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Some new vectorial Ekeland variational principles in cone quasi-uniform spaces are proved.
Some new equivalent principles, vectorial quasivariational inclusion principle, vectorial quasi-
optimization principle, vectorial quasiequilibrium principle are obtained. Also, several other
important principles in nonlinear analysis are extended to cone quasi-uniform spaces. The results
of this paper extend, generalize, and improve the corresponding results for Ekeland’s variational
principles of the directed vectorial perturbation type and other generalizations of Ekeland’s
variational principles in the setting of F-type topological space and quasi-metric spaces in the
literatures. Even in usual real metric spaces, some of our results are new.

1. Introduction

Ekeland’s variational principle [1] is a forceful tool in nonlinear analysis, control theory,
global analysis, and many others. In the last two decades, it has been further studied,
extended, and applied to many fields in mathematics (see, e.g., [2-17, 19-21, 26, 28, 29]
and the references therein). Especially, we want to emphasize that many generalizations of
Ekeland’s variational principle to vector-valued functions have been recently obtained in
[2-5, 8-10, 14-17] and the references therein. For example, in [2], the author proved some
vectorial Ekeland’s variational principles for vector-valued functions defined on quasi-metric
spaces. In [3, 5, 14], the authors proved some vectorial Ekeland’s variational principles for
vector-valued functions defined on metric spaces. In [8], the authors proved some vector
Ekeland’s variational principle in a F-type topological space. However, all of these results
are essentially Ekeland’s principle of the directed vectorial perturbation type. But, the study
for the case of nondirected vectorial perturbation type has just been started in [15]. On the
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other hand, variational inclusion problem is a very important problem and it contains many
important problems such as complementarity problems, minimax inequalities, equilibrium
problems, saddle point problems, optimization theory, bilevel problems, mathematical
programs with equilibrium constraints, variational inequalities, and fixed point problems
(see, e.g., [18-21] and the references therein).

In this paper, we first prove some nondirected vectorial perturbation type Ekeland’s
variational principles in cone quasi-uniform spaces, then by using our new principles, we
introduce some variational inclusion principles and prove the equivalence among these
results and other equivalents of our principle.

The paper is organized as follows: in Section 2, some properties of cone, some new
equivalent characterizations of the pseudo-nuclear cone, and the definition of cone quasi-
uniform spaces are given. In Section 3, we prove some new Ekeland’s variational principles
for both non-directed vectorial perturbation type and directed vectorial perturbation type
in the setting of general topological vector spaces for vector-valued functions defined on
complete cone quasi-uniform spaces. Some of new equivalent principles, vectorial quasi-
variational inclusion principle, vectorial quasi-optimization principle, and vectorial quasi-
equilibrium principle are introduced and proved, which have a wide practical background
in quasi-variational inclusion problems, quasi-optimization problems, and quasi-equilibrium
problems (see, e.g., [21]). In addition to these new equivalent principles, generalized Caristi-
Kirk type coincidence point theorem for multivalued maps defined on cone quasi-uniform
spaces, nonconvex maximal element theorem for the family of multivalued maps defined
on cone quasi-uniform spaces, generalized vectorial Takahashi nonconvex minimization
theorem, and Oettli-Théra type theorem defined on cone quasi-uniform spaces are also
presented. The results of this paper not only give some new Ekeland’s principles of the non-
directed vectorial perturbation type and some new equivalent principles, but also extend
and generalize or improve many corresponding results for Ekeland’s variational principles
of the directed vectorial perturbation type and other generalizations of Ekeland’s variational
principles in the setting of F-type topological space and quasi-metric spaces in the literatures
[2,3,5,8, 14, 15]. Even in usual real metric spaces, some of our results are new.

2. Preliminaries

Let E(T) be a topological vector space and V;(0) (resp., V5(8)) denote the 8-neighborhood
base with respect to the topology 7 (resp., to the weak topology ). A subset K C E is called
a closed convex cone if K is closed, K + K € K and AK C K for all A € [0,+00). A quasiorder
(i.e., a reflexive and transitive relation) on E can be defined by K, that is, x < y if and only
if y —x € K. We write x < y whenever x < y and y # x. The quasi-order < is called a partial
order if it is antisymmetric. Let E* be the topological dual space of E (i.e., E* is the set of all
continuous linear functions on E) and let K* be the dual cone of K, thatis, K* = {f € E* :
f(x) >0, for all x € K}.

We recall that a subset B C E is said to be K-saturated if B = [B], where [B] is defined
by

[Bl]=(B+K)n(B-K)=U{[x,y] :x€B,y€B}, (2.1)
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where [x,y] ={z€ E: x <z <y} = (x+K)N(y - K). The cone K is said to be normal if there
is a 0-neighborhood base for T consisting of K-saturated sets.

The following Lemma 2.1 is an elementary result (refer to [22-24]) characterizing the
concept of normality that will be used in our proof.

