by using the true anomaly of the
primaries as independent variable. Belbruno et al. [9] derived analytical expressions for the
circular case (MacMillan problem) using elliptic functions. Faruque [10] found approximate
analytical solutions for small oscillations around the barycenter and moderate eccentricities.
Recently, Dvorak [11] studied the complete phase space numerically. Kovács and Érdi [12]
reported the extended phase space of the Sitnikov problem by using a stroboscopic map
and computing escape times. The instance when the mass of the third body is nonnegligible
(extended Sitnikov problem) has been studied by Dvorak and Sun [13]. Soulis et al. [14] also
studied the situation in which the third body couldmove off the z-axis (generalized extended
Sitnikov problem). In 2009, Hagel [15] derived an analytical expression for the perihelion
motion of the primaries, when the third body has a finite mass.

Bountis and Papadakis [16] analyzed the problem for an arbitrary number of primary
masses, Sidorenko [17] complemented the previous work on the alternation of stability and
instability in the family of vertical motions. Recently, Ruzza and Lhotka [18] performed the
implementation of a numerical construction of high order normal form near elliptic orbits.

In this work, we assume that the energy of the third body is close to the escape energy.
In this situation, the period of the orbit is large, because the body goes to great distances from
the origin and then return. The numerical calculation of the period becomes complex, mainly
because computational times are very long and it becomes necessary to resort to asymptotic
analysis to support the numerical calculation.

2. Equations of Motion

The equation of motion of the third body is

z̈ = −2GM
z

(r2(t) + z2)3/2
, (2.1)
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where 2r(t) is the distance between the primary bodies and z(t) the distance of the third body
from the center of mass and t representing time. The distance between the primary bodies is
given by

r(t) = R(1 − e cosE(t)), (2.2)

where E(t) is the eccentric anomaly of the primaries, e is the eccentricity of the orbits of the
primaries. When the primaries move in circular orbits, e = 0, (2.1) is reduced to

z̈ = −2GM
z

(R2 + z2)3/2
. (2.3)

Equation (2.3) represents the circular Sitnikov problem, also known as the problem of
MacMillan. Integrating (2.3) with the initial conditions: ż(t = 0) = v0 and z(t = 0) = 0 we
obtain

ż2 =
4GM

R

1
(
1 + (z/R)2

)1/2 + v2
0 −

4GM

R
. (2.4)

Defining the parameter β as

β =
1
2

v0√
GM/R

. (2.5)

Equation (2.4) is transformed into

ż2 =
4GM

R

⎛
⎜⎝β2 − 1 +

1
(
1 + (z/R)2

)1/2

⎞
⎟⎠. (2.6)

Making the change of variables 1+ (z/R)2 = 1/u2, and then η2 = (1−u)/β2, allows us to find
the following expression to describe the position of the third body [2]:

√
2GM

R3
t =

∫η=η

η=0

1
(
1 − 2k2η2

)2√(1 − η2
)(
1 − k2η2

)dη; k2 =
1
2
β2. (2.7)

The period is given by

√
2GM

R3
T = 4

∫1

0

1
(
1 − 2k2η2

)2√(1 − η2
)(
1 − k2η2

)dη. (2.8)
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This integral can be performed using elliptic integrals, but it is impossible to reverse (2.7) to
find an explicit expression for z(t). However, it is possible to find an analytical approximation
for the period of the orbit and z(t) by matching asymptotic expansions when the energy of
the third body is close to the energy of escape. The concept of escape velocity used in this
paper is the minimum velocity at the origin to obtain an unbounded orbit. From (2.4), the
following value for the escape velocity is found: v0 esc = 2

√
GM/R. In this case, we have

β = 1.

3. Asymptotic Expansions

When the third body has a speed close to the escape velocity, that is, 1 − β2 = ε � 1, (2.6) can
be written as

ż2 =
4GM

R

⎛
⎜⎝ 1
(
1 + (z/R)2

)1/2 − ε

⎞
⎟⎠. (3.1)

The mechanical total energy (E) of the third body, can be written in terms of ε as:
E = −2GMm/Rε, bounded orbit are obtainedwhen 0 < ε < 1. In the case ε ≤ 0, an unbounded
orbit is obtained, E = 0 is the minimum energy of the third body to escape of the gravitational
field of the primary bodies.

