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We study warped product pseudo-slant submanifolds of a nearly cosymplectic manifold. We
obtain some characterization results on the existence or nonexistence of warped product pseudo-
slant submanifolds of a nearly cosymplectic manifold in terms of the canonical structures P and
F.

1. Introduction

To study themanifolds with negative curvature, Bishop andO’Neill [1] introduced the notion
of warped product manifolds by homothetically warping the product metric of a product
manifold N1 ×N2 onto the fibers p ×N2 for each p ∈ N1. Later on, the geometrical aspect of
these manifolds has been studied by many researchers (cf. [2–4]). Pseudo-slant submanifolds
were introduced by Carriazo [5] as a special case of bislant submanifolds.

Almost contact manifolds with Killing structure tensors were defined in [6] as nearly
cosymplectic manifolds, and it was shown that the normal nearly cosymplectic manifolds
are cosymplectic (see also [7]). Later on, Blair and Showers [8] studied nearly cosymplectic
structure (φ, ξ, η, g) on a Riemannian manifold M with η closed from the topological
viewpoint.

Recently, Sahin [9] studied the warped product hemislant (pseudo-slant) submani-
folds of Kaehler manifolds. He proved that the warped product submanifolds of the type
M = N⊥×fNθ of a Kaehler manifold M do not exist and obtained some characterization
results on the existence of warped product submanifold M = Nθ×fN⊥, where N⊥ and Nθ

are totally real and proper slant submanifolds of a Kaehler manifold M, respectively. After
that, we have extended this study to the more general setting of nearly Kaehler manifolds
[4]. The warped product semi-invariant submanifolds of a nearly cosymplectic manifold had
been studied in [10].
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In this paper, we study warped product pseudo-slant submanifolds of a nearly cosym-
plectic manifold. We obtain some characterization results of warped product submanifolds
of the types N⊥×fNθ and Nθ×fN⊥ in terms of the canonical structures P and F, where N⊥
and Nθ are anti-invariant and proper slant submanifolds of a nearly cosymplectic manifold
M, respectively.

2. Preliminaries

A (2n+ 1)-dimensional C∞ manifoldM is said to have an almost contact structure if there exist
on M a tensor field φ of type (1, 1), a vector field ξ, and a 1-form η satisfying [8]

φ2 = −I + η ⊗ ξ, φξ = 0, η ◦ φ = 0, η(ξ) = 1. (2.1)

There always exists a Riemannian metric g on an almost contact manifold M satisfying the
following compatibility condition:

η(X) = g(X, ξ), g
(
φX, φY

)
= g(X,Y ) − η(X)η(Y ), (2.2)

where X and Y are vector fields on M [8].
An almost contact structure (φ, ξ, η) is said to be normal if the almost complex structure

J on the product manifold M × R given by

J

(
X, f

d

dt

)
=
(
φX − fξ, η(X)

d

dt

)
, (2.3)

where f is a C∞-function on M × R has no torsion, that is, J is integrable, the condition for
normality in terms of φ, ξ and η is [φ, φ] + 2dη ⊗ ξ = 0 on M, where [φ, φ] is the Nijenhuis
tensor of φ. Finally the fundamental 2-form Φ is defined by Φ(X,Y ) = g(X,φY ).

An almost contact metric structure (φ, ξ, η, g) is said to be cosymplectic, if it is normal
and both Φ and η are closed [8]. The structure is said to be nearly cosymplectic if φ is Killing,
that is, if

(
∇Xφ

)
Y +

(
∇Yφ

)
X = 0, (2.4)

for any X,Y ∈ TM, where TM is the tangent bundle of M and ∇ denotes the Riemannian
connection of the metric g. Equation (2.4) is equivalent to (∇Xφ)X = 0, for each X ∈ TM. The
structure is said to be closely cosymplectic if φ is Killing and η is closed. It is well known that
an almost contact metric manifold is cosymplectic if and only if ∇φ vanishes identically, that
is, (∇Xφ)Y = 0 and ∇Xξ = 0.