Lemma 2.1. Let E(7) be a topological vector space and K C E be a cone. Then the following
propositions are equivalent.
(1) K is a normal cone.
(2) There exists a 0-neighborhood base V(0) for T consisting of sets V for which@ < x <y eV
implies x € V.
(3) For any two nets {x;};c; and {yi},.; in E, if 0 < x; < y; forall i € I and {y;},.; converges
to zero for T, then {x;},c; converges to zero for T.

(4) For any T-neighborhood V of zero, there exists a T-neighborhood W of zero such that 0 <
x <y € Wimpliesx € V.

The following notion of a pseudo-nuclear cone is a generalization of nuclear cone
which has many applications in optimizations, fixed point theory, and the best approximation
theory, and so forth.

Definition 2.2 (see [25]). Let E(T) be a topological vector space (not necessarily locally
convex) and K C E be a closed convex cone (not necessary pointed). If f € E*, then we
denote f, = {x € E: f(x) < 1}. A set of the kind f, N K is called a 6-pseudoslice of K, where
f € E*, the dual space of E. We say that K is pseudo-nuclear if each 6-neighborhood in E
contains a 8-pseudoslice of K.

To discuss the properties of pseudo-nuclear cone, we need the following existence
theorem of a quasi-norms family which can determine the topology of E(7).

Lemma 2.3 (see [26]). Let E(t) be a topological vector space and I:I(T) be a balanced 0-neighborhood
base for the topology . Then there exist a directed set I and a quasi-norms family {|| - ||, : & € I} such
that

(a) forany k € R, a € I and x € E, ||kx||, = |k|||x|l,;

(b) for any a € I, there exists p € I such that a < pand ||x +y||, < [lx]|, + ||y||H for any
x,y €E;

(c) forany a, p € I, if a < p, then ||x||, < [|x||, for any x € E;
(d) {II- ||, : @ € I} and U(t) determine the same topology T;

(e) if T is a Ty topology (i.e., for any x #6, there exists a neighborhood of zero U € U (t) such
that x ¢ U), then

x=0 & |x|,=0, Vael. (2.2)

The following lemma gives several equivalent conditions of pseudo-nuclearity.

Lemma 2.4. Let E(T) be a topological vector space and K C E a cone. Then the following assertions
are equivalent.
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(1) K is a pseudo-nuclear cone.
(2) Forall V € V,(0), there exists W € V(0) such that 0 < x <y € W implies x € V.
(3) Forall V € V,(0), there exists f € K* such that {x € K : f(x) <1} C V.

@) If{l - |l : « € 1} is the family of quasi-norms which determines the topology of E(T), then,
for any a € I, there exists f, € K* such that

”x”a S fa(x)r Vx € K. (23)

Proof. It follows from Theorem 3.8 in [24] that (1) = (2).

(2) = (3) Since each neighborhood of zero with respect to the weak topology o is also
aneighborhood of zero with respect to the topology 7, for any V € V;(6), we have V € V,(9).
From (2), we know that there exists W € V;(0) such that 6 < x <y € W implies x € V. This
and (4) of Lemma 2.1 imply that K is a normal cone with respect to the weak topology o. Since
the weak topology o is defined by semi-norms family {|f|: f € E*}, E(o) is a locally convex
topological vector space. Therefore, E* = K* — K* with respect to the weak topology o. From
(2), it follows that, for any V' € V;(0), there exists W € V;(0) such that 8 < x <y € W implies
x € V. Thus there exist f1,..., fm and € > O such that {x € E : |fi(x)| <¢, i=1,...,m} CW.
Also, there exist g;, h; € K* such that f; = g;—h; foreachi=1,...,m.Let f = (2/¢) 3.1, (gi+hi).
Then f € K* and

c{xeE:|filx)|<e i=1,...,m}

N[ ™

{xeK: f(x)<1}= {xeK:i(gi+h,~)(x) <
i-1

(2.4)

cW.

Thus {x € K : f(x) <1} CV, thatis, (3) holds.

(3) = (4) Suppose that {|| - ||, : « € I} is the family of quasi-norms which determines
the topology of E(7). Then, forany a € I, {x € E : ||x||, < 1} € V,(0). It follows from (3) that,
for any a € I, there exists f, € K* such that {x e K: f,(x) <1} C{x € E: x|, <1}.Ifxe K
and fa(x) > 0, then ||x/ fa(x)||, < 1, thatis, |[x]|, < fa(x). If x € K and f,(x) = 0, then, for
any ! € R, f.(Ix) = 0, which implies that ||Ix||, = I||x||, < 1. Since [ is arbitrary, we know that
llx]l, = 0and so ||x||« < fa(x) for all x € K, thatis, (4) is true.

