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This paper deals with the existence results of integral solutions for nondensely defined fractional
evolution differential inclusions. Our approach is based on integrated semigroup theory and a
fixed point theorem for condensing map due to Martelli. An example is also given to illustrate our
results.

1. Introduction

In the past decades, the theory of fractional differential equations and inclusions has become
an important area of investigation because of its wide applicability in many branches of
physics, economics, and technical sciences [1–10].

Our aim in this paper is to study the existence of the integral solutions for the fractional
semilinear differential inclusions, of the form

Dqx(t) ∈ Ax(t) + F(t, x(t)), t ∈ (0, b],

x(0) = x0,
(1.1)

where Dq is the Caputo fractional derivative of order 0 < q < 1, b > 0. A : D(A) ⊂ X → X
is a nondensely closed linear operator on X, X is a real Banach space with the norm | · |.
F : [0,∞) × X → P(X) is a nonempty, bounded, closed, and convex multivalued map, and
P(X) denotes the family of all nonempty subsets of X.
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It is well known that one important way to introduce the concepts of mild solutions for
fractional evolution equations is based on some probability densities and Laplace transform.
This method was initialed by El-Borai [11] and developed by Zhou and Jiao [12]. Since
then, many interesting existence results of mild solutions for fractional evolution equations
appeared [13–16]. We will point out that the unbounded operators A in their papers were
assumed to be densely defined and generate a strongly continuous semigroup.

However, as indicated in [17], we sometimes need to deal with nondensely defined
operators and there are extensive work on this subject when equations involve the integral-
order derivative, see monograph [18–23] and references therein. Very recently, Wang and
Zhou [24] considered problem (1.1) in the case when A is densely defined and generates
a strongly continuous semigroup. As far as we know, there are few papers dealing with
semilinear fractional differential systems with nondense domain. Motivated by this, we
discuss the integral solution to problem (1.1) by using probability densities and integral
semigroup. We turn the integral solutions of problem (1.1) to a new formula something
like the mild solutions. This new formula of integral solutions is firstly introduced even in
fractional evolution equations. Thus, our work can be seen as a supplement to work [24]
and a contribution to this emerging field of fractional differential equations with nondense
domain.

This paper will be organized as follows. In Section 2, we recall some basic definitions
and preliminary facts for integrated semigroup, fractional calculus, and multivalued map
which will be used later. Section 3 is devoted to the existence results of integral solutions for
problem (1.1). We will present in Section 4 an example which illustrates our main theorem.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary results which are used in
the rest of the paper.

We denote by C([0, b], X) the Banach space of all continuous functions from [0, b] into
X with the norm

∥
∥y

∥
∥ = sup

{∣
∣y(t)

∣
∣ : t ∈ [0, b]

}

. (2.1)

B(X) denotes the Banach space of bounded linear operators from X into X, with the norm

‖N‖ = sup
{∣
∣N

(

y
)∣
∣ :

∣
∣y
∣
∣ = 1

}

, (2.2)

where N ∈ B(X) and y ∈ X.
Assume that J ⊂ R and 1 ≤ p ≤ ∞. For a measurable function m : J → R, define the

norm

‖m‖LpJ =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪
⎩

(∫

J

|m(t)|pdt
)1/p

, 1 ≤ p < ∞,

inf
μ(J)=0

⎧

⎨

⎩
sup
t∈J−J

|m(t)|

⎫

⎬

⎭
, p = ∞,

(2.3)
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where μ(J) is the Lebesgue measure on J . Let Lp(J,R) be the Banach space of all Lebesgue
measurable functions m : J → R with ‖ · ‖LpJ < ∞.

Lemma 2.1 (HöLder inequality). Assume that r, p ≥ 1 and (1/r) + (1/p) = 1. If l ∈ Lr(J,R),
m ∈ Lp(J,R), then for 1 ≤ p ≤ ∞, lm ∈ L1(J,R) and

‖lm‖L1J ≤ ‖l‖LrJ‖m‖LpJ . (2.4)

Lemma 2.2 (Bochner theorem). A measurable function H : [0, b] → X is Bochner’s integrable if
|H| is Lebesgue integrable.

Definition 2.3 (see [25]). Let X be a Banach space; an integrated semigroup is a family of
operators (S(t))t≥0 of bounded linear operators S(t) on X with the following properties:

(i) S(0) = 0;

(ii) t → S(t) is strongly continuous;

(iii) S(s)S(t) =
∫s

0 (S(t + r) − S(r))dr for all t, s ≥ 0.

Definition 2.4 (see [26]). An operator A is called a generator of an integrated semigroup,
if there exists ω ∈ R such that (ω,+∞) ⊂ ρ(A) and there exists a strongly continuous
exponentially bounded family (S(t))t≥0 of linear bounded operators such that S(0) = 0 and
(λI −A)−1 = λ

∫∞
0 e−λtS(t)dt for all λ > ω.

