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We establish a general existence result for Galerkin’s approximate solutions of abstract semilinear
equations and conduct an error analysis. Our results may be regarded as some extension of
a precedent work (Schultz 1969). The derivation of our results is, however, different from the
discussion in his paper and is essentially based on the convergence theorem of Newton’s method
and some techniques for deriving it. Some of our results may be applicable for investigating
the quality of numerical verification methods for solutions of ordinary and partial differential
equations.

1. Introduction

LetX be a real Hilbert space andXh ⊂ X be a closed subspace. Here, h is a positive parameter
(which will tend to zero). We denote by Ph the orthogonal projection onto Xh. We assume
that

lim
h→ 0

‖(I − Ph)u‖ = 0 for any u ∈ X, (H1)

where I : X → X is the identity operator. We are interested in studying error analysis of
Galerkin’s method for the following equation:

f(u) := u − ϕ(u) = 0. (1.1)



2 Journal of Applied Mathematics

Here, ϕ : U → X is a nonlinear map and U is a subset of X. We define ˜fh : U ∩Xh → Xh by

˜fh(u) := Phf(u) for u ∈ U ∩Xh. (1.2)

The equation ˜fh(u) = 0 is the Galerkin approximate equation of (1.1). A precedent work [1]
by Schultz reads as follows.

Theorem 1.1 (see [1, Theorems 3.1 and 3.2]). One assumes (H1). Let R ∈ (0,∞) be a constant
and U = {u ∈ X; ‖u‖ ≤ R}. One assumes that ϕ : U → X is a completely continuous map such that
ϕ(U) ⊂ U. Then the following holds.

(i) The equation ˜fh(u) = 0 has a solution uh in U ∩Xh for any h and there exists a monotone
decreasing sequence {hk}∞k=1 with limk→∞hk = 0 and u∞ ∈ U such that uhk → u∞ in X
as k → ∞ and u∞ is a solution of (1.1). Moreover, if u∞ is the unique solution of (1.1) in
U, then one has limh→ 0uh = u∞ in X.

(ii) Let u∗ ∈ U be a solution of (1.1). If ϕ has a Fréchet derivative, in a neighborhood, N, of
u∗ and 0 is not in the spectrum of f ′, then u∗ is the unique solution of (1.1) in N and
˜fh(u) = 0 has a solution uh ∈ Xh for any h, which is unique for sufficiently small h and

‖u∗ − uh‖ � ‖(I − Ph)u∗‖, (1.3)

which means that ‖u∗ − uh‖ and ‖(I − Ph)u∗‖ are equivalent infinitesimals as h → 0.

In this paper, we always assume (H1) and the following (H2) in what follows:

ϕ ∈ C1(U, X), and ϕ′(u) ∈ L(X) is compact for any u ∈ U, (H2)

where U ⊂ X is an open set. Under the conditions (H1) and (H2), we obtain results
similar to Theorem 1.1 (see Proposition 2.1 and Corollary 2.3). We also establish new other
results on error analysis (see Theorems 2.4 and 2.5). Our results may be regarded as some
extension of Theorem 1.1. The derivation of our results is, however, different from the proof
of Theorem 1.1, which is based on the Brower fixed point theorem and the equality (4.10). Our
proofs are essentially based on the convergence theorem of Newton’s method (Theorem 3.2)
and some techniques for deriving it. We remark that a version of the same theorem is applied
in [2] to an ordinary periodic system for a purpose similar to ours.

Various ordinary and partial differential equations appearing in mathematical physics
can be written in the form (1.1) with (H2) under an appropriate setting of the functional
spaces. See Section 5 for some concrete examples.

We define fh : U → X by

fh(u) := u − Phϕ(u) for u ∈ U. (1.4)

The map fh is a natural extension of ˜fh and is very useful in our analysis below. Obviously, u
is a solution of ˜fh(u) = 0 if and only if u is a solution of fh(u) = 0. We can treat the equation
fh(u) = 0 more easily than ˜fh(u) = 0 since fh is defined globally.
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One of our motivations for this study is to investigate the quality of a numerical
verification method for solutions of differential equations. Some of our results in this paper
may be applicable for such a purpose. See Remark 2.7 for further information.

The paper is organized as follows. In Section 2 we describe our main results. We
prepare some preliminary abstract results in Section 3 and apply them to prove our main
results in Section 4. In Section 5 we present some concrete examples on semilinear elliptic
partial differential equations.

Notations. Let X and Y be Banach spaces.

(1) We denote by ‖ · ‖X the norm of X. If X is a Hilbert space, then ‖ · ‖X stands for
the norm induced by the inner product of X. For u ∈ X and r ∈ (0,∞), we write
BX(u ; r) := {v ∈ X; ‖v − u‖ < r}. The subscript will be often omitted if no possible
confusion arises.