(4) = (1) By Lemma 2.3(d), {|| - ||, : « € I} and l:l(T) determine the same topology
7. Then, for any V' € V,(0), there exist aj, ay, ..., a,, € I and positive numbers 61,6, ...,
such that N2, {x € E : ||x||,, < 6;} C V. By (4), there exists f,, € K* (i = 1,2,...,m) such that
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lxll,, < fa;(x) for all x € K. Let 6 = min{61,6,...,0,} and f(x) = (2/06) > fa(x). Then
f eEand

{xeE: f(x)<1}nK

1
—_——

xeK:i_Zlfai(x)sg}

s

C({xeK:|fu(x)] <8}
i=1 (2.5)
C ﬁ{x € E: x|, <6}
i=1
cV.
This shows that (1) holds. This completes the proof. O

To discuss Ekeland’s principles of the nondirected vectorial perturbation type, by
enlightening of the work in [27], we define the following cone quasi-uniform space, which is
an extension of the cone uniform space in [27]. About the discussion and applications of cone
uniform space, one can refer to [15, 27-29].

Definition 2.5. Let X be a nonempty set and (D, <) be a directed set. Let E be a topological
vector space and K C E be a cone. Let the family

pP={d,: XxX—E:\LeD} (2.6)

satisfy the following conditions:

(dl) forany A € D, dy(x,y) € K forall x,y € X;
(d2) forany A € D, d,(x,y)=0if and only if x = y;
(d3) for any A € D, there exists p € D with A < p such that

di(x,y) <du(x,z)+d,(z,y), YxyzeX (2.7)

Then P is called a family of cone quasi-metrics on X and (X, P) is called a cone quasi-uniform
space.

Definition 2.6. Let {x,} be a sequence in a cone quasi-uniform space (X, P).

(1) The sequence {x,} is said to be convergent to a point x € X if, for any A € D and
0-neighborhood U in E, there exists a positive integer N such that d, (x, x,,) € U for
any n > N, that is, lim,_, o, d)(x, x,,) = 6, which is denoted by lim,,_, ,, x, = x.

(2) The sequence {x,} is called a Cauchy sequence in X if, for any A\ € D and 6-
neighborhood U in E, there exists a positive integer N such that d,(x,, x,,) € U
forany m > n > N, that is, limy,; , . o dy (X, X)) = 0.

(3) If every Cauchy sequence is convergent in (X, P), then (X, P) is called a sequentially
complete cone quasi-uniform space.
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(4) For any net {x4} ,¢; in a cone quasi-uniform space (X, P), the convergence of the net
and the Cauchy net can be defined similarly. If every Cauchy net is convergent in
(X, P), then (X, P) is called a complete cone quasi-uniform space.

Remark 2.7. 1f we take E = R, then the cone quasi-uniform space is a generalization of F-type
topological spaces [30]. If P = {d : X x X — E}, then (X, P) reduces to a cone quasi-metric
space (X, d). The notions on convergence and completeness in a cone quasi-uniform space
are complicated because of the lack of symmetry of the cone quasi-metric. Similarly, we can
define the other kinds of convergence and completeness in a cone quasi-uniform space. For
more details, the reader can refer to same discussions in the case of quasi-metric spaces [31].

Recall that a cone K has a base [8] or is well based [11] if there exists a convex subset B
with 6 € B such that K = U,-(7B.

Lemma 2.8 (see [8]). Let E(t) be a topological vector space and K C E be a closed convex cone.
Then the cone K has a base if and only if

(K*)° = {f €E": f(x)>0, Vx € K\ {0} #0. (2.8)

Definition 2.9 (see [16]). Let (X, <) be a quasiordered set.

(1) Xis said to be totally ordered upperseparable (resp., totally ordered lower-separable) if, for
any totally ordered nonempty subset M of X, there exists an increasing sequence
(resp., decreasing sequence) {x,} C M such that, for any x € M, there exists x,, €
{x,} satisfying x < x,, (resp., xp, < x).

(2) X is said to be totally ordered separable if X is both totally ordered upperseparable
and totally ordered lower-separable.

Lemma 2.10 (see [16]). Let (X, <) be a partially ordered set such that every increasing sequence has
an upper bound, let (Y, <y) be a totally ordered upper-separable (resp., totally ordered lower-separable)
partially ordered set, and let ® : X — Y be an increasing (resp., decreasing) mapping. Then, for any
x € X, there exists v > x such that ®(y) = @(v) for all y > v. Moreover, if @ is strictly monotone,
then v is a maximal element.

3. Vectorial Ekeland’s Variational Principle

Let E(7) be a topological vector space, let K be a closed convex cone in E, let (X, P) be a
complete cone quasi-uniform space, and let ¢ : E — (0, +o0) be a nondecreasing function,
that is, x < y implies that ¢(x) < ¢(y). For a function F : X x X — E, we first give the
following conditions:

(H1) F(x,x) =0 forall x € X;
(H2) F(x,y)+ F(y,z) € F(x,z) + Kforall x,y,z € X;
(H3) for any fixed x, xy € X, the mapping F(x,-) : X — E is bound from below and

{y € X : p(F(x0,x))F(x,y) +d\(x,xy) <6, VAe D}. (3.1)

Is a closed subset in X.
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Lemma 3.1. Let E(T) be a topological vector space with a Ty topology T and K C E be a closed convex
pseudo-nuclear cone or a closed point convex cone (i.e., K N (-K) = {0}). Let (X, P) be a complete

cone quasi-uniform space and F : X x X — E be a function satisfying (H1) and (H2). For any fixed
xo € X, one defines a relation < on X as follows:

x < x' & @(F(xo,x))F(x,x") +dy(x,x') <60, VieD. (3.2)

Then (X, =) is a partially ordered set.