Proposition 2.5 (see [25]). LetA be the generator of an integrated semigroup (S(t))t≥0. Then for all
x ∈ X and t ≥ 0,

∫ t

0
S(s)xds ∈ D(A), S(t)x = A

∫ t

0
S(s)xds + tx. (2.5)

Definition 2.6 (see [26]). We say that linear operator A satisfies the Hille-Yosida condition if
there exist M ≥ 0 and ω ∈ R such that (ω,+∞) ⊂ ρ(A) and

sup
{

(λ −ω)n
∥
∥R(λ,A)n

∥
∥, n ∈ N, λ > ω

}

≤ M. (2.6)

Here and hereafter, we assume that A satisfies the Hille-Yosida condition. Let us
introduce the partA0 ofA inD(A) : A0 = A onD(A0) = {x ∈ D(A);Ax ∈ D(A)}. Let (S(t))t≥0
be the integrated semigroup generated by A. We note that (S′(t))t≥0 is a C0-semigroup on
D(A) generated byA0 and ‖S′(t)‖ ≤ Meωt, t ≥ 0, whereM andω are the constants considered
in the Hille-Yosida condition ([19, 27]).

Let Bλ = λR(λ,A) := λ(λI − A)−1; then for all x ∈ D(A), Bλx → x as λ → ∞. Also
from the Hille-Yosida condition it is easy to see that limλ→∞|Bλx| ≤ M|x|.

For more properties on integral semigroup theory the interested readers may refer to
[18, 27].
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Definition 2.7 (see [3]). The Riemann-Liouville fractional integral of order α ∈ R+ of a function
f : R+ → X is defined by

Iα0 f(t) =
1

Γ(α)

∫ t

0
(t − s)α−1f(s)ds, t > 0, (2.7)

provided the right-hand side is pointwise defined on R+, where Γ is the gamma function.

Remark 2.8. According to [3], Iq0 I
β

0 = I
q+β
0 holds for all q, β ≥ 0.

Definition 2.9 (see [3]). The Caputo fractional derivative of order 0 < α < 1 of a function
f ∈ C1([0,∞), X) is defined by

Dαf(t) =
1

Γ(1 − α)

∫ t

0
(t − s)−αf ′(s)ds, t > 0. (2.8)

We will remark that integrals which appear in Definitions 2.7 and 2.9 are taken in Bochner’s
sense.

Lemma 2.10 (see [28]). Suppose β > 0, a(t) is a nonnegative, function locally integrable on 0 ≤
t < T and g(t) is a nonnegative, nondecreasing continuous function defined on 0 ≤ t < T , g(t) ≤ M
(constant), and suppose u(t) is nonnegative and locally integrable on 0 ≤ t < T with

u(t) ≤ a(t) + g(t)
∫ t

0
(t − s)β−1u(s)ds (2.9)

on this interval. Then

u(t) ≤ a(t) +
∫ t

0

[
∞∑

n=1

(

g(t)Γ
(

β
))n

Γ
(

nβ
) (t − s)nβ−1a(s)

]

ds, 0 ≤ t < T. (2.10)

Corollary 2.11 (see [28]). Under the hypothesis of Lemma 2.10, let a(t) be a nondecreasing function
on [0, T). Then

u(t) ≤ a(t)Eβ

(

g(t)Γ
(

β
)

tβ
)

, (2.11)

where Eβ is the Mittag-Leffler function defined by Eβ(z) =
∑∞

k=0(z
k/Γ(kβ + 1)).

We also introduce some basic definitions and results of multivalued maps. See [29] for
more details.

Let (X, d) be a metric space; P(X) denotes the family for all nonempty subsets of X.
We use the following notations:

Pcl(X) = {Y ∈ P(X) : Y closed}, Pb(X) = {Y ∈ P(X) : Y bounded},

Pc(X) = {Y ∈ P(X) : Y convex}, Pcp(X) =
{

Y ∈ P(X) : Y compact
}

.
(2.12)
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Amultivaluedmap F : X → P(X) is convex (closed) valued if F(x) is convex (closed)
for all x ∈ X and F is bounded on bounded sets if F(B) = Ux∈BF(x) is bounded in X for all
B ∈ Pb(X), that is, supx∈B{sup{|y| : y ∈ F(x)}} < ∞. F is called upper semicontinuous
(u.s.c. for short) on X if for each x0 ∈ X the set F(x0) is nonempty, closed subset of X, and
for each open set U of X containing F(x0), there exists an open neighborhood V of x0 such
that F(V) ⊂ U. F is said to be completely continuous if F(B) is relatively compact for every
B ∈ Pb(X).

If the multivalued map F is completely continuous with nonempty compact valued,
the F is u.s.c. if and only if F has closed graph, that is, xn → x∗, yn → y∗, yn ∈ F(xn) imply
y∗ ∈ F(x∗).

Definition 2.12 (see [30]). An upper semicontinuous mapG : X → X is said to be condensing
if for any bounded subset V ⊂ X with α(V )/= 0, one has α(G(V )) < α(V ), where α denotes the
Kuratowski measure of noncompactness.

We remark that a completely continuous multivalued map is the easiest example of a
condensing map.

Theorem 2.13 (see [30]). Let J be a compact interval and X a Banach space. Let F : J ×C(J,X) →
Pb,cl,c(X), (t, u) �→ F(t, u) be measurable with respect to t for each u ∈ X, upper semicontinuous with
respect to u for each t ∈ J . Moreover, for each fixed u ∈ C(J,X) the set

NF,u =
{

f ∈ L1(J,X) : f(t) ∈ F(t, u) for a.e. t ∈ J
}

(2.13)

is nonempty. Also let T be a linear continuous mapping from L1(J,X) to C(J,X); then the operator

T ◦NF : C(J,X) −→ Pb,cl,c(C(J,X)), u −→ (T ◦NF)(u) = T(NF,u) (2.14)

is a closed graph operator in C(J,X) × C(J,X).

