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We introduce a novel analytical approximate technique, called Optimal Variational Method
(OVM), to investigate the nonlinear behaviour of a rotating electrical machine modelled as an
oscillator with cubic elastic restoring force and time variable coefficients. The proposed procedure
involves the presence of some initially unknown convergence-control parameters whose values
are later optimally determined. Comparisons between the obtained results and exact ones reveal
that OVM is very effective and convenient providing highly accurate results.

1. Introduction

Mathematical modelling of many physical and engineering systems often leads to nonlinear
ordinary or partial differential equations. In order to analyze such mathematical models, an
effective method is required to provide solutions conforming to physical reality. In some
cases, inherent difficulties are overcome by replacing a nonlinear differential equation with
a corresponding linear differential equation that approximates the original one close enough
to give useful results, but this is only a harsh approximation.

There are some known approaches intended to obtain approximate solutions
to nonlinear dynamical systems. The most common and widely studied methods for
solving nonlinear differential equations are the perturbation methods [1–3], but almost all
perturbation methods are based on such an assumption that a small parameter must exist in
the equation under investigation. The approximate solutions obtained through perturbation
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methods are valid, in most cases, only for small values of parameters, and moreover, there is
no criterion on how small the parameters should be.

In order to overcome these limitations related to small parameters, several effective
methods were developed, such as the method of Lie group [4], the Adomian decomposition
method [5], the weighted-linearization method [6], and the method of harmonic balance [7].

The aim of this paper is to propose a novel variational approach to study the nonlinear
behaviour of a rotating electrical machine modelled as an oscillator with cubic elastic force
and time variable coefficients.

Rotating electrical machines are complex dynamical systems exhibiting typical
problems from rotor dynamics, especially for high speeds or heavy duty rotor shafts with
high inertial loads [8, 9]. An important engineering challenge in this field is to develop such
mathematical models andmethods, which allows quite accurate predictions of the dynamical
phenomena at the stage of design, when compared against experimental measurements
obtained after the stage of machine building. These models and methods should be made
available in order to provide an easy-to-use tool to operate design modifications when these
may be required to suppress undesired dynamic phenomena.

The most common sources of vibration in rotating machines are related to the
unbalanced forces of the rotor, shaft misalignment and nonlinearity of the bearing
stiffness, variable elasticity, bad bearings and mechanical looseness, and other electrical and
mechanical faults which generate nonlinear vibration in the system.

These phenomena should be controlled in order to make the machine run smoothly
and reliably. It is well known that rotating parts cannot be perfectly balanced. From
engineering point of view, it is impossible to make any rotor perfectly mass balanced. Hence,
residual unbalance is always present to some extent, even though the rotating structure
is well constructed, but if it deteriorates, then damaging vibration occurs. Supplementary
problems could arise in case of some horizontal rotating machines, when the gravity effect
is not negligible for certain stiffness conditions. In case of gravity deflection, the shaft center
leaves the bearing centerline, which leads to vibration occurrence. Misalignment could also
occur in the electrical rotating machine after some amount of running. All these could be
highly detrimental, affecting the integrity of the system [8, 9].

In this paper, a new analytical procedure, namely, the Optimal Variational Method
(OVM) is employed to study the problem of nonlinear vibrations of an electric machine
supported by nonlinear bearings characterized by nonlinear stiffness of Duffing type while
the entire system is subject to a parametric excitation caused by an axial thrust and a forcing
excitation caused by an unbalanced force of the rotor. In these conditions, the dynamical
behaviour of the investigated electrical machine will be governed by the following second-
order strongly nonlinear differential equation [8]:

mü + k1
(
1 − q sinω2t

)
u + k2u

3 = f sinω1t, (1.1)

with the initial conditions

u(0) = A, u̇(0) = 0, (1.2)

which can be written in the more convenient form

ü +ω2u − αu sinω2t + βu3 − γ sinω1t = 0, (1.3)



Journal of Applied Mathematics 3

where

ω2 =
k1
m

, α =
k1q

m
, β =

k2
m

, γ =
f

m
, (1.4)

and the dot denotes derivative with respect to time andA is the initial amplitude of the oscil-
lations. Note that it is unnecessary to assume the existence of any small or large parameters
in (1.3).