Proof. 1t is clear that x < x. If x < y and y < x, then we have

@(F(xo,x))F(x,y) +di(x,y) <6, VAe€D,

(3.3)
¢(F(x0,y))F(y,x) +d\(y,x) <6, VieD.
This shows that F(x,y) < 6 and F(y, x) < 0. It follows from the condition (H2) that
F(xo,x) < F(xo0,y) + F(y,x) < F(x0,¥), 54)

F(xo,y) < F(xo,x) + F(x,y) < F(x, x).

It follows from Lemma 2.3 that there exists a family {||- ||, : @ € I} of quasi-norms which
defines the topology 7 of E. If K is pseudo-nuclear, by Lemma 2.4, it follows that, for any
a € 1, there exists f, € K* with the property:

llxll, < fa(x), Vxe€K. (3.5)

For any a € I, we know that f, is an increasing function on E. Then it follows from (3.4) that
@(F(x0,%)) = 9(F(x0,)), falF(x0,%)) = falF(x0,y)) and then fo(F(y,x)) = fa(E(x,y)) = 0.
Thus, by (3.3), it follows that f.(di(x,y)) = fa(di(y,x)) =0, forany a € I and A € D. It
follows from (3.5) that dy(x,y) = 0 for all A € D, thatis, x = y. If K is a closed convex
cone, then the ordering relation < is a partial ordering. It follows from (3.3) and (3.4) that
F(x9,x) = F(xo,y) and F(y,x) = F(x,y) = 0. Again by (3.3), it follows that d, (x, y) = 6 for
all A € D, thatis, x = y. If x X y and v < z, then we have

¢(F(x0,x))F(x,y) +di(x,y) <0, VAeD,
¢(F(x0,y))F(y,z) +di(y,z) <6, VYAeD,

(3.6)

which imply that F(x,y) <0 and F(y, z) < 6 and so

F(xo,y) < F(xo,x) + F(x,y) < F(xo, x). (3.7)
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By (d3) of Definition 2.5, it follows that, for any A € D, there exists p € D with A < y such that
dy(x,z) <dy(x,y) +d,(y,z) and so

p(F(x0,x))F(x,z) + di(x, z)

< @(F(xo,x))[F(x,y) + F(y,2)| +du(x,y) +du(y, 2)

(3.8)
< @(F(x0,x))F (x,y) + (F (x0,y)) F (v, 2) + du(x,y) + du (v, 2)
<0.
This shows that x < z. Therefore, < is a partial order on X. This completes the proof. O

First, we give a general Ekeland’s principle of the nondirected vectorial perturbation
type as follows:

Theorem 3.2. Let E(T) be a topological vector space with a Ty topology T and K C E be a closed
convex cone. Let (X, P) be a complete cone quasi-uniform space and let F : X x X — E be a function
satisfying the conditions (H1), (H2), and (H3). If the cone K is pseudo-nuclear, then, for any xy € X,
there exists v € X such that

(1) @(B)F(x0,v) + dy(xo,v) € =K forall A € D;
(2) for all x € X with x # v, there exists A € D such that

@(F(x0,0))F (v, x) + d\ (0, x) & —K. (3.9)

Proof. For any fixed xy € X, if < is defined by (3.2), then Lemma 3.1 shows that (X, <) is a
partially ordered set.

First, we prove that any increasing net {x,} _, is a Cauchy net. It follows from

YEA
Lemma 2.3 that there exists a family {|| - ||, : « € I} of quasi-norms which defines the topology
7 of E. Since K is pseudo-nuclear, by Lemma 2.4, it follows that, for any a € I, there exists

fa € K* with the property:

Il < falx), VxeK. (3.10)
From the proof of Lemma 3.1, we can show that {F(x, x,) }Y <A 18 a decreasing net and, for
any v >y,
dy(xy, x,) + ¢(F(x0,xy))F(xy,x,) <6, YieD, (3.11)
and so
dy(xy,x,) < —p(F(x0,xy))F(xy,x,), VAeD. (3.12)

It follows from F(xo, x,) < F(xo, xy) + F(xy, x,) that

—F(xy,x,) < F(x0,xy) = F(x0,%y). (3.13)
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Thus we have
dy (xy, %) < @(F(x0,2,)) [F(x0, %) = F(x0,x,)], VAeD, (3.14)
and so, forany a € I,
Fuldy (xy,20)) < (F (x0, %)) [fu (F (30, %)) — fu(F(x0,%,))], VA €D (3.15)

It follows from the condition (H3) that { F(xo, xy)} is bounded from below. This and (3.15)
imply that

liryfa(di(xr,xv)) =0, VieD. (3.16)