Theorem 2.14 (Martelli, [31]). LetX be a Banach space andΦ : X → Pb,cl,c(X) a condensing map.
If the set

U = {x ∈ X : δx ∈ Φx for some δ > 1} (2.15)

is bounded, then Φ has a fixed point.

3. Existence of Integral Solutions

In this section we will establish the existence results for problem (1.1). Let us consider the
following problem:

Dqx(t) = Ax(t) + f(t, x(t)), t ∈ (0, b],

x(0) = x0,
(3.1)

where f : [0,∞) ×X → X is a given function and A is the same as that in problem (1.1).
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Definition 3.1. One says that a continuous function x : [0, b] → X is an integral solution of
problem (3.1) if

(i) (1/Γ(q))
∫ t

0(t − s)q−1x(s)ds ∈ D(A) for t ∈ [0, b],

(ii) x(t) = x0 + (1/Γ(q))A
∫ t

0(t − s)q−1x(s)ds + (1/Γ(q))
∫ t

0(t − s)q−1f(s, x(s))ds, t ∈ [0, b].

Lemma 3.2. If x is an integral solution of (1.1), then for all t ∈ [0, b], x(t) ∈ D(A). In particular,
x(0) = x0 ∈ D(A).

Proof. By Remark 2.8 and I
q

0x(t) ∈ D(A), for each t ∈ (0, b], we get that I10x(t) = I
1−q
0 I

q

0x(t) ∈
D(A). From I10x(t) =

∫ t

0 x(s)ds ∈ D(A) we have (1/h)
∫ t+h
t x(s)ds ∈ D(A) for h > 0, t + h ∈

(0, b]. Hence, we deduce that

x(t) = lim
h→ 0

1
h

∫ t+h

t

x(s)ds ∈ D(A). (3.2)

The proof is completed.

Lemma 3.3 (see [32]). Let Ψq(θ) = (1/π)
∑∞

n=1(−1)
n−1θ−qn−1(Γ(nq + 1)/n!) sin(nπq), θ ∈ R+;

then Ψq(θ) is a one-sided stable probability density function and its Laplace transform is given by

∫∞

0
e−pθΨq(θ)dθ = e−p

q

, q ∈ (0, 1), p > 0. (3.3)

Lemma 3.4. The integral solution in Definition 3.1 is given by

x(t) =
∫∞

0
hq(θ)S′(tqθ)x0dθ + lim

λ→∞
q

∫ t

0

∫∞

0
θ(t − s)q−1hq(θ)S′((t − s)qθ

)

Bλf(s, x(s))dθds,

(3.4)

where hq(θ) = (1/q)θ−1−(1/q)Ψq(θ−1/q) is the probability density function defined on R+.

Proof. From the definition, we have

x(t) = x0 +
1

Γ
(

q
)A

∫ t

0
(t − s)q−1x(s)ds +

1
Γ
(

q
)

∫ t

0
(t − s)q−1f(s, x(s))ds, t ∈ [0, b]. (3.5)

Consider the Laplace transform

v
(

p
)

=
∫∞

0
e−ptBλx(t)dt, w

(

p
)

=
∫∞

0
e−ptBλf(t, x(t))dt, p > 0. (3.6)
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Note that for each t > 0, Bλx(t), Bλf(t, x(t)) ∈ D(A), then we have v(p), w(p) ∈ D(A).
Applying (3.6) to (3.5) yields

v
(

p
)

=
1
p
Bλx0 +

1
pq

Av
(

p
)

+
1
pq

w
(

p
)

= pq−1
(

pqI −A
)−1

Bλx0 +
(

pqI −A
)−1

w
(

p
)

= pq−1
∫∞

0
e−p

qsS′(s)Bλx0ds +
∫∞

0
e−p

qsS′(s)w
(

p
)

ds,

(3.7)

where I is the identity operator defined on X.
From (3.3), we get

pq−1
∫∞

0
e−p

qsS′(s)Bλx0ds =
∫∞

0
pq−1e−(pt)

q

S′(tq)Bλx0qt
q−1dt

=
∫∞

0
−1
p

d

dt

(

e−(pt)
q
)

S′(tq)Bλx0dt

=
∫∫∞

0

[

θΨq(θ)e−ptθS′(tq)Bλx0

]

dθdt

=
∫∫∞

0

[

Ψq(θ)e−psS′
((

s

θ

)q)

Bλx0

]

dθds

=
∫∞

0
e−pt

[∫∞

0
Ψq(θ)S′

((
t

θ

)q)

Bλx0dθ

]

dt,

(3.8)

∫∞

0
e−p

qsS′(s)w
(

p
)

ds =
∫∫∞

0
e−p

qse−ptS′(s)Bλf(t, x(t))dt ds

=
∫∫∞

0
qsq−1e−(ps)

q

e−ptS′(sq)Bλf(t, x(t))dt ds

=
∫∫∞

0

∫∞

0
qΨq(θ)e−psθe−ptS′(sq)Bλf(t, x(t))dθdt ds

=
∫∫∞

0

∫∞

0
qΨq(θ)e−p(s+t)

sq−1

θq
S′
((

s

θ

)q)

Bλf(t, x(t))dθdt ds

=
∫∞

0
e−psq

∫s

0

∫∞

0
Ψq(θ)

(s − t)q−1

θq
S′
(
(s − t)q

θq

)

Bλf(t, x(t))dθdt ds

=
∫∞

0
e−ptq

∫ t

0

∫∞

0
Ψq(θ)

(t − s)q−1

θq
S′
(
(t − s)q

θq

)

Bλf(s, x(s))dθdsdt.