Proposition 2.1 (see [8]). On a nearly cosymplectic manifold the vector field ξ is Killing.

From the above proposition, one has ∇Xξ = 0, for any vector field X tangent to M,
where M is a nearly cosymplectic manifold.
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Let M be submanifold of an almost contact metric manifold M with induced metric
g and if ∇ and ∇⊥ are the induced connections on the tangent bundle TM and the normal
bundle T⊥M ofM, respectively, then Gauss and Weingarten formulae are given by

∇XY = ∇XY + h(X,Y ), (2.5)

∇XN = −ANX +∇⊥
XN, (2.6)

for eachX,Y ∈ TM andN ∈ T⊥M, where h andAN are the second fundamental form and the
shape operator (corresponding to the normal vector fieldN), respectively, for the immersion
ofM intoM. They are related as

g(h(X,Y ),N) = g(ANX, Y ), (2.7)

where g denotes the Riemannian metric on M as well as induced on M.
For any X ∈ TM, one writes

φX = PX + FX, (2.8)

where PX is the tangential component and FX is the normal component of φX.
Similarly for any N ∈ T⊥M, one writes

φN = BN + CN, (2.9)

where BN is the tangential component and CN is the normal component of φN.
Now, denote by PXY and QXY the tangential and normal parts of (∇Xφ)Y , that is,

(
∇Xφ

)
Y = PXY +QXY (2.10)

for all X,Y ∈ TM. Making use of (2.8), (2.10), and the Gauss and Weingarten formulae, the
following equations may easily be obtained:

PXY =
(
∇XP

)
Y −AFYX − Bh(X,Y ),

QXY =
(
∇XF

)
Y + h(X, PY ) − Ch(X,Y ).

(2.11)

Similarly, for any N ∈ T⊥M, denoting tangential and normal parts of (∇Xφ)N by PXN and
QXN, respectively, one obtains

PXN =
(
∇XB

)
N + PANX −ACNX,

QXN =
(
∇XC

)
N + h(BN,X) + FANX,

(2.12)
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where the covariant derivatives of P, F, B, and C are defined by

(
∇XP

)
Y = ∇XPY − P∇XY, (2.13)

(
∇XF

)
Y = ∇⊥

XFY − F∇XY, (2.14)

(
∇XB

)
N = ∇XBN − B∇⊥

XN, (2.15)

(
∇XC

)
N = ∇⊥

XCN − C∇⊥
XN, (2.16)

for all X,Y ∈ TM and N ∈ T⊥M.
It is straightforward to verify the following properties of P and Q, which one enlists

here for later use

(p1) (i) PX+YW = PXW + PYW , (ii) QX+YW = QXW +QYW ,

(p2) (i) PX(Y +W) = PXY + PXW , (ii) QX(Y +W) = QXY +QXW ,

(p3) (i) g(PXY,W) = −g(Y,PXW), (ii) g(QXY,N) = −g(Y,PXN),

(p4) PXφY +QXφY = −φ(PXY +QXY ),

for all X,Y,W ∈ TM and N ∈ T⊥M.
On a submanifold M of a nearly cosymplectic manifold, by (2.4) and (2.10), one has

(a) PXY + PYX = 0, (b) QXY +QYX = 0, (2.17)

for any X,Y ∈ TM.
The submanifold M is said to be invariant if F is identically zero, that is, φX ∈ TM for

any X ∈ TM. On the other hand, M is said to be anti-invariant if P is identically zero, that is,
φX ∈ T⊥M, for any X ∈ TM.