Equation (1.3) describes a system oscillating with an unknown period T . We switch to
a scalar time τ = Ωt. Under the transformation

τ = Ωt; u(t) = Ax(τ), (1.5)

the original Equation (1.3) becomes

Ω2x′′ +ω2x − αx sin
ω2

Ω
τ + βA2x3 − γ

A
sin

ω1

Ω
τ = 0, (1.6)

with the initial conditions

x(0) = 1, x′(0) = 0, (1.7)

where the prime denotes derivative with respect to τ .

2. A Novel Variational Method and Solutions

In order to show the basics of OVM, we consider the following differential equation:

F
(
τ, x, x′, x′′) = 0. (2.1)

The variational principle for (2.1) can be easily established if there exists a functional

J =
∫ τ2

τ1

L
(
τ, x, x′)dτ, (2.2)

which admits as extremals the solutions of (2.1), where L is the Lagrangian of the system
(2.1) and [τ1, τ2] is the domain of interest.

This problem is based on the study of the conditions under which there exists a
function L(τ, x, x′) such that Euler’s equation of the functional (2.2) coincide with the system
(2.1), that is,

∂L

∂x
− d

dτ

(
∂L

∂x′

)
= F

(
τ, x, x′, x′′). (2.3)

On physical grounds, the primary significance of this problem, called “the inverse
problem in Newtonian mechanics” [10] rests on the fact that the acting forces in Newtonian
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system (2.1) need not necessarily be derivable from a potential. Equation (2.2) is called action
functional or action for short.

In our procedure, we assume that the approximate solution x of (2.1) depends on
several parameters C1, C2, . . . , Cs:

x = x(τ, C1, C2, . . . , Cs), (2.4)

such that the action functional (2.2) becomes

J(C1, C2, . . . , Cs) =
∫ τ2

τ1

L(τ, x(τ, Ci) , x
′(τ, Ci)dτ), i = 1, 2, . . . , s. (2.5)

The parameters Ci from (2.5), called convergence-control parameters, can be deter-
mined optimally applying the Ritz method [8]:

∂J

∂C1
=

∂J

∂C2
= · · · = ∂J

∂Cs
. (2.6)

From (2.6) and from the initial condition (1.7)1 which becomes

x(0, C1, C2, . . . , Cs) = 1, (2.7)

we can obtain optimally the parameters Ci, i = 1, 2, . . . , s and the frequency Ω of the system
(2.1).

We remark that the condition (1.7)2 is identically verified by the solution (2.4). On the
other hand, the expression of the solution (2.4) is not unique.

The validity of the proposed approach is illustrated on (1.6). In this case, the Lagran-
gian of (1.6) can be written as

L
(
τ, x, x′) = −1

2
Ω2x′2 +

1
2
ω2x2 − 1

2
αx2 sin

ω2

Ω
τ +

1
4
βA2x4 − γ

A
x sin

ω1

Ω
τ. (2.8)

If we consider s = 3 in (2.4), then the approximate solution of (1.6) can be written as

x(τ) = C1 cos τ + C2 cos
ω1

Ω
τ + C3 cos

ω2

Ω
τ. (2.9)

Also, we can choose this approximate solution in the form

x(τ) = C1 cos τ + C2 cos
ω1 +ω2

Ω
τ + C3 cos

ω1 −ω2

Ω
τ + C4 cos

Ω +ω1

Ω
τ, (2.10)
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or

x(τ) = C1 cos τ + C2 cos
Ω −ω1

Ω
+ C3 cos

Ω +ω1

Ω
τ + C4 cos

Ω −ω2

Ω
τ + C5 cos

Ω +ω2

Ω
τ,

(2.11)

and so on.
Substituting (2.9) into (2.8) and this into (2.10)we have the following results for τ1 = 0

and τ2 = 2π :