If ε is a positive small parameter, the orbit of the third body is bounded but with a large
amplitude, then the equation can be solved by matching between two asymptotic solutions.

3.1. Near Field

In the regions close to the origin, we have: 1/(1 + (z/R)2)1/2 � ε, thus, the solution of (3.1)
can be approximated to the following inner asymptotic expansion:

zin(t) = z0(t) + εz1(t) + · · · . (3.2)

The validity of the expansion (3.2) will be verified in the matching process (see Section 3.3).
Introducing the asymptotic expansion (3.2) in (3.1), we obtain the following equation for the
leading order and the first order correction:

ż20 =
4GM

R

⎛
⎜⎝ 1
(
1 + (z0/R)

2
)1/2

⎞
⎟⎠, (3.3)

ż1 = −2GM

ż0R

⎛
⎜⎝ z1z0

R2
(
1 + (z0/R)

2
)3/2 + 1

⎞
⎟⎠. (3.4)

The initial conditions are: z0(t = 0) = 0 and z1(t = 0) = 0.
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Equation (3.3) represents the movement of a particle passing through the origin with
a speed equal to the escape velocity. Integrating (3.3) gives

∫ (
1 +
(z0
R

)2)1/4

dz0 =

√
4GM

R
t + c1. (3.5)

This integral can be calculated analytically

2
3
z0
R

(
1 +
(z0
R

)2)1/4

+
1
3
z0
R

2F1

(
1
2
,
3
4
;
3
2
;−
(z0
R

)2)
=

√
4GM

R3
t + c1, (3.6)

where 2F1(a, b; c; z) is the hypergeometric function. From the initial condition z0(t = 0) = 0,
we have c1 = 0, (3.4) can be transformed to more useful as follows:

dz1
dz0

ż20 = −2GM

R

⎛
⎜⎝ z1z0

R2
(
1 + (z0/R)

2
)1/2 + 1

⎞
⎟⎠. (3.7)

Introducing (3.3) into (3.7), we obtain the following equation for first order perturbations:

dz1
dz0

= −1
2

⎛
⎜⎝ z1z0

R2
(
1 + (z0/R)

2
) +
(
1 +
(z0
R

)2)1/2

⎞
⎟⎠. (3.8)

The solution of (3.8) is given by the expression

z1(z0) = −1
2

1
(
1 + (z0/R)

2
)1/4

∫ (
1 +
(z0
R

)2)3/4

dz0. (3.9)

This integral can be expressed in terms of the hypergeometric function as

z1(z0) = −1
2

1
(
1 + (z0/R)

2
)1/4

(
2
5
z0

(
1 +
(z0
R

)2)3/4

+
3
5
z0 2F1

(
1
4
,
1
2
;
3
2
;−
(z0
R

)2))
. (3.10)

3.2. Far Field

In the region far from the origin, the parameter ε has an important role in (3.1), because
ε defines the maximum distance reached by the third body from the origin: zmax =
R/ε

√
1 − ε2 ≈ R/ε. Moreover, in this region we have z/R � 1 and (3.1) can be approximated

by

ż2 =
4GM

R

(
R

z
− ε

)
. (3.11)
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This differential equation represents the outer solution. Integrating this equation, the follow-
ing expression is obtained:

∫ √
z

R − εz
dz =

√
4GM

R
t + c2. (3.12)

This integral can also be calculated analytically, that is:

1
ε3/2

1√
R − εz

(√
εz (εz − R) + R

√
R − εz tan−1

( √
εz√

R − εz

))
=

√
4GM

R
t + c2, (3.13)

where the value of the constant c2 must be calculated by matching between the inner and
outer solutions.

3.3. Matching Procedure

In the region 1 � z/R � 1/ε, the inner and outer solutions are valid, then (3.6) and (3.13)
must make matching in it.