One will always consider ξ to be tangent to the submanifoldM. There is another class
of submanifolds that is called the slant submanifold. For each nonzero vector X tangent to M
at any x ∈ M, such that X is not proportional to ξx, one denotes by 0 ≤ θ(X) ≤ π/2, the
angle between φX and TxM is called the slant angle. If the slant angle θ(X) is constant for all
X ∈ TxM−〈ξx〉 and x ∈ M, thenM is said to be a slant submanifold [11]. Obviously, if θ = 0,
thenM is an invariant submanifold and if θ = π/2, thenM is an anti-invariant submanifold.
A slant submanifold is said to be proper slant if it is neither invariant nor anti-invariant.

One recalls the following result for a slant submanifold.

Theorem 2.2 (see [11]). Let M be a submanifold of an almost contact metric manifoldM, such that
ξ ∈ TM. Then M is slant if and only if there exists a constant λ ∈ [0, 1] such that

P 2 = λ
(−I + η ⊗ ξ

)
. (2.18)

Furthermore, if θ is slant angle, then λ = cos2θ.
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The following relations are straightforward consequence of (2.18):

g(PX, PY ) = cos2θ
(
g(X,Y ) − η(Y )η(X)

)
, (2.19)

g(FX, FY ) = sin2θ
(
g(X,Y ) − η(Y )η(X)

)
, (2.20)

for all X,Y ∈ TM.
A submanifold M of an almost contact manifold M is said to be a pseudo-slant

submanifold if there exist two orthogonal complementary distributions D1 and D2 satisfying:

(i) TM = D1 ⊕D2 ⊕ 〈ξ〉,
(ii) D1 is a slant distribution with slant angle θ /=π/2,

(iii) D2 is anti-invariant that is, φD2 ⊆ T⊥M.

A pseudo-slant submanifold M of an almost contact manifold M is mixed geodesic if

h(X,Z) = 0, (2.21)

for any X ∈ D1 and Z ∈ D2.
If μ is the invariant subspace of the normal bundle T⊥M, then in the case of pseudo-

slant submanifold, the normal bundle T⊥M can be decomposed as follows:

T⊥M = FD1 ⊕ FD2 ⊕ μ. (2.22)

3. Warped Product Pseudo-Slant Submanifolds

Bishop and O’Neill [1] introduced the notion of warped product manifolds. These manifolds
are the natural generalizations of Riemannian product manifolds. They defined these
manifolds as follows Let (N1, g1) and (N2, g2) be two Riemannianmanifolds and f , a positive
differentiable function onN1. The warped product ofN1 andN2 is the Riemannian manifold
N1×fN2 = (N1 ×N2, g), where

g = g1 + f2g2. (3.1)

Awarped product manifoldN1×fN2 is said to be trivial if the warping function f is constant.
We recall the following general formula on a warped product manifold [1]:

∇XZ = ∇ZX =
(
X ln f

)
Z, (3.2)

where X is tangential to N1 and Z is tangential to N2.
Let M = N1×fN2 be a warped product manifold. This means that N1 is totally

geodesic and N2 is a totally umbilical submanifold of M, respectively [1].
Throughout this section, we consider the warped product pseudo-slant submanifolds

which are either in the form N⊥×fNθ or Nθ×fN⊥ in a nearly cosymplectic manifold M,
where Nθ and N⊥ are proper slant and anti-invariant submanifolds of a nearly cosymplectic
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manifold M, respectively. On a warped product submanifold M = N1×fN2 of a nearly
cosymplectic manifold M, we have the following result.

Theorem 3.1 (see [10]). A warped product submanifold M = N1×fN2 of a nearly cosymplectic
manifold M is an usual Riemannian product if the structure vector field ξ is tangential to M2, where
M1 and M2 are the Riemannian submanifolds of M.

Now, one considers the warped product pseudo-slant submanifolds in the form M =
N⊥×fNθ of a nearly cosymplectic manifold M. If one considers the structure vector field
ξ ∈ TNθ then by Theorem 3.1, thewarping function f is constant and hence onewill considers
ξ ∈ TN⊥.

