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For Riemannian manifoldsM and N, admitting a submersion φ with compact fibres, we introduce
the projection of a function via its decomposition into horizontal and vertical components. By
comparing the Laplacians onM andN, we determine conditions under which a harmonic function
onU = φ−1(V ) ⊂ M projects down, via its horizontal component, to a harmonic function on V ⊂ N.

1. Introduction and Preliminaries

Harmonic morphisms are the maps between Riemannian manifolds which preserve germs
of harmonic functions, that is, these (locally) pull back harmonic functions to harmonic
functions. The aim of this paper is to analyse the converse situation and to investigate the
class of harmonic morphisms that (locally) projects or pushes forward harmonic functions to
harmonic functions, in the sense of Definition 2.4. If such a class exists, another interesting
question arises “to what extent does the pull back of the projected function preserve the original
function.”

The formal theory of harmonicmorphisms between Riemannianmanifolds beganwith
the work of Fuglede [1] and Ishihara [2].

Definition 1.1. A smooth map φ : Mm → Nn between Riemannian manifolds is called a
harmonic morphism if, for every real-valued function f which is harmonic on an open subset
V of N with φ−1(V ) nonempty, f ◦ φ is a harmonic function on φ−1(V ).

These maps are related to horizontally (weakly) conformal maps which are a natural
generalization of Riemannian submersions.
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For a smooth map φ : Mm → Nn, let Cφ = {x ∈ M| rank dφx < n} be its critical set.
The points of the set M \ Cφ are called regular points. For each x ∈ M \ Cφ, the vertical space
at x is defined by TV

x M = Ker dφx. The horizontal space TH
x M at x is given by the orthogonal

complement of TV
x M in TxM.

Definition 1.2 (see [3, Section 2.4]). A smoothmap φ : (Mm,g) → (Nn,h) is called horizontally
(weakly) conformal if dφ = 0 onCφ and the restriction of φ toM\Cφ is a conformal submersion,
that is, for each x ∈ M\Cφ, the differential dφx : TH

x M → Tφ(x)N is conformal and surjective.
This means that there exists a function λ : M \ Cφ → R

+ such that

h
(
dφ(X), dφ(Y )

)
= λ2g(X,Y ), ∀X,Y ∈ TH

x M. (1.1)

By setting λ = 0 on Cφ, we can extend λ : M → R
+
0 to a continuous function on M

such that λ2 is smooth. The extended function λ : M → R
+
0 is called the dilation of the map.

For x ∈ M\Cφ, the assignments x �→ TH
x M and x �→ TV

x M define smooth distributions
THM and TVM on M \ Cφ or subbundles of TM|M\Cφ , the tangent bundle of M \ Cφ. The
distributions THM and TVM are, respectively, called horizontal distribution (or horizontal
subbundle) and vertical distribution (or vertical subbundle) defined by φ.

Recall that a map φ : Mm → Nn is said to be harmonic if it extremizes the associated
energy integral E(φ) = (1/2)

∫
Ω ‖φ∗‖2dυM for every compact domainΩ ⊂ M. It is well known

that a map (φ) is harmonic if and only if its tension field vanishes.
Harmonic morphisms can be viewed as a subclass of harmonic maps in the light of the

following characterization, obtained in [1, 2].
A smooth map is a harmonic morphism if and only if it is harmonic and horizontally

(weakly) conformal.
What is special about this characterization of harmonic morphism is that it equips

them with geometric as well as analytic features. For instance, the following result of Baird
and Eells [4, Riemannian case] and Gudmundsson [5, semi-Riemannian case] reflects such
properties of harmonic morphisms.

Theorem 1.3. Let φ : Mm → Nn be a horizontally conformal submersion with dilation λ. If

(1) n = 2, then φ is a harmonic map if and only if it has minimal fibres;

(2) n ≥ 3, then two of the following imply the other:

(a) φ is a harmonic map,

(b) φ has minimal fibres,

(c) gradHλ2 = 0 where gradHλ2 denotes the projection of gradλ2 on the horizontal
subbundle of TM, obtained through the unique orthogonal decomposition into vertical
and horizontal parts.

For the fundamental results and properties of harmonic morphisms, the reader is
referred to [1, 3, 6, 7] and for an updated online bibliography to [8].
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2. The Projection of a Function via a Submersion

Given a smooth map φ : Mm → Nn with compact fibres φ−1(φ(x)) for x ∈ M \ Cφ, we
can use fibre integration to define the horizontal and vertical components of every integrable
function f on U ⊂ M at regular points.