(3.9)
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According to (3.7), (3.8), and (3.9), we have

v
(

p
)

=
∫∞

0
e−pt

[∫∞

0
Ψq(θ)S′

((
t

θ

)q)

Bλx0dθ

]

dt

+
∫∞

0
e−ptq

∫ t

0

∫∞

0
Ψq(θ)

(t − s)q−1

θq
S′
(
(t − s)q

θq

)

Bλf(s, x(s))dθdsdt.

(3.10)

Inverting the last Laplace transform, we obtain

Bλx(t) =
∫∞

0
Ψq(θ)S′

((
t

θ

)q)

Bλx0dθ

+ q

∫ t

0

∫∞

0
Ψq(θ)

(t − s)q−1

θq
S′
(
(t − s)q

θq

)

Bλf(s, x(s))dθds

=
∫∞

0
hq(θ)S′(tqθ)Bλx0dθ

+ q

∫ t

0

∫∞

0
θ(t − s)q−1hq(θ)S′((t − s)qθ

)

Bλf(s, x(s))dθds.

(3.11)

In view of limλ→∞Bλx = x for x ∈ D(A) and Lemma 3.2, we have

x(t) =
∫∞

0
hq(θ)S′(tqθ)x0dθ + lim

λ→∞
q

∫ t

0

∫∞

0
θ(t − s)q−1hq(θ)S′((t − s)qθ

)

Bλf(s, x(s))dθds.

(3.12)

The proof is completed.

Remark 3.5. According to [32], one can easily check that

∫∞

0
θhq(θ)dθ =

∫∞

0

1
θq

Ψq(θ)dθ =
1

Γ
(

1 + q
) . (3.13)

Based on the Lemma 3.4, we will define the concept of integral solution of (1.1) as follows.

Definition 3.6. One says that a continuous function x : [0, b] → X is an integral solution of
problem (1.1) if

(i) (1/Γ(q))
∫ t

0(t − s)q−1x(s)ds ∈ D(A) for t ∈ [0, b],

(ii) x(0) = x0 and there exists f ∈ L1([0, b], X) such that f(t) ∈ F(t, x(t)) for a.e. t ∈ [0, b]
and

x(t) =
∫∞

0
hq(θ)S′(tqθ)x0dθ + lim

λ→∞
q

∫ t

0

∫∞

0
θ(t − s)q−1hq(θ)S′((t − s)qθ

)

Bλf(s)dθds, t ∈ [0, b].

(3.14)
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We are now in a position to state and prove our main results of the existence of sol-
utions for problem (1.1).

Let us list the following hypotheses:

(H1) A satisfies the Hille-Yosida condition;

(H2) the operator S′(t) is compact inD(A)whenever t > 0 and satisfies supt∈[0,∞]‖S′(t)‖ =
M0 < ∞, where M0 is a constant;

(H3) F : [0, b] × X → Pb,cl,c(X), for each x ∈ X, F(·, x) is measurable and for each
t ∈ [0, b], F(t, ·) is upper semicontinuous; for each fixed x ∈ X, the set NF,x = {f ∈
L1([0, b], X) : f(t) ∈ F(t, x), for a.e. t ∈ [0, b]} is not empty;

(H4) for each x ∈ X, there exist m ∈ L1/q1([0, b],R+) and n ∈ C([0, b],R+) such that

sup
{∣
∣f(t)

∣
∣ : f(t) ∈ F(t, x)

}

≤ m(t) + n(t)|x| for a.e. t ∈ [0, b], (3.15)

where q1 ∈ [0, q).

Theorem 3.7. Assume that hypotheses (H1)–(H4) hold; then problem (1.1) has an integral solution
x ∈ C([0, b], D(A)).

Proof. Denote C0 = C([0, b], D(A)), which is a closed subset of C([0, b], X). Obviously, C0

with the same norm in C([0, b], X) is also a Banach space. Transform the problem (1.1)
into a fixed point problem. Consider the multivalued operator Φ : C0 → P(C0) defined
by

Φx =

{

h ∈ C0 : h(t) =
∫∞

0
hq(θ)S′(tqθ)x0dθ

+ lim
λ→∞

q

∫ t

0

∫∞

0
θ(t − s)q−1hq(θ)S′((t − s)qθ

)

Bλf(s)dθds

}

,

(3.16)

where f ∈ NF,x = {f ∈ L1([0, b], X) : f(t) ∈ F(t, x(t)), for a.e. t ∈ [0, b]}. Obviously, the
fixed points of the operator Φ are integral solutions of problem (1.1). Now we will show that
Φ satisfies all conditions of Theorem 2.14. The proof would be divided into the following
steps.

Step 1 (Φ(x) is convex for each x ∈ C0). Indeed, if h1 and h2 belong to Φx, then there exist f1,
f2 ∈ NF,x such that for each t ∈ [0, b], we have

hi(t)=
∫∞

0
hq(θ)S′(tqθ)x0dθ+ lim

λ→∞
q

∫ t

0

∫∞

0
θ(t − s)q−1hq(θ)S′((t − s)qθ

)

Bλfi(s)dθds, i = 1, 2.