Proposition 3.2. Let M = N⊥×fNθ be a warped product pseudo-slant submanifold of a nearly
cosymplectic manifold M. Then,

g
(
∇⊥

PXFPX − ∇⊥
XFX, FZ

)
=
(
Z ln f

)
sin2θ‖X‖2

+
(
1 + cos2θ

)
g(h(X, PX), FZ),

(3.3)

for any X ∈ TNθ and Z ∈ TN⊥, whereNθ andN⊥ are proper slant and anti-invariant submanifolds
of M, respectively.

Proof. For any X ∈ TNθ and Z ∈ TN⊥, by (2.8), we have

g
(
∇XφX, FZ

)
= g

(
∇XPX, FZ

)
+ g

(
∇XFX, FZ

)
. (3.4)

Using (2.5), (2.6), and the covariant derivative property of φ, we obtain

g
((

∇Xφ
)
X,FZ

)
+ g

(
φ∇XX, φZ

)
= g(h(X, PX), FZ) + g

(
∇⊥

XFX, FZ
)
. (3.5)

Then from (2.2), (2.4), and the fact that ξ is a Killing vector field on M, thus we obtain

g
(
∇XX,Z

)
= g(h(X, PX), FZ) + g

(
∇⊥

XFX, FZ
)
. (3.6)

Using the property of ∇, we get

−g
(
X,∇XZ

)
= g(h(X, PX), FZ) + g

(
∇⊥

XFX, FZ
)
. (3.7)

Then by (2.5) and (3.2), we derive

−(Z ln f
)‖X‖2 = g(h(PX,X), FZ) + g

(
∇⊥

XFX, FZ
)
. (3.8)
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Interchanging X by PX in (3.8) and using (2.18), (2.19), and the fact that ξ ∈ TN⊥, we obtain

−(Z ln f
)
cos2θ‖X‖2 = −cos2θg(h(X, PX), FZ) + g

(
∇⊥

PXFPX, FZ
)
. (3.9)

Thus, the result follows from (3.8) and (3.9).

Proposition 3.3. Let M = N⊥×fNθ be a warped product pseudo-slant submanifold of a nearly
cosymplectic manifold M. Then,

g
((

∇XF
)
X,FZ

)
= sec2θg

((
∇PXF

)
PX, FZ

)
(3.10)

for any X ∈ TNθ and Z ∈ TN⊥, whereNθ andN⊥ are proper slant and anti-invariant submanifolds
of M, respectively.

Proof. For any X ∈ TNθ and Z ∈ TN⊥ by (2.14), we have

g
(
∇⊥

XFX, FZ
)
= g

((
∇XF

)
X,FZ

)
+ g(F∇XX, FZ). (3.11)

Using (2.20), (2.5), and the fact that ξ is killing vector field, we obtain

g
(
∇⊥

XFX, FZ
)
= g

((
∇XF

)
X,FZ

)
− sin2θg(X,∇XZ). (3.12)

Then from (3.2), we derive

g
(
∇⊥

XFX, FZ
)
= g

((
∇XF

)
X,FZ

)
− (

Z ln f
)
sin2θ‖X‖2. (3.13)

Now, from (3.8) and (3.13), we obtain

g
((

∇XF
)
X,FZ

)
= −(Z ln f

)
cos2θ‖X‖2 − g(h(X, PX), FZ). (3.14)

Interchanging X by PX in (3.14) and then using (2.18), (2.19), and the fact that ξ ∈ TN⊥, we
get

g
((

∇PXF
)
PX, FZ

)
= −(Z ln f

)
cos4θ‖X‖2 − cos2θg(h(X, PX), FZ). (3.15)

From (3.14) and (3.15), we arrive at

g
((

∇XF
)
X,FZ

)
= sec2θg

((
∇PXF

)
PX, FZ

)
. (3.16)

Hence, the result is proved.
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Lemma 3.4. Let M = N⊥×fNθ be a warped product pseudo-slant submanifold of a nearly
cosymplectic manifold M. Then,

g(PXPX,Z) = g(h(X,Z), FPX) − g(h(PX,Z), FX) (3.17)

for any X ∈ TNθ and Z ∈ TN⊥, whereNθ andN⊥ are proper slant and anti-invariant submanifolds
of M, respectively.