Definition 2.1. Let φ : Mm → Nn be a smooth map between Riemannian manifolds with
compact fibres. Define the horizontal component of an integrable function f , on M, at a
regular point x as the average of f taken over the fibre φ−1(φ(x)). Precisely, for any V ⊂ N
and integrable function f : U = φ−1(V ) ⊂ M → R, the horizontal component of f at a regular
point x is defined as

(Hf
)
(x) =

1
vol

(
φ−1(y

))

(∫

φ−1(y)
fdv φ−1(y)

)
(
φ(x)

)
, (2.1)

where x ∈ U, φ(x) = y, dvφ−1(y) is the volume element of the fibre φ−1(y), vol(φ−1(y)) is the
volume of the fibre φ−1(y), and (

∫
φ−1(y) fdv

φ−1(y))(φ(x)) denotes the integral of f |φ−1(φ(x)).
The vertical component of f is given by

(Vf
)
(x) =

(
f −Hf

)
(x). (2.2)

Note that the horizontal component of a function depends only on the fibre φ−1(y) and
not the choice of x ∈ φ−1(y).

Definition 2.2. Let φ : Mm → Nn be a submersion. A function f : U ⊂ M → R is called
horizontally homothetic if the vector field grad(f) is vertical, that is, at each point grad(f) is
tangent to the fibre.

The components Hf and Vf have the following basic properties for submersions.

Lemma 2.3. Let φ : Mm → Nn be a submersion with compact fibres. Suppose that the fibres φ−1(y),
y ∈ N are minimal submanifolds of M. Consider x ∈ U and a function f : U ⊂ M → R.

(1) If f is horizontally homothetic at x, thenHf is also horizontally homothetic at x.

(2) If Hf is horizontally homothetic at x and either Xi(f) ≥ 0 or Xi(f) ≤ 0 (for all i) on
the fibre through x, then f is horizontally homothetic, where {Xi}ni=1 is a local orthonormal
frame for the horizontal distribution.

(3) If f is constant along the fibre through x then Vf = 0.

Proof. The proof can be completed by following the calculations in Proposition 3.1.

Definition 2.4. Let φ : Mm → Nn be a submersion with compact fibres, and let f : U =
φ−1(V ) ⊂ M → R be an integrable function. The horizontal component of f defines a
function f̃ : V ⊂ N → R as

f̃
(
y
)
=
(Hf

)
(x), (2.3)

where x ∈ U and y = φ(x). The function f̃ is called the projection of f on N, via the map φ.
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We next focus on projection of harmonic functions to harmonic functions via harmonic
morphisms.

3. Harmonic Morphisms Projecting Harmonic Functions

The conditions under which harmonic morphisms project harmonic functions to harmonic
functions can be obtained by employing an identity relating the Laplacian on the fibre with
the Laplacians on the domain and target manifolds.

Recalling that for a submersion φ : Mm → Nn, the vector fields X on M and Y on N
are said to be φ-related if dφ(Xx) = Yφ(x) for every x ∈ M. A horizontal vector field X onM is
called basic if it is φ-related to some vector field X′ onN, and X is called horizontal lift of X′. It
is well known that for a given vector field X′ on N, there exists a unique horizontal lift X of
X′ such that X and X′ are φ-related.

Proposition 3.1. Let φ : (Mm,g) → (Nn,h) (n > 2) be a nonconstant submersive harmonic
morphism with dilation λ, having compact, connected, and minimal fibres. Then for any V ⊂ N and
f : U = φ−1(V ) ⊂ M → R,

ΔNf̃ =
1

vol
(
φ−1(y

))
∫

φ−1(y)

1
λ2

(
ΔMf −Δφ−1(y)f

)
dvφ−1(y)

+
1

vol
(
φ−1(y

))
n∑

i=1

∫

φ−1(y)

(
∇M

Xi
Xi

)V
fdvφ−1(y),

(3.1)

where x ∈ U, φ(x) = y, f̃ is as defined in Definition 2.4 and ΔM, ΔN , Δφ−1(y) are the Laplacians on
M, N, φ−1(y), respectively, ∇M is the Levi-Civita connection on M, (∇M

Xi
Xi)

V
denotes the vertical

component of ∇M
Xi
Xi, and {Xi}ni=1 denote the horizontal lift of a local orthonormal frame {X′

i}ni=1 for
TN.