(3.17)
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Let 0 ≤ k ≤ 1; then for each t ∈ [0, b], we have

(kh1 + (1 − k)h2)(t) =
∫∞

0
hq(θ)S′(tqθ)x0dθ

+ lim
λ→∞

q

∫ t

0

∫∞

0
θ(t − s)q−1hq(θ)S′((t − s)qθ

)

Bλ

×
(

kf1(s) + (1 − k)f2(s)
)

dθds.

(3.18)

Since NF,x is convex, we have kh1 + (1 − k)h2 ∈ Φx.

Step 2 (Φ maps bounded sets into bounded sets in C0). Indeed, it is enough to show that
there exists a positive constant l such that for each h ∈ Φx, x ∈ Br = {x ∈ C0, ‖x‖ ≤ r} one has
‖h‖ ≤ l.

Let h ∈ Φx; then there exists f ∈ NF,x such that for t ∈ [0, b], we have

h(t) =
∫∞

0
hq(θ)S′(tqθ)x0dθ + lim

λ→∞
q

∫ t

0

∫∞

0
θ(t − s)q−1hq(θ)S′((t − s)qθ

)

Bλf(s)dθds. (3.19)

From (H2) and the fact that ‖Bλ‖ ≤ M, for t ∈ [0, b] we have

|h(t)| ≤
∣
∣
∣
∣

∫∞

0
hq(θ)S′(tqθ)x0dθ

∣
∣
∣
∣

+

∣
∣
∣
∣
∣
lim
λ→∞

q

∫ t

0

∫∞

0
θ(t − s)q−1hq(θ)S′((t − s)qθ

)

Bλf(s)dθds

∣
∣
∣
∣
∣

≤ M0|x0| +MM0

∫ t

0

∫∞

0
θhq(θ)

∣
∣
∣(t − s)q−1f(s)

∣
∣
∣dθds

≤ M0|x0| +
qMM0

Γ
(

1 + q
)

∫ t

0

∣
∣
∣(t − s)q−1f(s)

∣
∣
∣ds.

(3.20)

From Lemma 2.1 and (H4), for t ∈ [0, b] we have

∫ t

0

∣
∣
∣(t − s)q−1f(s)

∣
∣
∣ds ≤

(∫ t

0
(t − s)(q−1)/(1−q1)ds

)1−q1

‖m‖L1/q1 [0,t] + nr

∫ t

0
(t − s)q−1ds

≤ M1

(1 + a)1−q1
b(1+a)(1−q1) +

nrbq

q
,

(3.21)

where a = (q − 1)/(1 − q1) ∈ (−1, 0), M1 = ‖m‖L1/q1 [0,b], n = sup{n(t), t ∈ [0, b]}.
Then from (3.20) and (3.21), we get that

‖h‖ ≤ M0|x0| +
MM0

Γ
(

1 + q
)

(

qM1

(1 + a)1−q1
b(1+a)(1−q1) + nrbq

)

:= l. (3.22)
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Step 3 (Φ maps bounded sets into equicontinuous sets of C0). Let t1, t2 ∈ [0, b], t1 < t2, and
Br = {x ∈ C0, ‖x‖ ≤ r} be a bounded set of C0. For each x ∈ Br and h ∈ Φx, there exists
f ∈ NF,x such that

h(t) =
∫∞

0
hq(θ)S′(tqθ)x0dθ + lim

λ→∞
q

∫ t

0

∫∞

0
θ(t − s)q−1hq(θ)S′((t − s)qθ

)

Bλf(s)dθds.

(3.23)

Then,

|h(t2) − h(t1)| =
∣
∣
∣
∣

∫∞

0
hq(θ)S′

(

t
q

2θ
)

x0dθ −
∫∞

0
hq(θ)S′

(

t
q

1θ
)

x0dθ

+ lim
λ→∞

q

∫ t2

0

∫∞

0
θ(t2 − s)q−1hq(θ)S′((t2 − s)qθ

)

Bλf(s)dθds

− lim
λ→∞

q

∫ t1

0

∫∞

0
θ(t1 − s)q−1hq(θ)S′((t1 − s)qθ

)

Bλf(s)dθds

∣
∣
∣
∣
∣

≤
∫∞

0
hq(θ)

∥
∥
∥S′

(

t
q

2θ
)

− S′
(

t
q

1θ
)∥
∥
∥|x0|dθ

+

∣
∣
∣
∣
∣
lim
λ→∞

q

∫ t2

t1

∫∞

0
θ(t2 − s)q−1hq(θ)S′((t2 − s)qθ

)

Bλf(s)dθds

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
lim
λ→∞

q

∫ t1

0

∫∞

0
θ(t2 − s)q−1hq(θ)S′((t2 − s)qθ

)

Bλf(s)dθds

− lim
λ→∞

q

∫ t1

0

∫∞

0
θ(t1 − s)q−1hq(θ)S′((t2 − s)qθ

)

Bλf(s)dθds

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
lim
λ→∞

q

∫ t1

0

∫∞

0
θ(t1 − s)q−1hq(θ)S′((t2 − s)qθ

)