Proof. For any X ∈ TNθ and Z ∈ TN⊥ by (2.5), we have

g(h(PX,Z), FX) = g
(
∇ZPX, FX

)
= −g

(
PX,∇ZFX

)
. (3.18)

Then from (2.8), we derive

g(h(PX,Z), FX) = g
(
PX,∇ZPX

)
− g

(
PX,∇ZφX

)
. (3.19)

From the covariant derivative property of φ and (2.5), we obtain

g(h(PX,Z), FX) = g(PX,∇ZPX) − g
(
PX,

(
∇Zφ

)
X
)
− g

(
PX, φ∇ZX

)
. (3.20)

By (2.2), (2.10), and (3.2), we derive

g(h(PX,Z), FX) =
(
Z ln f

)
g(PX, PX) − g(PX,PZX) + g

(
φPX,∇ZX

)
. (3.21)

Using (2.5), (2.8), (2.17)(a), (2.19) and the fact that ξ ∈ TN⊥, we get

g(h(PX,Z), FX) =
(
Z ln f

)
cos2θ‖X‖2 + g(PX,PXZ)

+ g
(
P 2X,∇ZX

)
+ g(h(X,Z), FPX).

(3.22)

Thus, by property (p3)(i), (2.18), and (3.2) and the fact that ξ ∈ TN⊥, we obtain

g(h(PX,Z), FX) =
(
Z ln f

)
cos2θ‖X‖2 − g(PXPX,Z)

− (
Z ln f

)
cos2θ‖X‖2 + g(h(X,Z), FPX).

(3.23)

Hence, the above equation takes the form

g(PXPX,Z) = g(h(X,Z), FPX) − g(h(PX,Z), FX), (3.24)

which proves our assertion.
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Theorem 3.5. LetM = N⊥×fNθ be a warped product submanifold of a nearly cosymplectic manifold
M. Then M is Riemannian product of N⊥ and Nθ if and only if PXTX ∈ TNθ, for any X ∈ TNθ,
whereNθ and N⊥ are proper slant and anti-invariant submanifolds of M, respectively.

Proof. If the structure vector field ξ ∈ TNθ, then, by Theorem 3.1, M is Riemannian product
of N⊥ and Nθ. Now, we consider ξ ∈ TN⊥, then for any X ∈ TNθ and Z ∈ TN⊥ from (2.5),
we have

g(h(X, PX), FZ) = g
(
∇PXX, φZ

)
. (3.25)

Then by (2.2), we get

g(h(X, PX), FZ) = −g
(
φ∇PXX,Z

)
. (3.26)

Using the covariant derivative formula of φ, we derive

g(h(X, PX), FZ) = g
((

∇PXφ
)
X,Z

)
− g

(
∇PXφX,Z

)
. (3.27)

Then from (2.10) and the property of ∇, we obtain

g(h(X, PX), FZ) = g(PPXX,Z) + g
(
φX,∇PXZ

)
. (3.28)

Thus by (2.5), (2.8), and (2.17)(a), we arrive at

g(h(X, PX), FZ) = −g(PXPX,Z) + g(PX,∇PXZ) + g(h(PX,Z), FX). (3.29)

Using (3.2) and then (2.19) and the fact that ξ ∈ TN⊥, we get

g(h(X, PX), FZ) = − g(PXPX,Z) +
(
Z ln f

)
cos2θ‖X‖2

+ g(h(PX,Z), FX).
(3.30)

By property (p3)(i), we derive

g(h(X, PX), FZ) = g(PX,PXZ) +
(
Z ln f

)
cos2θ‖X‖2

+ g(h(PX,Z), FX).
(3.31)

Interchanging X by PX in (3.30) and then using (2.18), (2.19), and the fact that ξ ∈ TN⊥, we
obtain