In the region z/R � 1, (3.6) has the following asymptotic representation:

2
3

(z0
R

)3/2(
1 +

1
4

(
R

z0

)2
)

+
1
3
Γ(1/4)Γ(3/2)
Γ(3/4)Γ(1)

=

√
4GM

R3
t, (3.14)

where we have used the following asymptotic expansion for the hypergeometric function:

2F1(a, b; c; z) ∼ Γ(b − a)Γ(c)
Γ(b)Γ(c − a)

(−z)−a
(
1 +

a(1 + a − c)
(1 + a − b) z

+ · · ·
)

+
Γ(a − b)Γ(c)
Γ(a)Γ(c − b)

(−z)−b
(
1 − b(1 + b − c)

(1 − a + b)z
+ · · ·

)
.

(3.15)

In the region z/R � 1/ε, the asymptotic solution (3.13) can be expanded in power series of
ε(z/R) � 1, then we obtain the equation of first order in ε(z/R), namely

2
3

( z
R

)3/2
[1 +O(ε) + · · · ] =

√
4GM

R3
t +

c2
R
. (3.16)

In the leading order, the matching between (3.14) and (3.17) delivers the following value for
the constant c2:

c2
R

= −
√
2

12
√
π
Γ2
(
1
4

)
. (3.17)
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Introducing (3.18) into (3.13), the following expression is obtained to z(t) in the far field:

1
ε3/2

(
−√εz

√
R − εz + R tan−1

( √
εz√

R − εz

))
=

√
4GM

R
t −

√
2

12
√
π
Γ2
(
1
4

)
R. (3.18)

We may proceed further by combining the inner solution (3.6) and the outer solution (3.18)
into a single uniform approximation zunif(t):

zunif(t) = zin(t) + zout(t) − zmatch(t), (3.19)

where zmatch(t) is obtained from (3.14), given:

z(t)match =
(
3
2

)2/3
⎛
⎝
√

4GM

R3
t −

√
2

12
√
π
Γ2
(
1
4

)⎞
⎠

2/3

R. (3.20)

The quarter-period of the orbit is obtained by evaluating (3.18) in z = R/ε, thus we get the
following expression for the period:

√
4GM

R3
T =

2π
ε3/2

+
√
2

3
√
π
Γ2
(
1
4

)
. (3.21)

3.4. Matching in Higher Order

To carry out the asymptotic matching for a first order in ε is more convenient to write (3.1) in
the inner region as follows:

∫ (
1 + (z/R)2

)1/4
√
1 − ε

√
1 + (z/R)2

dz =

√
4GM

R
t + c1. (3.22)

Expanding (3.22) in powers of ε, we obtain:

∞∑
n=0

anε
n

∫ (
1 +
( z
R

)2)(1/4)(2n+1)

dz =

√
4GM

R
t + c1. (3.23)

This integral can also be calculated analytically, that is:

∞∑
n=0

anε
nz 2F1

(
1
2
,−1

4
(2n + 1);

3
2
;−
( z
R

)2)
=

√
4GM

R
t + c1. (3.24)

From the initial condition z0(t = 0) = 0, we have c1 = 0.
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In the region z/R � 1, (3.24) has this asymptotic representation

RΓ
(
3
2

) ∞∑
n=0

anε
n Γ(−(1/4)(2n + 3))

Γ(−(1/4)(2n + 1))
+ R

Γ(3/2)
Γ(1/2)

∞∑
n=0

anε
n Γ((1/4)(2n + 3))
Γ((1/4)(2n + 7))

( z
R

)(1/2)(2n+3)

=

√
4GM

R
t.

(3.25)

To perform amore accurate estimation of the period, a more accurate estimate of the behavior
of z for large z is necessary, a better approximation of (3.11) for large values of z leads to

ż2 =
4GM

R

⎛
⎜⎝ 1

z/R
√
1 + (R/z)2

− ε

⎞
⎟⎠. (3.26)

Separating variables in (3.25), and after algebraic manipulation, leads to the following
approximate integral:

∫
z√

zR − ε(z2 + (1/2)R2)
dz =

√
4GM

R
t + c. (3.27)

Finally, the following expression is found for improved outer solution:

1
ε3/2

⎛
⎝−
√
ε

(
z − 1

2
Rε

)√
R

(
1 − 1

2
ε2
)
− εz + R tan−1

( √
ε (z − (1/2)Rε)√

R(1 − (1/2)ε2) − ε z

)⎞
⎠

=

√
4GM

R
t + c.