Bλf(s)dθds

− lim
λ→∞

q

∫ t1

0

∫∞

0
θ(t1 − s)q−1hq(θ)S′((t1 − s)qθ

)

Bλf(s)dθds

∣
∣
∣
∣
∣

=
∫∞

0
hq(θ)

∥
∥
∥S′

(

t
q

2θ
)

− S′
(

t
q

1θ
)∥
∥
∥|x0|dθ

+

∣
∣
∣
∣
∣
lim
λ→∞

q

∫ t2

t1

∫∞

0
θ(t2 − s)q−1hq(θ)S′((t2 − s)qθ

)

Bλf(s)dθds

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
lim
λ→∞

q

∫ t1

0

∫∞

0
θ
[

(t2 − s)q−1 − (t1 − s)q
]

hq(θ)S′((t2 − s)qθ
)

Bλf(s)dθds

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
lim
λ→∞

q

∫ t1

0

∫∞

0
θ(t1 − s)q−1hq(θ)

[(

S′(t2 − s)qθ
)

− S′((t1 − s)qθ
)]

Bλf(s)dθds

∣
∣
∣
∣
∣

= I1 + q(I2 + I3 + I4),
(3.24)
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where

I1 =
∫∞

0
hq(θ)

∥
∥
∥S′

(

t
q

2θ
)

− S′
(

t
q

1θ
)∥
∥
∥|x0|dθ,

I2 =

∣
∣
∣
∣
∣
lim
λ→∞

∫ t2

t1

∫∞

0
θ(t2 − s)q−1hq(θ)S′((t2 − s)qθ

)

Bλf(s)dθds

∣
∣
∣
∣
∣
,

I3 =

∣
∣
∣
∣
∣
lim
λ→∞

∫ t1

0

∫∞

0
θ
[

(t2 − s)q−1 − (t1 − s)q−1
]

hq(θ)S′((t2 − s)qθ
)

Bλf(s)dθds

∣
∣
∣
∣
∣
,

I4 =

∣
∣
∣
∣
∣
lim
λ→∞

∫ t1

0

∫∞

0
θ(t1 − s)q−1hq(θ)

[

S′((t2 − s)qθ
)

− S′((t1 − s)qθ
)]

Bλf(s)dθds

∣
∣
∣
∣
∣
.

(3.25)

By using analogous argument performed in (3.20) and (3.21), we can conclude that

I2 ≤
MM0

Γ
(

1 + q
)

(

M1

(1 + a)1−q1
(t2 − t1)(1+a)(1−q1) +

nr(t2 − t1)q

q

)

,

I3 ≤
MM0

Γ
(

1 + q
)

⎡

⎣

(∫ t1

0

(

(t1 − s)q−1 − (t2 − s)q−1
)1/(1−q1)

ds

)1−q1

‖m‖L1/q1 [0,t1]

+nr
∫ t1

0

(

(t1 − s)q−1 − (t2 − s)q−1
)

ds

⎤

⎦

≤ MM0

Γ
(

1 + q
)

⎡

⎣M1

(∫ t1

0

(

(t1 − s)a − (t2 − s)a
)

ds

)1−q1

+nr

(

(t2 − t1)q

q
−
t
q

2

q
+
t
q

1

q

)⎤

⎦

=
MM0

Γ
(

1 + q
)

(

M1

(1 + a)1−q1

(

t1+a1 − t1+a2 + (t2 − t1)1+a
)1−q1

+
nr

q

[

(t2 − t1)q − t
q

2 + t
q

1

]
)

≤ MM0

Γ
(

1 + q
)

(

M1

(1 + a)1−q1
(t2 − t1)(1+a)(1−q1) +

nr

q
(t2 − t1)q

)

.

(3.26)

Hence limt2 → t1I2 = 0 and limt2 → t1I3 = 0.
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On the other hand, (H2) implies that S′(t) for t > 0 is continuous in the uniform
operator topology; then from the Lebesgue dominated convergence theorem, we get
limt2 → t1I1 = 0 and

lim
t2 → t1

I4 ≤ lim
t2 → t1

M

∫ t1

0

∫∞

0
θ(t1 − s)q−1hq(θ)

∥
∥S′((t2 − s)qθ

)

− S′((t1 − s)qθ
)∥
∥
∣
∣f(s)

∣
∣dθds

≤ M

∫ t1

0

∫∞

0
θ(t1 − s)q−1hq(θ) lim

t2 → t1

∥
∥S′((t2 − s)qθ

)

− S′((t1 − s)qθ
)∥
∥
∣
∣f(s)

∣
∣dθds

= 0.
(3.27)

Consequently, |h(t2)−h(t1)| → 0 independently of x ∈ Br as t2 → t1, which means thatΦ(Br)
is equicontinuous.

Step 4 (For each t ∈ [0, b], V (t) = {(Φx)(t), x ∈ Br} is relatively compact in X). Obviously,
V (0) = {x0} is relatively compact in X. Let 0 < t < b be fixed. For x ∈ Br and h ∈ Φx, there
exists f ∈ NF,x such that

h(t) =
∫∞

0
hq(θ)S′(tqθ)x0dθ + lim

λ→∞
q

∫ t

0

∫∞

0
θ(t − s)q−1hq(θ)S′((t − s)qθ

)

Bλf(s)dθds.