(2) For an open set V ⊂ X, C1(V,Y) denotes the space of continuously differentiable
functions from V to Y.

(3) We denote byL(X,Y) the space of bounded linear operators fromX to Y andL(X)
stands for L(X,X). For T ∈ L(X,Y), ‖T‖X→Y denotes the operator norm of T . The
subscript will be omitted if no possible confusion arises.

(4) Let φ(h) and ψ(h) be nonnegative functions. We write φ(h) ∼ ψ(h) if φ(h) and
ψ(h) are infinitesimals of the same order as h → 0, that is, φ(h) = O(1)ψ(h) and
ψ(h) = O(1)φ(h) as h → 0. We write φ(h) � ψ(h) if φ(h) and ψ(h) are equivalent
infinitesimals as h → 0, that is, φ(h) = {1 + o(1)}ψ(h) as h → 0.

(5) LetΩ be a bounded domain ofRn. We denote Lebesgue spaces by Lp(Ω)(1 ≤ p ≤ ∞)
with the norms ‖u‖Lp(Ω) = (

∫

Ω |u(x)|pdx)1/p for 1 ≤ p < ∞, ‖u‖L∞(Ω) =
ess. sup{|u(x)| ; x ∈ Ω}. We denote by H1

0(Ω) the completion of C∞
0 (Ω) (the

space of C∞ functions with compact support in Ω) in the Sobolev norm: ‖u‖ =

‖∇u‖L2(Ω) := (
∑n

k=1 ‖∂u/∂xk‖2L2(Ω))
1/2

. We denote by H−1(Ω) the Sobolev space
{F ∈ D′(Ω); ∃C ∈ (0,∞) such that |F(φ)| ≤ C‖φ‖H1

0 (Ω) for any φ ∈ C∞
0 (Ω)} with

the norm ‖F‖H−1(Ω) = sup{ |F(φ)|;φ ∈ C∞
0 (Ω) and ‖φ‖H1

0 (Ω) ≤ 1}. Here, D′(Ω)
stands for the set of distributions on Ω.

2. Main Results

In this section we describe our main results. We assume (H1) and (H2). Let u∗ ∈ U be an
isolated solution of (1.1), that is, u∗ is a solution of (1.1) such that f ′(u∗) : X → X is bijective.
We set

T := ϕ′(u∗), A := I − T = f ′(u∗), Ah := I − PhTPh, (2.1)

for simplicity. The operatorAh is an almost diagonal operator introduced in [3]. First we have
an existence theorem for Galerkin’s approximate solutions of (1.1).

Proposition 2.1. There exist h∗ > 0 and {uh}h∈(0,h∗) ⊂ U such that the following (i)–(iii) hold.

(i) There exists R∗ > 0 such that u = uh is the only solution of fh(u) = 0 in B(u∗; R∗) for
any h ∈ (0, h∗).
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(ii) u = uh is an isolated solution of fh(u) = 0 for any h ∈ (0, h∗).

(iii) uh → u∗ in X as h → 0 with the estimate

‖u∗ − uh‖ ≤ Ch

∥

∥fh(u∗)
∥

∥ = Ch ‖(I − Ph)u∗‖ for any h ∈ (0, h∗), (2.2)

where {Ch}h∈(0,h∗) ⊂ (1, 2) and Ch → 1 as h → 0.

Remark 2.2. (i) Proposition 2.1(ii) is useful in our analysis below. Moreover, we immediately
obtain from it that u = uh is an isolated solution of ˜fh(u) = 0 for any h ∈ (0, h∗). This
guarantees that we can always construct a Galerkin approximate solution uh by Newton’s
method for small h > 0.

(ii) In various contexts in applications, Xh is finite-dimensional for any h. In such
contexts the assumption (H1) implies that X is separable.

(iii) We do not assume dimXh < ∞. We briefly explain that it has some practical
benefits. The case dimXh = ∞ appears, for example, in the following context. We are
interested in the semi-discrete approximation to a periodic system described by a partial
differential equation with a periodic forcing term. We may apply a Galerkin method only in
space to the original system in order to construct a simpler approximate system described by
ordinary differential equations. Then, for an isolated periodic solution of the original system,
our Proposition 2.1 may guarantee that in a small neighborhood of it the approximate system
has a periodic solution. For example, we can actually apply Proposition 2.1 to a semi-discrete
approximation to a periodic system treated in [3]. See [4, Remark 3.4] for how to rewrite the
system in [3] as (1.1).

In what follows in this section, {uh}h∈(0,h∗) always denotes the sequence as described
in Proposition 2.1. Since u∗ −uh is decomposed into the Xh-component Phu∗ −uh and the X⊥

h -
component (I − Ph)u∗, we have ‖u∗ − uh‖2 = ‖Phu∗ − uh‖2 + ‖(I − Ph)u∗‖2 and ‖(I − Ph)u∗‖ ≤
‖u∗ − uh‖. So, the last inequality and (2.2) immediately imply (2.3) below.