(3.28)

In the region 1 � z/R � 1/ε, the asymptotic solution (3.28) can be expanded in power series
of ε(z/R) � 1, then we obtain the asymptotic expansion:

⎛
⎜⎝2

3
z3/2√
R

+
1
5

z5/2
(√

R
)3 ε + · · ·

⎞
⎟⎠ =

√
4GM

R
t + c. (3.29)

The matching between (3.25) and (3.29) delivers the following value for the constant c:

c = −RΓ
(
3
2

)
Γ(−3/4)
Γ(−1/4) −

1
2
RΓ
(
3
2

)
Γ(−5/4)
Γ(−3/4) ε +O

(
ε2
)
. (3.30)
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Figure 2: The function z(t) with ε = 0.2, the solid line corresponds to numerical integration of (3.1), the
dashed line represents the outer solution (3.31).

Introducing (3.30) into (3.28), the following expression is obtained to z(t) in the far field

1
ε3/2

⎛
⎝−
√
ε

(
z − 1

2
Rε

)√
R

(
1 − 1

2
ε2
)
− εz + R tan−1

( √
ε(z − (1/2)Rε)√

R(1 − (1/2)ε2) − εz

)⎞
⎠

=

√
4GM

R
t − RΓ

(
3
2

)
Γ(−3/4)
Γ(−1/4) − 1

2
RΓ
(
3
2

)
Γ(−5/4)
Γ(−3/4) ε.

(3.31)

The quarter-period of the orbit is obtained by evaluating (3.31) in z = R/ε(1 − (1/2)ε2), thus
obtaining the following expression for the period (including corrections to order ε2):

√
4GM

R3
T =

2π
ε3/2

+

√
2

3
√
π
Γ2
(
1
4

)
− 12

√
2π3

5 Γ2(1/4)
ε +

5
√
2

54
√
π
Γ2
(
1
4

)
ε2. (3.32)

4. Results

In this section, the results are expressed using dimensionless variables, the dimensionless
time τ =

√
2GM/R3 t, and the dimensionless distance η = z/R. In this representation, the

results are general and it is not necessary to give numerical values for the constantsG,M and
R.

Figure 2 presents the function z(t) with ε = 0.2. The solid line corresponds to the
solution obtained by numerical integration of (3.1), the dashed line represents the outer
solution (3.31). It can be seen that, although ε is not very small, the analytical solution is
quite accurate.

Figure 3 shows z(t) with ε = 0.2, in the first quarter period of the orbit, where the
outer solution (3.31) and the inner solution (3.6) can be observed (dashed line), the numerical
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Figure 3: The function z(t) in the first quarter period of the orbit, with ε = 0.2. Solid line corresponds to
numerical integration of (3.1), the dashed line represents the outer and the inner solution.
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Figure 4: The function z(t) with ε = 0.1, the solid line corresponds to numerical integration of (3.1), the
dashed line represents the outer solution (3.23).

solution is represented with a solid line. Thus, in the region close to the origin of coordinates,
the outer solution should be replaced by the inner solution. In Figure 3 you can see that the
matching between the two solution is in a region centered around z/R ≈ 1.5.

Figure 4 shows the function z(t) con ε = 0.1. The solid line corresponds to the
solution obtained by numerical integration of (3.1), the dashed line represents the outer
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Figure 5: The function z(t) with ε = 0.1. The solid line corresponds to numerical integration of (3.1), the
dashed line represents the outer solution and the inner solution.

solution (3.31). It can be seen that the numerical and analytical solution are indistinguishable
on this scale. This result indicates, that for values of ε � 1, the movement of the third body
can be well described by two analytical solutions, the inner and outer solution.

Figure 5 shows z(t) with ε = 0.1 in the region of matching between the inner solution
(3.6) and the outer solution (3.31), where it can be noticed that the matching is in a region
centered around z/R ≈ 2.

As the parameter ε → 0, the position of the region of matching between the two
solutions will be centered approximately in a position 1/ε, so, in the case ε = 0, the orbit is
unbounded and the inner solution is the exact solution to the orbit.