(3.28)

For arbitrary ε ∈ (0, t) and δ > 0, define an operator Fε,δ on Br by

(Fε,δx)(t) =
∫∞

δ

hq(θ)S′(tqθ)x0dθ

+ lim
λ→∞

q

∫ t−ε

0

∫∞

δ

θ(t − s)q−1hq(θ)S′((t − s)qθ
)

Bλf(s)dθds

=
∫∞

δ

hq(θ)S′(tqδ)S′((tqθ) − tqδ)x0dθ

+ lim
λ→∞

q

∫ t−ε

0

∫∞

δ

θ(t − s)q−1hq(θ)S′(εqδ)S′((t − s)qθ − εqδ
)

Bλf(s)dθds

= S′(tqδ)
∫∞

δ

hq(θ)S′((tqθ) − tqδ)x0dθ

+ S′(εqδ) lim
λ→∞

q

∫ t−ε

0

∫∞

δ

θ(t − s)q−1hq(θ)S′((t − s)qθ − εqδ
)

Bλf(s)dθds.

(3.29)
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Then from the compactness of S′(t), t > 0, we get that the set Vε,δ(t) = {(Fε,δx)(t), x ∈ Br} is
relatively compact in X for each ε ∈ (0, t) and δ > 0. Moreover, for every x ∈ Br , we have

|(Φx)(t) − (Fε,δx)(t)| =
∣
∣
∣
∣
∣

∫δ

0
hq(θ)S′(tqθ)x0dθ

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
lim
λ→∞

q

∫ t

0

∫δ

0
θ(t − s)q−1hq(θ)S′((t − s)qθ

)

Bλf(s)dθds

+ lim
λ→∞

q

∫ t

0

∫∞

δ

θ(t − s)q−1hq(θ)S′((t − s)qθ
)

Bλf(s)dθds

− lim
λ→∞

q

∫ t−ε

0

∫∞

δ

θ(t − s)q−1hq(θ)S′((t − s)qθ
)

Bλf(s)dθds

∣
∣
∣
∣
∣

≤ M0|x0|
∫δ

0
hq(θ)dθ

+ q

∣
∣
∣
∣
∣
lim
λ→∞

∫ t

0

∫δ

0
θ(t − s)q−1hq(θ)S′((t − s)qθ

)

Bλf(s)dθds

∣
∣
∣
∣
∣

+ q

∣
∣
∣
∣
∣
lim
λ→∞

∫ t

t−ε

∫∞

δ

θ(t − s)q−1hq(θ)S′((t − s)qθ
)

Bλf(s)dθds

∣
∣
∣
∣
∣

≤ M0|x0|
∫δ

0
hq(θ)dθ + qMM0

∫ t

0
(t − s)q−1

∣
∣f(s)

∣
∣ds

∫δ

0
θhq(θ)dθ

+ qMM0

∫ t

t−ε
(t − s)q−1

∣
∣f(s)

∣
∣ds

∫∞

0
θhq(θ)dθ.

(3.30)

In view of (3.21), we have

|(Φx)(t) − (Fε,δx)(t)|

≤ M0|x0|
∫δ

0
hq(θ)dθ + qMM0

∫δ

0
θhq(θ)dθ

(

M1

(1 + a)1−q1
b(1+a)(1−q1) +

nrbq

q

)

+
qMM0

Γ
(

1 + q
)

⎡

⎣

(∫ t

t−ε
(t − s)(q−1)/(1−q1)ds

)1−q1

‖m‖L1/q1 [t−ε,t] + nr

∫ t

t−ε
(t − s)q−1ds

⎤

⎦

≤ M0|x0|
∫δ

0
hq(θ)dθ + qMM0

∫δ

0
θhq(θ)dθ

(

M1

(1 + a)1−q1
b(1+a)(1−q1) +

nrbq

q

)

+
qMM0

Γ
(

1 + q
)

(

M1

(1 + a)1−q1
ε(1+a)(1−q1) +

nrεq

q

)

.

(3.31)
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From limδ→ 0
∫δ

0 hq(θ)dθ = 0 and limδ→ 0
∫δ

0 θhq(θ)dθ = 0, we get that there are relatively
compact sets arbitrarily close to the set V (t), t > 0. Hence the set V (t), t > 0, is also relatively
compact in X.

Step 5 (Φ has a closed graph). Let xn → x∗, hn ∈ Φxn, and hn → h∗ as n → ∞; we will prove
that h∗ ∈ Φx∗. hn ∈ Φxn means that there exists fn ∈ NF,xn such that

hn(t) =
∫∞

0
hq(θ)S′(tqθ)x0dθ + lim

λ→∞
q

∫ t

0

∫∞

0
θ(t − s)q−1hq(θ)S′((t − s)qθ

)

Bλfn(s)dθds.

(3.32)

We must prove that there exists f∗ ∈ NF,x∗ such that

h∗(t) =
∫∞

0
hq(θ)S′(tqθ)x0dθ + lim

λ→∞
q

∫ t

0

∫∞

0
θ(t − s)q−1hq(θ)S′((t − s)qθ

)

Bλf∗(s)dθds.