−cos2θg(h(X, PX), FZ) = − cos2θg(X,PPXZ) +
(
Z ln f

)
cos4θ‖X‖2

− cos2θg(h(X,Z), FPX).
(3.32)
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Using the property (p3)(i) and then (2.17)(a), we arrive at

−g(h(X, PX), FZ) = − g(PXPX,Z) +
(
Z ln f

)
cos2θ‖X‖2

− g(h(X,Z), FPX).
(3.33)

Then from (3.30) and (3.33), we obtain

2
(
Z ln f

)
cos2θ‖X‖2 = 2g(PXPX,Z) + g(h(X,Z), FPX)

− g(h(PX,Z), FX).
(3.34)

Thus, by Lemma 3.4, we conclude that

(
Z ln f

)
cos2θ‖X‖2 = 3

2
g(PXPX,Z). (3.35)

Since Nθ is proper slant, thus we get (Z ln f) = 0, if and only if PXPX lies in TNθ for all
X ∈ TNθ and Z ∈ TN⊥. This proves the theorem completely.

Now,we discuss the other case, that is, thewarped product submanifoldM = Nθ×fN⊥
of a nearly cosymplectic manifold M. In this case also, if the structure vector filed ξ ∈ TN⊥
then the warping function f is constant (by Theorem 3.1), thus we consider ξ ∈ TNθ.

Proposition 3.6. Let M = Nθ×fN⊥ be a warped product pseudo-slant submanifold of a nearly
cosymplectic manifold M. Then,

g
((

∇XF
)
Z, FX

)
+g

((
∇PXF

)
Z, FPX

)
= sin2θg(h(X, PX), FZ)

+
(
1+cos2θ

)
g(PXZ, PX)−cos2θη(X)g

(PξZ, PX
)

− g(QZX, FX) − g(QZPX, FPX)
(3.36)

for any X ∈ TNθ and Z ∈ TN⊥, whereNθ andN⊥ are proper slant and anti-invariant submanifolds
of M, respectively.

Proof. For any X ∈ TNθ and Z ∈ TN⊥, by (2.2) we have

g
(
φ∇XZ, φX

)
= g

(
∇XZ,X

)
− η(X)g

(
∇XZ, ξ

)
. (3.37)

Using the property of the connection ∇ and the fact that ξ is a Killing vector field, then, from
(2.5), we obtain

g
(
φ∇XZ, φX

)
= g(∇XZ,X). (3.38)
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Thus by (3.2) and the covariant derivative formula of φ, we derive

g
(
∇XφZ, φX

)
− g

((
∇Xφ

)
Z,φX

)
=
(
X ln f

)
g(Z,X). (3.39)

Then form (2.6), (2.8), (2.10), and by the orthogonality of two distributions, we get

−g(AFZX, PX) + g
(
∇⊥

XFZ, FX
)
− g(PXZ, PX) − g(QXZ, FX) = 0. (3.40)

Thus, on using (2.7) and (2.17)(b), the above equation takes the form

g
(
∇⊥

XFZ, FX
)
= g(h(X, PX), FZ) + g(PXZ, PX) − g(QZX, FX). (3.41)

Now, for any X ∈ TNθ and Z ∈ TN⊥ from (2.14), we have

g
(
∇⊥

XFZ, FX
)
= g

((
∇XF

)
Z, FX

)
+ g(F∇XZ, FX). (3.42)

Using (3.2), we obtain

g
(
∇⊥

XFZ, FX
)
= g

((
∇XF

)
Z, FX

)
+
(
X ln f

)
g(FZ, FX). (3.43)

By orthogonality of two normal distributions, we get

g
(
∇⊥

XFZ, FX
)
= g

((
∇XF

)
Z, FX

)
. (3.44)

Then, from (3.41) and (3.44), we obtain

g
((

∇XF
)
Z, FX

)
= g(h(X, PX), FZ) + g(PXZ, PX) − g(QZX, FX). (3.45)