It follows from (3.10) that, for any a € I,

liml|d (xy, %) ||, =0, VA€ D, (3.17)

This shows that {xy}y cp is a Cauchy net in X. The completeness implies that {xY}Y A
converges to some v € X. It follows from x, < x, for any v > y that

dy(xy, xy) + ¢(F (x0,xy))F(xy,x,) <6, VYieD. (3.18)
By (H3), we get that

dy(xy,v) + ¢(F(x0,xy))F(xy,v) <6, VAeD. (3.19)

Thus x; < v, thatis, vis an upper bound of the net {x, }YGA. Assumethat A C {x € X : x = xo}
is a totally ordered set. Then A is also a directed set. If we represent A by {xy},c, Where
Xx = X, then {x,},c4 is an increasing net. By the results just proved above, we can know that
A has an upper bound. By the well-known Zorn’s lemma, the set {x € X : x = xp} has a
maximal element v = xy, that is,

@ (F(x0,x0))F(x0,v) +dy(x9,v) <0, VAeD. (3.20)

Therefore, it follows from F(xo, xp) = 0 that the conclusion (1) holds. For any x € X with
x#v, if p(F(xy,v))F(v,x) +dy(v,x) < 0 forall A € D, then v < x. Since v is a maximal
element, we have that v = x, which is a contradiction. Therefore, conclusion (2) holds. This
completes the proof. O

If the cone K has a base, we have the following result.

Theorem 3.3. Let E(T) be a topological vector space with a Ty topology T and let K C E be a closed
convex cone. Let (X, P) be a sequentially complete cone quasi-uniform space and let F : X x X — E
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be a mapping satisfying the conditions (H1), (H2), and (H3). If the cone K has a base, then, for any
xo € X, there exists v € X such that

(1) @(8)F(xo,v) + dy(x0,v) € —K forall A € D;
(2) for all x € X with x # v, there exists A € D such that

@(F(x0,v))F(v,x) +dy(v,x) & K. (3.21)

Proof. Since cone K has a base, it follows from Lemma 2.3 that (K*)° #0. Let ¢ € (K*)°. For any
fixed x¢ € X, assume that < is defined by (3.2). Similarly, as in the proofs of Lemma 3.1 and
Theorem 3.2, we can prove that (X, <) is a partially ordered set and any increasing sequence
{x4},en has an upper bound. The only difference is that f, € K* is replaced by ¢ € (K*)°.
Assume that x < y and x #y. Then we have

dy(x,y) < @(F(xo,x))[F(xo,x) = F(xo0,v)], VYAeD. (3.22)

x #y implies that there exists Ay € D such that d,,(x, y) # 6. Then we have

0 < ¢(dr (x,y)) < (F(xo, %)) [§(F (x0, x)) = §(F (x0, )], (3.23)

thatis, &(F(xo,x)) < {(F(xo,v)). Let 7(x) = {(F(xo,x)). Then 7 : X — Ris strictly increasing.
Assume that A C X is a totally ordered set. Then 7(A) is also a totally set and, for any
x,y € A, x < y if and only if 7(x) < 7n(y). It follows from Theorem 2.3 in [16] that the
set R of real numbers is totally ordered separable and so there exist an increasing sequence
{yn} C 1(A) and a decreasing sequence {z,} C 7(A) such that, for any v € 1(A), there exist
positive integers n; and n, satisfying

Zn, LY L Yny. (3.24)
Let {u,} and {v,} be two sequences in A such that 7(u,) = v, and 7(v,) = z,. Sincerp : X —

R is strictly increasing, we know that {u,} is increasing and {v, } is decreasing. For any x € A,
by (3.24), we have

ﬂ(vnl) =2y < ﬂ(x) SYn = ﬂ(unz) (3.25)

and so

Upy £ X < Uy,. (3.26)

Thus (X, <) is totally ordered separable. By using Lemma 2.10, we can get that there exists a
maximal element v = xg, that is,
¢ (F(x0,x0))F(x0,v) +dy(x9,v) <0, VieD. (3.27)

Then, in the same way as in the proof of Theorem 3.2, we can prove that conclusions (1) and
(2) holds. This completes the proof. O
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Remark 3.4. From the proof of Theorems 3.2 and 3.3 we can see that if cone K is a pointed
convex cone and replace the pseudo-nuclearity of K with the regularity of K (i.e., any
monotone and bounded net in K is convergent), then the conclusions of Theorems 3.2 and
3.3 still hold.

Clearly, our nondirected vectorial perturbation type Ekeland’s principle contains the
directed vectorial perturbation type Ekeland’s principle as a special case. From Theorem 3.2,
we have the following Theorem 3.5, which improves the corresponding results in [2, 3, 5, 8,
14].