(3.33)

Consider the linear continuous operator T : L1([0, b], X) → C([0, b], X) defined by

(

Tf
)

(t) = lim
λ→∞

q

∫ t

0

∫∞

0
θ(t − s)q−1hq(θ)S′((t − s)qθ

)

Bλf(s)dθds. (3.34)

We can easily see that T is continuous. On the other hand,

∣
∣
∣
∣

(

hn(t) −
∫∞

0
hq(θ)S′(tqθ)x0dθ

)

−
(

h∗(t) −
∫∞

0
hq(θ)S′(tqθ)x0dθ

)∣
∣
∣
∣

≤ ‖hn − h∗‖ −→ 0, as n −→ 0.
(3.35)

From Theorem 2.13, it follows that T◦NF is a closed graph operator. Moreover, we have that

hn −
∫∞

0
hq(θ)S′(tqθ)x0dθ ∈ T(NF,xn). (3.36)

Since xn → x∗, it follows from Theorem 2.13 that there exists f∗ ∈ NF,x∗ such that

h∗(t) −
∫∞

0
hq(θ)S′(tqθ)x0dθ = lim

λ→∞
q

∫ t

0

∫∞

0
θ(t − s)q−1hq(θ)S′((t − s)qθ

)

Bλf∗(s)dθds.

(3.37)
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Thus,

h∗(t) =
∫∞

0
hq(θ)S′(tqθ)x0dθ + lim

λ→∞
q

∫ t

0

∫∞

0
θ(t − s)q−1hq(θ)S′((t − s)qθ

)

Bλf∗(s)dθds.

(3.38)

This implies that h∗ ∈ Φx∗.
Therefore Φ is a completely continuous multivalued map, u.s.c. with convex closed

values. In order to prove that Φ has a fixed point, we need one more step.

Step 6 (The setU = {x ∈ C0 : δx ∈ Φx, for some δ > 1} is bounded). Let x ∈ U; then δx ∈ Φx
for some δ > 1. Thus there exists f ∈ NF,x such that for t ∈ [0, b],

x(t) =
1
δ

∫∞

0
hq(θ)S′(tqθ)x0dθ + lim

λ→∞

q

δ

∫ t

0

∫∞

0
θ(t − s)q−1hq(θ)S′((t − s)qθ

)

Bλf(s)dθds.

(3.39)

From (H4), for each t ∈ [0, b] we have

|x(t)| =
∣
∣
∣
∣
∣

1
δ

∫∞

0
hq(θ)S′(tqθ)x0dθ + lim

λ→∞

q

δ

∫ t

0

∫∞

0
θ(t − s)q−1hq(θ)S′((t − s)qθ

)

Bλf(s)dθds

∣
∣
∣
∣
∣

≤ M0|x0| +
qMM0

Γ
(

1 + q
)

∫ t

0
(t − s)q−1

∣
∣f(s)

∣
∣ds

≤ M0|x0| +
qMM0

Γ
(

1 + q
)

∫ t

0
(t − s)q−1m(s)ds +

qnMM0

Γ
(

1 + q
)

∫ t

0
(t − s)q−1|x(s)|ds

≤ M0|x0| +
qMM0M1

Γ
(

1 + q
)

(1 + a)1−q1
b(1+a)(1−q1) +

qnMM0

Γ
(

1 + q
)

∫ t

0
(t − s)q−1|x(s)|ds

≤ a + b

∫ t

0
(t − s)q−1|x(s)|ds,

(3.40)

where a = M0|x0| + (qMM0M1/Γ(1 + q)(1 + a)(1−q1))b(1+a)(1−q1), b = qnMM0/Γ(1 + q).

Then from Corollary 2.11, we have

|x(t)| ≤ aEq

(

bΓ
(

q
)

tq
)

. (3.41)

Therefore, we obtain that

‖x‖ ≤ aEq

(

bΓ
(

q
)

bq
)

. (3.42)

This shows that U is bounded.
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As a consequence of Theorem 2.14, we conclude that Φ has a fixed point which is the
integral solution of problem (1.1). This completes the proof.

4. An Example

As an application of our results we consider the following fractional differential inclusions of
the form

Dqu(t, z) ∈ ∂2

∂z2
u(t, z) +G(t, u(t, z)), z ∈ [0, π], t ∈ (0, b],

u(t, 0) = u(t, π) = 0, t ∈ [0, b],

u(0, z) = u0, z ∈ [0, π],

(4.1)

where b > 0, G : [0, b] ×X → P(X) satisfies semi-continuous assumptions (H3) and (H4).
Consider X = C([0, π];R) endowed with the supnorm and the operator A : D(A) ⊂

X → X defined by

D(A) =
{

u ∈ C2([0, π];R) : u(t, 0) = u(t, π) = 0
}

, Au =
∂2

∂z2
u(t, z). (4.2)

Now, we have D(A) = {u ∈ X : u(t, 0) = u(t, π) = 0}/=X. As we know from [17] that
A satisfies the Hille-Yosida condition with (0,+∞) ⊆ ρ(A) and λ > 0, ‖R(λ,A)‖ ≤ 1/λ. Hence,
operator A satisfies (H1), (H2), andM = M0 = 1.

Then the system (4.1) can be reformulated as

Dqx(t) ∈ Ax(t) + F(t, x(t)), t ∈ [0, b],

x(0) = u0,
(4.3)

where x(t)(z) = u(t, z), F(t, x(t))(z) = G(t, u(t, z)).
If we assume that F satisfies (H3) and (H4), then all conditions of Theorem 3.7 are

satisfied and we deduce (4.1) has at least one integral solution.
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