J(C1, C2, C3) = K0 +K1 cos
2πω1

Ω
+K2 cos

2πω2

Ω

+K3 cos
4πω1

Ω
+K4 cos

4πω2

Ω
+K5 cos

6πω2

Ω

+K6 cos
2π(ω1 −ω2)

Ω
+K7 cos

2π(ω1 +ω2)
Ω

+K8 cos
2π(2ω1 +ω2)

Ω

+K9 cos
2π(2ω1 −ω2)

Ω
+K10 cos

2π(ω1 + 2ω2)
Ω

+K11 cos
2π(ω1 − 2ω2)

Ω

+K12 sin
2πω1

Ω
+K13 sin

2πω2

Ω
+K14 sin

4πω1

Ω
+K15 sin

4πω2

Ω

+K16 sin
6πω1

Ω
+K17 sin

6πω2

Ω
+K18 sin

8πω1

Ω
+K19 sin

8πω2

Ω

+K20 sin
2π(ω1 +ω2)

Ω
+K21 sin

2π(ω1 −ω2)
Ω

+K22 sin
4π(ω1 +ω2)

Ω

+K23 sin
4π(ω1 −ω2)

Ω
+K24 sin

2π(2ω1 +ω2)
Ω

+K25 sin
2π(2ω1 −ω2)

Ω

+K26 sin
2π(3ω1 +ω2)

Ω
+K27 sin

2π(3ω1 −ω2)
Ω

+K28 sin
2π(ω1 + 2ω2)

Ω

+K29 sin
2π(ω1 − 2ω2)

Ω
+K30 sin

2π(ω1 + 3ω2)
Ω

+K31 sin
2π(ω1 − 3ω2)

Ω
,

(2.12)

where

K0 =
π

2

(
ω2 −Ω2

)(
C2

1 + C2
2 + C2

3

)
+

αΩ
12ω2

(
3C2

1 + 3C2
2 + 2C2

3

)
− αΩω2C

2
1

4
(
4Ω2 −ω2

2

)

+
αΩω2C

2
2

8
(
4ω2

1 −ω2
2

) +
αΩ(ω1 −ω2)C1C2

2
[
Ω2 − (ω1 −ω2)2

] +
αΩ(ω1 +ω2)C1C2

2
[
Ω2 − (ω1 +ω2)2

] − αΩω2C1C3

Ω2 − 4ω2
2

+
αΩC2C3

4(2ω2 −ω1)
+

αΩC2C3

4(2ω2 +ω1)
− γΩω1C1

A
(
Ω2 −ω2

1

) +
γΩC2

4Aω1
+

γΩC3

2A(ω1 −ω2)

+
γΩC3

2A(ω1 +ω2)
+
3πβA2

16

(
C4

1 + C4
2 + C4

3 + 4C2
1C

2
2 + 4C2

1C
2
3 + 4C2

2C
2
3

)
,
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K1 =
γΩω1C1

A
(
Ω2 −ω2

1

) , K2 =
αΩω2C

2
1

4
(
4Ω2 −ω2

2

) − αΩ
(
C2

1 + C2
2

)

4ω2
, K3 = −λΩC2

4Aω1
,

K4 =
αΩω2C1C3

Ω2 − 4ω2
2

, K5 = −αΩC2
3

24ω2
, K6 =

αΩ(ω2 −ω1)C1C2

2
[
Ω2 − (ω2 −ω1)2

] − γΩC3

2A(ω1 −ω2)
,

K7 = − αΩ(ω1 +ω2)C1C2

2
[
Ω2 − (ω1 +ω2)2

] − γΩC3

2A(ω1 +ω2)
, K8 = − αΩC2

2

8(2ω1 +ω2)
, K9 =

αΩC2
2

8(2ω1 −ω2)
,

K10 = − αΩC2C3

4(ω1 + 2ω2)
, K11 = − αΩC2C3

4(2ω2 −ω1)
,

K12 =
Ωω1

(
Ωω1 +ω2)C1C2

Ω2 −ω2
1

+
βA2

8

[
Ω2C3

1C2 + ΩC1C2ω1
(
2C2

1 + 3C2
2 + 10C2

3

)