Theorem 3.5. Let (X, {d)},cp) be a complete F-type topological space, let E(T) be a Hausdorff
topological vector space, and let K C E be a closed convex cone. Let F : X x X — E be a function
satisfying the conditions (H1), (H2), and (H3). Let ey € K \ {8} for all X € D. If K is pseudo-
nuclear, or E(7) is a locally convex space and K N (-K) = {8}, then, for any xy € X, there exists
v € X such that

(1) ¢(0)F (x0,v) + dy(xo,v)ey € =K forall A € D;
(2) for all x € X with x # v, there exists A € D such that

¢(F(x0,v))F(v,x) +d\(v, x)ey & K. (3.28)
Proof. Let dy:XxX — Ebea mapping defined by dy(x, y) =dy(x,y)ey and
ﬁ:{JA:XxX—Hg:)LED}. (3.29)
It is clearly that, for any net {x, }Y pandx €X,

limd, (xy,x) =0 & limd, (xy,x) =0,
Y 1%

~ 3.30
limd) (xy,x,) =60 & limd, (xy,x,) = 0. (3:30)
Y.v Yv

Since (X, {d)}cp) is a complete F-type topological space, we have that (X, P) is a complete
cone quasi-uniform space. If K is pseudo-nuclear, then the conclusion of Theorem 3.5 can be
obtained by using Theorem 3.2 for (X, 13). If E(7) is a locally convex space and K N (-K) =
{0}, then, for each ey € K\ {0}, we have —e, ¢ K. By using well-known separation theorem
of convex sets, there exist a continuous linear function f), € E* and a number ¢, such that
fa(=ey) < ¢, and fi(x) > ¢ for any x € K. This shows that 0 = f,(6) > c and fy(-ey) < 0. If
x € K, then nx € K for any n € N. So we have that f,(x) > ¢/n. Then by letting n — oo,
we get that f)(x) > 0 for any x € K. Thus, for each ey € K\ {68}, there exists a continuous
function f) € K*, such that f)(ey) > 0. For any fixed x¢ € X, if <is defined by

x < x' & p(F(xo,x))F(x,x") + c?,\(x,x') <6, VYieD. (3.31)

By Lemma 3.1, (X, <) is a partially ordered set. Similarly as in the proofs of Theorem 3.2, we
can prove that any increasing net {xY}Y < has an upper bound. The only difference is that
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fa € K* is replaced by f, € K*. Then, in the same way as in the proof of Theorem 3.2, we can
prove that the conclusion of Theorem 3.5 holds. This completes the proof. O

In the following Theorem 3.6, we introduce some new principles, which are equivalent
with our Ekeland principle.

Theorem 3.6. Let E(T) be a topological vector space with a Ty topology T, K be a closed convex and
pseudo-nuclear cone in E and (X, P) be a complete cone quasi-uniform space. Let F : X x X — E
be a function satisfying the conditions (H1)—(H3). Then, for any xo € X, the following conclusions
hold and they are equivalent.

(1) (Vectorial Ekeland type variational principle in cone quasi-uniform spaces) There exists

v € S(xp) = {x € X : p(0)F(xo,x) + dy(x0,x) € =K, VA € D} (3.32)

such that, for all x € X with x # v, there exists A € D satisfying the following:

@(F(x0,v))F(v,x) +dy(v,x) & K. (3.33)

(2) (Vectorial quasivariational inclusion principle in cone quasi-uniform spaces) Let Z be a
vector space and P C Z be a nonempty convex subset. Let G : X x X — 2%\ @ and
H : X — 2%\ 0 be both multivalued mappings with nonempty values. Suppose that

dy(x,y) + (F(xo,x))F(x,y) <6, VAeD, (3.34)

holds, if y € H(x) and 0 € G(x,y). Then there exists v € S(xg) such that 6 ¢ G(v, y) for
anyy € H(o) \ {0).

(3) (Vectorial quasi-optimization principle in cone quasi-uniform spaces) Let Z be a vector
space and P C Z be a nonempty convex subset. Let B: X x X — 2\ @and H: X —
2%\ @ be both multivalued mappings with nonempty values. Suppose that (3.34) holds if
y € H(x) and B(x,y) € P. Then there exists v € S(xg) such that B(v,y) C P for any
y € H(v)\ {v}.

(4) (Vectorial quasi-optimization principle in cone quasi-uniform spaces) Let Z be a vector
space and P C Z be a nonempty convex subset. Let B : X x X — 2%\ @ and H :
X — 2%\ @ be both multivalued maps with nonempty values. Suppose that (3.34) holds
if y € H(x) and B(x,y) N [B(x,x) — P]#0. Then there exists v € S(xo) such that
B(v,y) N [B(v,v) - P] =@ forany y € H(v) \ {v}.

(5) (Generalized Caristi-Kirk type coincidence point in cone quasi-uniform spaces) Let I be an
index set. For eachi € I, let T; : X — 2% be a multivalued mapping, let M be a nonempty
subset of X, and let g : M — X be a surjective mapping. Suppose further that, if, for each
x € M with g(x) & (ie; Ti(x), there exist Iy € I and y € T;, (x) \ {g(x)} such that

di(g(x),y) +9(F(xo0,8(x)))F(g(x),y) <6, VYieD. (3.35)
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Then there exists a coincidence point u € M of g and {T;},c;, that is, g(u) € iy T1 (1)
such that g(u) € S(xy).