Interchanging X by PX in (3.45) and using (2.18) and the fact that h(X, ξ) = 0, for any X on a
nearly cosymplectic manifoldM, hence we get

g
((

∇PXF
)
Z, FPX

)
= − cos2θg(h(X, PX), FZ) − cos2θg(PPXZ,X)

+ cos2θη(X)g(PPXZ, ξ) − g(QZPX, FPX).
(3.46)

Using property (p3)(i) and (2.17), we derive

g
((

∇PXF
)
Z, FPX

)
= − cos2θg(h(X, PX), FZ) − cos2θg(PXPX,Z)

+ cos2θη(X)g
(PξPX,Z

) − g(QZPX, FPX).
(3.47)
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Again, by property (p3)(i), we obtain

g
((

∇PXF
)
Z, FPX

)
= − cos2θg(h(X, PX), FZ) + cos2θg(PXZ, PX)

− cos2θη(X)g
(PξZ, PX

) − g(QZPX, FPX).
(3.48)

Thus, the result follows from (3.45) and (3.48).

Theorem 3.7. LetM = Nθ×fN⊥ be a warped product submanifold of a nearly cosymplectic manifold
M. ThenM is Riemannian product of Nθ and N⊥ if and only if

g(h(X,Z), FZ) = g(h(Z,Z), FX), (3.49)

for any X ∈ TNθ and Z ∈ TN⊥, whereNθ andN⊥ are proper slant and anti-invariant submanifolds
of M, respectively.

Proof. If ξ ∈ TN⊥, then by Theorem 3.1, f is constant on M. Now, we consider ξ ∈ TNθ. In
this case, for any X ∈ TNθ and Z ∈ TN⊥ by (2.5), we have

g(h(PX,Z), FZ) = g
(
∇ZPX, φZ

)
. (3.50)

Using (2.2), we get

g(h(PX,Z), FZ) = −g
(
φ∇ZPX,Z

)
. (3.51)

Thus, on using the covariant derivative property of φ, we obtain

g(h(PX,Z), FZ) = g
((

∇Zφ
)
PX,Z

)
− g

(
∇ZφPX,Z

)
. (3.52)

Then from (2.8) and (2.10), we get

g(h(PX,Z), FZ) = g(PZPX,Z) − g
(
∇ZP

2X,Z
)
− g

(
∇ZFPX,Z

)
. (3.53)

Using property (p3)(i) and the property of the connection ∇, we derive

g(h(PX,Z), FZ) = −g(PZZ, PX) + g
(
P 2X,∇ZZ

)
+ g

(
FPX∇ZZ

)
. (3.54)

As we have PZZ = 0 from (2.4) and (2.10), then by (2.18) the above equation reduced to

g(h(PX,Z), FZ) = −cos2θg
(
X,∇ZZ

)
+ cos2θη(X)g

(
ξ,∇ZZ

)
+ g(h(Z,Z), FPX). (3.55)
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Since ξ is a Killing vector field on M, then by (2.5), (3.2), and the property of the connection
∇, the above equation takes the form

g(h(PX,Z), FZ) =
(
X ln f

)
cos2θ‖Z‖2 + g(h(Z,Z), FPX). (3.56)

Interchanging X by PX in (3.56) and using (2.18), we obtain

cos2θg(h(X,Z), FZ) + cos2θη(X)g(h(Z, ξ), FZ)

= −(PX ln f
)
cos2θ‖Z‖2 + cos2θg(h(Z,Z), FX).

(3.57)

Since h(Z, ξ) = 0, for nearly cosymplectic, then the above equation reduces to

(
PX ln f

)‖Z‖2 = g(h(Z,Z), FX) − g(h(X,Z), FZ). (3.58)

Thus, from (3.58), we obtain (PX ln f) = 0 if and only if g(h(Z,Z), FX) = g(h(X,Z), FZ).
This proves the theorem completely.
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