Ω2 −ω2
1

+
3Ω2C3

1C2

9Ω2 −ω2
1

]

,

K13 =
Ωω2

(
Ωω2 +ω2)C1C3

Ω2 −ω2
2

+
βA2

8

[
Ω2C3

1C3 + ΩC1C3ω2
(
2C2

1 + 10C2
2 + 3C2

3

)

Ω2 −ω2
2

+
3Ω2C3

1C3

9Ω2 −ω2
2

]

,

K14 = −
(
ω2 +ω2

1

)
ΩC2

2

8ω1
+
βA2

32

[
5Ωω1C

2
1C

2
2

Ω2 −ω2
1

− 2ΩC2
2

(
3C2

1 + C2
2 + 3C2

3

)

ω1

]

,

K15 = −
(
ω2 +ω2

2

)
ΩC2

3

8ω2
+
βA2

32

[
5Ωω2C

2
1C

2
3

Ω2 −ω2
2

− 2ΩC2
3

(
3C2

1 + 3C2
2 + C2

3

)

ω2

]

,

K16 =
3βA2Ωω1C1C

3
2

8
(
Ω2 − 9ω2

1

) , K17 =
3βA2Ωω2C1C

3
3

8
(
Ω2 − 9ω2

2

) , K18 =
βA2ΩC4

2

128ω1
, K19 =

βA2ΩC4
3

128ω2
,

K20 = −
(
ω2 +ω1ω2

)
ΩC2C3

2(ω1 +ω2)
+
βA2

4

[
3Ω(ω1 +ω2)C2

1C2C3

4Ω2 − (ω1 +ω2)2
− 3ΩC2C3

(
2C2

1 + C2
2 + C2

3

)

2(ω1 +ω2)

]

,

K21 = −
(
ω2 +ω1ω2

)
ΩC2C3

2(ω1 −ω2)
+
βA2

4

[
3Ω(ω1 −ω2)C2

1C2C3

4Ω2 − (ω1 −ω2)2
− 3ΩC2C3

(
2C2

1 + C2
2 + C2

3

)

2(ω1 −ω2)

]

,

K22 = − 3βA2ΩC2
2C

2
3

32(ω1 +ω2)
, K23 = −3βA

2ΩC2
2C

2
3

32(ω1 −ω2)
, K24 =

3βA2Ω(2ω1 +ω2)C1C
2
2C3

8
[
Ω2 − (2ω1 +ω2)2

] ,

K25 =
3βA2Ω(2ω1 −ω2)C1C

2
2C3

8
[
Ω2 − (2ω1 −ω2)2

] , K26 = − βA2ΩC3
2C3

8(3ω1 +ω2)
, K27 = − βA2ΩC3

2C3

8(3ω1 −ω2)
,

K28 =
3βA2Ω(ω1 + 2ω2)C1C2C

2
3

8
(
Ω2 − (ω1 + 2ω2)2

] , K29 =
3βA2Ω(ω1 − 2ω2)C1C2C

2
3

8
(
Ω2 − (ω1 − 2ω2)2

] ,

K30 = − βA2ΩC2C
3
3

8(ω1 + 3ω2)
, K31 = − βA2ΩC2C

3
3

8(3ω2 −ω1)
.

(2.13)
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The values of the parameters C1, C2, C3 and the frequency Ω are obtained from (2.6)
which become:

∂J

∂C1
=

∂J

∂C2
=

∂J

∂C3
= 0, (2.14)

and from the initial condition (2.7) which can be written as

C1 + C2 + C3 = 1. (2.15)

3. Test Examples

The validity of the proposed procedure for solving the investigated problem is illustrated on
three examples, considering different parameters and initial amplitudes.