(6) (Nonconvex maximal element for a family of multivalued maps in cone quasi-uniform
spaces) Let I be any index set and for eachi € I, T; : X — 2% be a multivalued mapping.
Assume that, for each (x,i) € S(xo) x I with T;(x) #0, there exists y = y(x,i) € X with
y #x such that

dy(x,y) + @(F(xo,x))F(x,y) <6, VAeD. (3.36)

Then there exists v € S(x¢) such that T;(v) = @ for each i € I.

(7) (Generalized Takahashi nonconvex minimization Theorem in cone quasi-uniform spaces)
Suppose that, for each x € S(xo) with

{ue X : F(x,u)?0}#0, (3.37)

there exists y = y(x) € X with y #x such that (3.34) holds. Then there exists v € S(xg)
such that F(v,y) >0 forall y € X.

(8) (Oettli-Théra type theorem in cone quasi-uniform spaces) Let M C X and suppose that,
for any x € S(x0) \ M, there exists y # x such that (3.34) holds. Then there exists v €
S(xg) N M.
Proof. It follows from Theorem 3.2 that (1) holds.

(1) = (2) By (1), there exists v € S(xp) such that, for all x € X with x # v, there exists
A € D satisfying

¢(F(x0,v))F(v,x) +d\(v,x) ¢ -K. (3.38)

If (2) does not hold for v, then there exists y € H(v) \ {v} with 6 € G(v, y) such that

¢(F(x0,0))F(v,y) +dy(v,y) <6, (3.39)

which contradicts (3.38). Thus 6 ¢ G(v, y) forany y € H(v) \ {v}, thatis, (2) holds.
(2) = (3) Let G(x,y) = B(x,y) — (Z\ P). Then 6 € G(x, y) implies that

B(x,y) N (Z\ P)#0. (3.40)

This shows that B(x,y) € P and so, if y € H(x) and 6 € G(x,y), then the conditions of (3)
implies that (3.34) holds. It follows from (2) that there exists v € S(xp) such that 6 ¢ G(v, y)
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for any y € H(v) \ {v}. This implies that B(v,y) N (Z \ P) = @ for any y € H(v) \ {v}. Thus
B(v,y) C Pforany y € H(v) \ {v}, thatis, (3) holds.
(3) = (4) Let

-P, if B(x,y) N (B(x,x) - P)#0,
Q(x,y) = { ( ) (3.41)

P, if B(x,y)N(B(x,x)-P) =0.

If y € H(x) and Q(x,y) € P, then B(x,y) N (B(x, x) — P) # . By the condition of (4), we have
that (3.34) holds. This shows that the condition of (3) holds for Q(x, y). By the conclusion
of (3), there exists v € S(xp) such that Q(v,y) C P for any y € H(v) \ {v}. Thus B(v,y) N
(B(v,v) — P) = @, that is, (4) holds.

(4)= (1) Let

Z={z={z)}ep: 21 €E, YA e D}, P={{z\},ep€Z:2zy€K, VAeD}. (3.42)
If, for any x, y € Z and any scalar a, we define
x+y={xa+w},p a-x={ax)}ep, (3.43)

then Z is a vector space and P is a cone in Z. Let B: X x X — 2%\ ( be a multivalued
mapping defined by

B(x’ y) = { {d)‘(x’ y) + (P(F(x()/ x))F(x/ ]/) })LED} (344)
and H : X — 2%\ @ be a multivalued mapping defined by H(x) = X for any x € X. If
B(x,y) N [B(x,x) - P] #§ (3.45)

(note that B(x, x) = 0), then B(x, y) N (—P) # . This shows that (3.34) holds. It follows from
(4) that there exists v € S(xg) such that B(v,y) N [B(v,v) - P] = @ for any y € H(v) \ {v}.
Thus, for all y € X with y #v, there exists A € D satisfying the following:

¢(F(x0,v))F(v,y) +di(v,y) & —K. (3.46)

That is, (1) holds.
(1) = (5) From (1), there exists v € S(x¢) such that, for all x € X with x # v, there exists
A € D satisfying the following;:

¢(F(x0,v))F(v,x) +dy(v,x) & K. (3.47)
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Since g is a surjective mapping, there exists u € D such that g(u) = v. We claim that g(u) €
Mier T1(w). If g(u) € Nier T1(u), by the hypotheses of (V), there exist [y € I and y € Tj, (1) \
{g(u)} such that

di(g(x),y) +p(F(x0,8(x)))F(g(x),y) <6, VieD, (3.48)

which contradicts (3.47). Thus g(u) € (N T1(u). v € S(x¢) implies that g(u) = v € S(xp).