Proof. First notice from Theorem 1.3 that λ is horizontally homothetic, a fact which will be
used repeatedly in the proof.

Choose a local orthonormal frame {X′
i}ni=1 for TN. If Xi denotes the horizontal lift of

X′
i for i = 1, . . . , n, then {λXi}ni=1 is a local orthonormal frame for the horizontal distribution.

Let {Xα}mα=n+1 be a local orthonormal frame for the vertical distribution. Then we can write
the Laplacian ΔM on M as

ΔM =
n∑

i=1

{
λXi ◦ λXi − ∇M

λXi
λXi

}
+

m∑

α=n+1

{
Xα ◦Xα − ∇M

Xα
Xα

}

= λ2
n∑

i=1

{
Xi ◦Xi − ∇M

Xi
Xi

}
+

m∑

α=n+1

{
Xα ◦Xα − ∇M

Xα
Xα

}
.

(3.2)

Now the Laplacian of the fibre φ−1(y) is

Δφ−1(y) =
m∑

α=n+1

{
Xα ◦Xα − ∇φ−1(y)

Xα
Xα

}
. (3.3)
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If B is the second fundamental form of the fibre φ−1(y) as a submanifold in M, we can write
∇M

Xα
Xα as

∇M
Xα
Xα = ∇φ−1(y)

Xα
Xα + B(Xα,Xα). (3.4)

Let μ denote the mean curvature vector of φ−1(y) given by

μ =
1

m − n

m∑

α=n+1

B(Xα,Xα). (3.5)

Setting H = (m − n)μ, we obtain from (3.2)

ΔM = λ2
n∑

i=1

{
Xi ◦Xi −

(
∇M

Xi
Xi

)H
}
+ Δφ−1(y) −H − λ2

n∑

i=1

(
∇M

Xi
Xi

)V

= λ2
n∑

i=1

{
Xi ◦Xi −

(
∇M

Xi
Xi

)H
}
+ Δφ−1(y) − λ2

n∑

i=1

(
∇M

Xi
Xi

)V
,

(3.6)

where XH , XV denote the orthogonal projections of a vector field X on the horizontal and
vertical subbundles of TM, respectively.

Since Xi is the horizontal lift of X′
i (i = 1, . . . , n), we have

X′
i

(
f̃
)
=

1
vol

(
φ−1(y

))

{∫

φ−1(y)
Xi

(
f
)
dvφ−1(y) +

∫

φ−1(y)
fLXi

(
dvφ−1(y)

)}

=
1

vol
(
φ−1(y

))

{∫

φ−1(y)
Xi

(
f
)
dvφ−1(y) +

m∑

α=n+1

∫

φ−1(y)
fg

(
∇M

Xα
Xi, Xα

)
dvφ−1(y)

}

=
1

vol
(
φ−1(y

))

{∫

φ−1(y)
Xi

(
f
)
dvφ−1(y) −

∫

φ−1(y)
fg(H,Xi)dvφ−1(y)

}

,

(3.7)

where LXi denotes the Lie derivative along Xi. The volume of the fibres does not vary in the
horizontal direction because of the relation X′

i(vol(φ
−1(y))) = − ∫

φ−1(y) g(H,Xi)dvφ−1(y) and
the fact that the fibres are minimal.

Similarly, we obtain

X′
i ◦X′

i

(
f̃
)
=

1
vol

(
φ−1(y

))

{∫

φ−1(y)
Xi ◦Xi

(
f
)
dvφ−1(y) −

∫

φ−1(y)
Xi

(
f
) · g(H,Xi)dvφ−1(y)

}

− 1
vol

(
φ−1(y

))

{∫

φ−1(y)
Xi

(
fg(H,Xi)

)
dvφ−1(y) −

∫

φ−1(y)
f(g(H,Xi))2dvφ−1(y)

}

.

(3.8)
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The horizontal homothety of the dilation implies that (∇M
Xi
Xi)

H is the horizontal lift of∇N
X′

i
X′

i,
cf. [9, Lemma 3.1]; therefore, we have

∇N
X′

i
X′

i

(
f̃
)
=

1
vol

(
φ−1(y

))

×
{∫

φ−1(y)

(
∇M

Xi
Xi

)H(
f
)
dvφ−1(y) −

∫

φ−1(y)
f · g

(
H,

(
∇M

Xi
Xi

)H
)
dvφ−1(y)

}

.