Case a. As a first example, we consider the following set of parameters:

A = 1, m = 2, k1 = 200, k2 = 1000,

q = 0.1, ω1 = 2.1, ω2 = 1.1, f = 6,
(3.1)

or for the corresponding coefficients of (1.6):

ω = 10, α = 10, β = 500, γ = 3. (3.2)

The parameters C1, C2, C3 and the frequency Ω are obtained from (2.14) and (2.15):

C1 = 0.981045, C2 = 0.00376699, C3 = 0.0151884, Ω = 21.5167. (3.3)

The approximate solution of (1.1) in this case becomes

u(t) = 0.981045 cosΩt + 0.00376699 cosω1t + 0.0151884 cosω2t. (3.4)

Figure 1 shows the comparison between the present solution (3.4) and numerical inte-
gration results obtained using a fourth-order Runge-Kutta scheme.

Case b. As a second example, we consider the following parameters:

A = 0.8, ω1 = 2.7, ω2 = 1.0. (3.5)

Keeping the rest of the coefficients unchanged and following the same procedure, we obtain
the optimal values of the convergence-control parameters C1, C2, C3 and the frequency Ω:

C1 = 0.966202, C2 = 0.00106843, C3 = 0.0327299, Ω = 18.0654, (3.6)
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1

−1

−0.5

0.5

0.20.1

Numerical solution
Approximate solution

Figure 1:Comparison between the numerical solution of (1.1) and the approximate solution (3.4) forA = 1,
m = 2, k1 = 200, k2 = 1000, q = 0.1, ω1 = 2.1, ω2 = 1.1, f = 6.

0.05 0.15 0.25 0.35

0.25

0.75

0.1 0.2 0.3

−0.75

−0.5

−0.25

0.5

Numerical solution
Approximate solution

Figure 2: Comparison between the numerical solution of (1.1) and the approximate solution (3.7) for A =
0.8, m = 2, k1 = 200, k2 = 1000, q = 0.1, ω1 = 2.7, ω2 = 1.0, f = 6.

and consequently, the approximate solution of (1.1) becomes in this case:

u(t) = 0.772961 cosΩt + 0.000854743 cosω1t + 0.0261839 cosω2t. (3.7)

The comparison between the present solution (3.7) and numerical integration results
in the second case is presented in Figure 2.

Case c. Finally, for the last example we consider the following set of parameters:

A = 2, ω1 = 2.5, ω2 = 1.5. (3.8)
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Approximate solution

Figure 3: Comparison between the numerical solution of (1.1) and the approximate solution (3.10) for
A = 2,m = 2, k1 = 200, k2 = 1000, q = 0.1, ω1 = 2.5, ω2 = 1.5, f = 6.

In this case, following the procedure described above, we obtain

C1 = 0.989719, C2 = 0.00281954, C3 = 0.00746148, Ω = 39.6388, (3.9)

and the approximate solution of (1.1) becomes

u(t) = 1.97944 cosΩt + 0.00563909 cosω1t + 0.014923 cosω2t. (3.10)

The comparison between the obtained approximate analytical solution (3.10) and nu-
merical integration results in the third case is presented in Figure 3.

It can be observed from Figures 1–3 that the approximate analytical results obtained
using the proposed procedures are in good agreement with the numerical ones.

4. Conclusions

In this work, an optimal variational approach is employed to propose a new analytic
approximate solution for nonlinear conservative oscillations of an electrical machine. The
construction of our variational approach is different from traditional approach especially
concerning the involvement of some initially unknown parameters Ci called convergence-
control parameters, whose optimal values ensure a fast convergence of the approximate
analytical solutions. This is in fact the main advantage of the OVM, which provides us
with a simple and rigorous way to control and adjust the convergence of the solutions. The
proposed procedure is valid even if the nonlinear equation does not contain any small or
large parameters. Three test examples illustrate that the proposed analytical approach is very
effective and yields accurate results comparing to those obtained via numerical integration
using a fourth-order Runge-Kutta method.
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