(5) = (6) If the conclusion of (6) dose not hold, then, for any x € S(xy), there exists
i € I such that T;(x) #@. By the hypotheses of (6), there exists y = y(x,i) € X with y # x such
that (3.34) holds. Let D = X, g = I;: (the identity mapping of X) and

(Ti(x) U{y(x,i)}) \ {x}, if x € S(x0) and Ti(x) #0,
Hi(x) = {0, if x € S(xo) and Ti(x) = 0, (3.49)
{x}, if x & S(x).

Then the conditions of (5) are satisfied for H;, D = X and g = I;. Thus, from (5), it follows
that there exists v € S(xg) such that v € (,¢; H;(v), which contradicts the definition of H;.
Therefore, there exists v € S(x) such that T;(v) = @ for any i € I.

(6) = (7) Let

o = {{y}ﬁ{ueX:F(x,u)Z@}, if x € S(xo), 550)

0, if x ¢ S(xo).

From this, we know that, if T, (x) # @, then F(x, y) Z 0. By the hypotheses of (7), there exists
z = z(x) € X with z # x such that

dy(x,z) +¢@(F(xo,x))F(x,z) <0, VYieD. (3.51)

By using (6), there exists v € S(x¢) such that T),(v) = @ for any y € X, thatis, F(v,y) > 0 for
any y € X.

(7) = (8) Suppose that (7) and the hypothesis of (8) hold. Suppose that, for any x €
S(xp), x ¢ M. By the hypothesis of (8), there exists v # x such that

dy(x,v) +@(F(xg,x))F(x,v) <06, VYieD. (3.52)

Equation (3.52) shows that the conditions of (7) naturally hold. Then there exists v € S(xo)
such that F(v,y) > 0 for any y € X, which contradicts (3.52). Therefore, there exists v €
S(x0) N M.

(8) = (1) Let

T(u) = {x € X :u#x,dy(u,x)+¢(F(xo,u))F(u,x) <6, VA e D},
3.53
M= {ueX:T(u)=0). (359
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If u ¢ M, then T (u)#0, that is, there exists x € I'(u) such that

dy(u,x) + @p(F(xo,u))F(u,x) <60, VYieD. (3.54)

This shows that the conditions of (8) hold and so there exists v € S(xg) N M.v € M shows
that, for all x € X with x # v, there exists A € D satisfying the following:

@(F(x0,v))F(v,x) +dy(v,x) € K. (3.55)

This completes the proof. O
In the following, we provide some examples to illustrate our results.

Example 3.7. Let E = LP[0,1], K = {x € LP[0,1] : x(¢t) > 0, a.e. t € [0,1]}, where p > 1. Then
K is a nuclear and regular cone if p = 1 and a regular cone, but not a nuclear cone in L7[0, 1]
if p > 1. However, for any p > 1, K is not a solid cone (see, e.g., [32]). Let X = L”[0,1] and
define a mapping d : X x X — LP[0,1] by d(x,y) = |x — y|. Then d is a cone quasi-metric on
X. Since L?[0,1] is complete, (X, d) is also a complete quasi-metric space. Define a mapping
F:XxX — LP[0,1] by F(x,y) = siny —sinx for any x,y € X. Then, for each x € X,
F(x,-) : X — Eis bound from below and

{lyeX :F(xy)+|x-y| <0} (3.56)

is a closed subset in X. It follows from Theorem 3.2 and Remark 3.4 that, for any x € X, there
exists v € X such that

(1) sinv(t) —sinxg(t) + |xo(t) —v(t)| <0 fora.e. t € [0,1];

(2) for all x € X with x#v, there exists a measuable set A C [0,1] with a positive
measure such that

sinx(t) —sinv(t) + |x(t) —v(t)| >0, ae. teA. (3.57)

In fact, v = xg meets the demands.

Example 3.8. Let E = I; endowed with the topology defined by the semi-norms {p,},.n.
where p,,((Xk)ren) = 2p- [xk|. The cone

K ={x=(x)en €L : Xk 20, Yk € N} (3.58)
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is a nuclear cone, but not well based (see [33]). Let X = [0, 1], define amapping d : XxX — I
by

|x -y .
B , ifx<y,
d(x,y) = . (3.59)
<l> if x >
k2 keN, Y
and a mapping F: X x X — I} by
1 . 1 1 . 1
F(x,y) = (E Sin m — E Sin m)kEN. (360)

Then (X, d) is a complete cone quasi-metric space, for each x € X, F(x,-) : X — E is bound
from below and

lye X:F(x,y)+d(x,y) <0} (3.61)

is a closed subset in X. It follows from Theorem 3.2 and Remark 3.4 that, for any x; € X, there
exists v € X such that

1 . 1 1 . 1
<E Slnm - ESII’I m)keN'Fd(XO,U) € -K (362)
and, for all x € X with x # v,
1 . 1 1 . 1
<E Sll’lm - %Sll'l m)keN‘f’d(U,X) ¢ -K. (363)

Remark 3.9. In above examples, the cone quasi-metric is not directed metric, the cone is not
solid or not well based, thus, Example 3.7 and Example 3.8 show that our results are different
from the results in [2-5, 8-10, 14-17].
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