Figure 6 shows z(t) with ε = 0.1, in the first quarter period of the orbit, the
dashed line represents the uniform approximation (3.19) and the solid line denotes the
numerical solution. It can be seen that the numerical and the uniform approximation are
indistinguishable on this scale.

Defining the relative error between the numerical solution and the uniform
approximation as |(znum(t) − zunif(t))/znum(t)|, and taking the temporal average of a quarter
period, the following values for the mean relative error are obtained (Table 1).

Figure 7 shows the period of the orbit as a function of the parameter k defined as
k2 = 1/2(1− ε). The solid line corresponds to the period obtained by numerical integration of
Macmillan equation (2.8), the dashed line represents the asymptotic solution (3.32).

Figure 7 indicates that the asymptotic expansion (3.32) for the period of the third body
matched very well with the numerical calculation of (2.8), the for the period for values of k
close to 1/

√
2.

The relative error, defined as ((Tasymp − Tnum)/Tnum), between the asymptotic solution
and the numerical solution of the period of oscillations as a function of the parameter k can
be seen in Figure 8. The results show that the asymptotic solution for the period of oscillation
(3.32) gives good results in a wide range of values of the parameter ε. The asymptotic solution
is valid in the region ε � 1, that is, when k is close to 1/

√
2. In this region the relative

error is minor than 0.005. The region of small amplitudes in the movement of the third body,
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Figure 6: The function z(t) in the first quarter period of the orbit, with ε = 0.1, solid line corresponds to
numerical integration of (3.1), the dashed line represents the uniform approximation.

Table 1: Relative error between the numerical solution and the uniform approximation.

ε Error

0.05 0.0003
0.10 0.0013
0.20 0.0058
0.40 0.0250

corresponds to ε ≈ 1, or equivalently k � 1. In this region the relative error of the asymptotic
solution is close to 0.04.

In the region of small amplitudes in the movement of the third body, MacMillan [2]
finds an expression for the period of oscillations of the third body, namely:

√
2GM

R3
T = 2π

(
1 +

9
4
k2 +

345
64

k4 + · · ·
)
. (4.1)

Figure 9 allows us to see the relative error between the solution of MacMillan (4.1) and
the numerical solution of the period of oscillations as a function of the parameter k (dash
line). What is also shown is the relative error between the asymptotic solution (3.32) and the
numerical solution of the period of oscillations as a function of the parameter k.

Figure 9 indicates that the MacMillan solution (4.1) works well for moderate values
of k, while the asymptotic solution (3.32) works well in the region where k > 0.33. Then,
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Figure 7: The period of the orbit as a function of the parameter k.
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Figure 8: Relative error between the asymptotic solution and the numerical solution of the period as a
function of the parameter k.

one can construct the following formula valid for the entire domain 0 < k < 1/
√
2 to the

period of the third body:

√
2GM

R3
T =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

2π
(
1 +

9
4
k2 +

345
64

k4 + · · ·
)

k ≤ 0.33
(

2π

(1 − 2k2)3/2
+

√
2

3
√
π
Γ2
(
1
4

)
− 12

√
2π3

5 Γ2(1/4)
(
1 − 2k2)

)
1√
2

0.33 ≤ k <
1√
2
.

(4.2)

This solution has a relative error less than 0.012 for the entire domain 0 < k < 1/
√
2.
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Figure 9: Relative error of the period, MacMillan ((4.1) dashed line), asymptotic solution ((3.32) solid line).

5. Conclusions

In this paper, the circular Sitnikov problem is revisited. By matching between asymptotic
expansions, approximate analytical expressions for the period and the orbit of the third body
in the case of large oscillation are found. The results show that for values ε � 1, themovement
of the third body can be well described by two analytical solutions, the inner and outer
solution.

The analytical asymptotic equation to the period of the third body matched very well
with the numerical calculations. It also provides an improved expression for the period of the
orbit valid for the entire domain of bounded orbits.

The method of matched asymptotic expansions employed in this paper can be
extended to more complex problems. For example, the elliptic Sitnikov problem, variable
mass of the third body and the relativistic Sitnikov problem. In all these problems, when the
speed of the third body is very close to the escape velocity, computational times are very long
and it becomes necessary to resort to asymptotic analysis.
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