(3.9)

Now using (3.7), (3.8), (3.9), along with the condition that the fibres are minimal, in (3.6)
completes the proof.

From the above proposition, we see that it suffices to take λ constant to have both
f and f̃ harmonic on M and N, respectively. In this case, by a homothety of M we may
suppose that λ ≡ 1 and φ is a harmonic Riemannian submersion. We then have the following
consequence.

Theorem 3.2. Let φ : (Mm,g) → (Nn,h) (n ≥ 2) be a harmonic Riemannian submersion with
compact, connected fibres. Then the projection f̃ : V ⊂ N → R (via φ) of any harmonic function
f : U = φ−1(V ) ⊂ M → R is a harmonic function. Moreover, Hf = f̃ ◦ φ. If [fH] denotes the class
of harmonic functions on U = φ−1(V ) having the same horizontal component then each class [fH]
has a unique representative in the space of harmonic functions on V .

Proof. Since ΔMf = 0 and the dilation λ ≡ 1, Proposition 3.1 leads to

ΔNf̃ =
1

vol
(
φ−1(y

))
n∑

i=1

∫

φ−1(y)

(
∇M

Xi
Xi

)V
fdvφ−1(y), (3.10)

where we have also used the fact that

∫

φ−1(y)
Δφ−1(y)fdvφ−1(y) = 0 (3.11)

for compact fibres.
Let {X′

i}ni=1 be a local orthonormal frame for TN and Xi be the horizontal lift of X′
i

for i = 1, . . . , n. Then {Xi}ni=1 is a local orthonormal frame for the horizontal distribution. Let
{Xα}mα=n+1 be a local orthonormal frame for the vertical distribution. Then using the standard
expression for Levi-Civita connection, we have

(
∇M

Xi
Xi

)V
=

m∑

α=n+1

g
(
∇M

Xi
Xi, Xα

)
Xα

=
1
2

m∑

α=n+1

{Xi(g(Xi,Xα)) +Xi(g(Xα,Xi)) −Xα(g(Xi,Xi))

−g(Xi, [Xi,Xα]) + g(Xi, [Xα,Xi]) + g(Xα, [Xi,Xi])}Xα.

(3.12)



Abstract and Applied Analysis 7

Because Xi are basic, Xα are vertical we have [Xi,Xα] vertical and therefore

(
∇M

Xi
Xi

)V
= 0. (3.13)

Hence, from (3.10), f̃ is harmonic. The rest of the proof follows from the construction of f̃ .

As an application, we give a description of harmonic functions onmanifolds admitting
harmonic Riemannian submersions with compact fibres.

Corollary 3.3. Let Mm be a Riemannian manifold admitting a harmonic Riemannian submersion
φ : Mm → Nn with compact fibres. Then

(1) every horizontally homothetic harmonic function on U ⊂ M is horizontal, that is, Vf = 0,
and so in particular is constant;

(2) every nonhorizontally homothetic harmonic function f on U ⊂ M satisfies one of the
following:

(a) Vf /= 0;
(b) Vf = 0 and Xi(Hf)/= 0 for at least one i ∈ {1, . . . , n};
(c) Vf = 0, Xi(Hf) = 0 (for all i) and Xi(f) changes sign on the fibre, for at least one

i ∈ {1, . . . , n}.

Proof. Equation (3.6) implies that a horizontally homothetic harmonic function on M is
harmonic on the fibre and hence is constant on the fibre. Now using Lemma 2.3 we get the
proof.

Remark 3.4. (1) Since an R
N-valued map f = (f1, . . . , fN) is harmonic if and only if each of

its component is harmonic, we see that Riemannian submersions with compact fibres project
R

N-valued harmonic maps from φ−1(V ) to R
N-valued harmonic maps from V .

(2) Given a Lie group G and a compact subgroup H of G, the standard projection
φ : G → G/H with G-invariant metric provides many examples satisfying the hypothesis
of Theorem 3.2. Further examples can be obtained from Bergery’s construction φ : G/K →
G/H with K ⊂ H ⊂ G and K,H compact; see [10] for the details of the metrics for which φ
is a harmonic morphism. Another reference for such examples is [11, Chapter 6].
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