Corollary 2.3. We have

‖u∗ − uh‖ � ∥

∥fh(u∗)
∥

∥ = ‖(I − Ph)u∗‖, (2.3)

‖Phu∗ − uh‖ = o(‖(I − Ph)u∗‖) as h −→ 0, (2.4)

‖Phu∗ − uh‖ = o(‖u∗ − uh‖) as h −→ 0. (2.5)

Actually, we easily verify that (2.3), (2.4) and (2.5) are mutually equivalent. They
are very general features for the Galerkin method. The estimate (2.5) means that the Xh-
component of the error ‖Phu∗ − uh‖ is an infinitesimal of a higher order of smallness with
respect to the whole error ‖u∗ − uh‖ as h → 0.

The following two results are useful for applications (see Remark 2.7 below).
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Theorem 2.4. We have the following:

‖u∗ − uh‖ � ∥

∥f(uh)
∥

∥ =
∥

∥(I − Ph)ϕ(uh)
∥

∥ �
∥

∥

∥A−1f(uh)
∥

∥

∥, (2.6)

‖Phu∗ − uh‖ �
∥

∥

∥A−1fh(Phu∗)
∥

∥

∥ �
∥

∥

∥PhA
−1
h f(Phu∗)

∥

∥

∥ ∼ ∥

∥Ph
{

ϕ(u∗) − ϕ(Phu∗)
}∥

∥. (2.7)

Theorem 2.5. (i)We have

sup
s∈[0,1]

∥

∥ϕ′((1 − s)u∗ + sPhu∗)(I − Ph)
∥

∥ −→ 0 as h −→ 0. (2.8)

(ii) Let εh be a positive constant for h ∈ (0, h∗) such that

εh ≥ sup
s∈[0,1]

∥

∥ϕ′((1 − s)u∗ + sPhu∗)(I − Ph)
∥

∥

(2.9)

for any h ∈ (0, h∗). Then, there exist constants h1 ∈ (0, h∗) and C1 > 0 such that

‖Phu∗ − uh‖ ≤ C1εh‖(I − Ph)u∗‖ for any h ∈ (0, h1). (2.10)

In view of Theorem 2.5 (i) and (ii), we can always take {εh}h∈(0,h∗) in (2.10) such that
εh → 0 as h → 0. The following Remarks 2.6 and 5.3 below shows that our estimate (2.10) is
in general sharper than an estimate which can be derived directly from the discussion in [1].

Remark 2.6. (i) In the same way as in the proof of [1, Theorem 3.2]we can obtain an estimate
related to (2.10). We set ηh := (2ph + qh + rh)/(1 − (ph + qh + rh)), ph := ‖A−1(I − Ph)T‖,
qh := ‖A−1PhT(I −Ph)‖ and rh := ‖A−1‖ · ‖ϕ(uh)−ϕ(u∗)−T(uh−u∗)‖/‖uh−u∗‖. It follows from
Proposition 2.1 (iii) and Proposition 3.1 below that ph, qh and rh converge to 0 as h → 0. So,

ηk → 0 as h → 0. Let ε̂h be a positive constant for h ∈ (0, h∗) such that ε̂h ≥
√

η2
h
+ 2ηh. Then

we have

‖Phu∗ − uh‖ ≤ ε̂h‖(I − Ph)u∗‖ for any h ∈ (0, h∗). (2.11)

We can verify that

ε̂h is larger than ‖(I − Ph)T‖1/2 for sufficiently small h > 0. (2.12)

Indeed, we immediately obtain (2.12) from

ph � ‖(I − Ph)T‖. (2.13)

We derive (2.11) and (2.13) at the end of Section 4.
(ii) When we compute ε̂h for concrete examples (e.g., examples in Section 5 below),

it seems reasonable to estimate qh as qh ≤ C‖T(I − Ph)‖. Here, C represents some positive
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constant independent of h. Then, it is actually necessary to take ε̂h such that ε̂h ≥
C‖T(I − Ph)‖1/2 for small h > 0. On the other hand, roughly speaking, (2.9) means that we
can take εh ≈ ‖T(I−Ph)‖ for small h > 0 (See Remark 5.3 below). (We note that Proposition 3.1
below implies that ‖T(I − Ph)‖ → 0 as h → 0.)

(iii)We consider the case where T is self-adjoint (e.g., Example 5.1 below). In this case,
we have ‖(I −Ph)T‖ = ‖T(I −Ph)‖. So, by (2.12) ε̂h is larger than ‖T(I − Ph)‖1/2 for small h > 0.

Remark 2.7. Wemention applications of our results. Some of our results may be applicable for
testing the quality of a numerical verification algorithm for solutions of differential equations.
In general we obtain an upper bound of ‖u∗−uh‖ as output data from a numerical verification
algorithm (See e.g., [5] and the references therein). By our Theorem 2.4 ‖u∗−uh‖ is sufficiently
close to ‖f(uh)‖ for sufficiently small h. So, Theorem 2.4 shows that we can check the accuracy
of the output upper bound of ‖u∗ −uh‖ by finding the value of ‖f(uh)‖when h is small. In [5]
we proposed a numerical verification algorithmwhich also gives upper bounds of ‖Phu∗−uh‖
as output data. Our Theorem 2.5 may be applicable for testing the accuracy of such upper
bounds. See Remark 5.4 for more detailed information.

3. Preliminary Abstract Results

In this section, we prepare some abstract results in order to prove our main results in
Section 2.

Proposition 3.1. We assume (H1). Let K : X → X be a compact operator. Then we have the
following:

PhK −→ K, KPh −→ K in L(X) as h −→ 0, (3.1)

PhKPh −→ K in L(X) as h −→ 0. (3.2)

Proof. Though this result was proved in [6, Section 78], we give a simpler proof for the
convenience of the reader. First we show that

‖K(I − Ph)‖ −→ 0 as h −→ 0. (3.3)

We proceed by contradiction. We assume that (3.3) does not hold. Then we have δ :=
lim suph→ 0‖K(I−Ph)‖ > 0. Therefore, there exist {hn}∞n=1 and {un}∞n=1 ⊂ X such that hn ↘ 0 as
n → ∞, ‖un‖ = 1 for n ∈ N and

‖K(I − Phn)un‖ ≥ δ

2
for any n ∈ N. (3.4)

Since K is compact and (I − Phn)un converges weakly to 0, we have ‖K(I − Phn)un‖ → 0 as
n → ∞. This contradicts (3.4). So, (3.3) holds. Since K∗ is also compact, we obtain

‖(I − Ph)K‖ =
∥

∥{(I − Ph)K}∗∥∥ = ‖K∗(I − Ph)‖ −→ 0 as n −→ ∞. (3.5)

So, we have (3.1), which implies (3.2).
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Next, we describe some results in a more general setting. In what follows in this
section, let X and Y be Banach spaces and U ⊂ X be an open set. We assume F ∈ C1(U,Y).

Theorem 3.2. Let u0 ∈ U and L ∈ L(X,Y) be bijective. We define a map g : U → X by

g(u) := u − L−1F(u). (3.6)

Let R > 0 be a constant satisfying B(u0;R) ⊂ U and b : [0, R] → [0,∞) be a non-decreasing
function such that

sup
{

∥

∥g ′(u)
∥

∥; u ∈ B(u0; r)
}

≤ b(r) for any r ∈ [0, R]. (3.7)

Let ε0 ≥ 0 be a constant such that

∥

∥

∥L−1F(u0)
∥

∥

∥ ≤ ε0. (3.8)

We assume that there exist constants r0 and r1 such that 0 < r0 ≤ r1 ≤ R,

ε0 +
∫ r0

0
b(r)dr ≤ r0, (3.9)

b(r1) < 1. (3.10)

Then the equation F(u) = 0 has an isolated solution u∗ ∈ B(u0; r0). Moreover, the solution of F(u) = 0
is unique in B(u0; r1).

Remark 3.3. (i) Theorem 3.2 is a new version of the convergence theorem of simplified
Newton’s method, which is a refinement of the classical versions such as [5, Theorem 0.1].
Actually, the former implies the latter.

(ii) The convergence theorem of simplified Newton’s method is a very strong and
general principle to verify the existence of isolated solutions. The reason is, roughly speaking,
that the condition of the theorem is not only a sufficient condition to guarantee an isolated
solution but also virtually a necessary condition for an isolated solution to exist. See [4,
Remark 1.3] for the detail.

Proof of Theorem 3.2. Though we may consider Theorem 3.2 as a corollary of [5, Theorem 1.1],
we describe the proof for completeness. We easily verify that u is a solution of F(u) = 0 if and
only if u is a fixed point of g(u). Let u, v ∈ U. We obtain

g(u) − g(v) =
∫1

0

d

dt
g(v + t(u − v))dt =

∫1

0
g ′(v + t(u − v))dt(u − v). (3.11)

By (3.7) and (3.11) we have

∥

∥g(u) − g(v)∥∥ ≤ b(r)‖u − v‖ for any r ∈ (0, R] and u, v ∈ B(u0; r). (3.12)
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We set B0 := B(u0; r0). Let u ∈ B0. In view of (3.7), (3.8), and (3.11) with v := u0, we have

∥

∥g(u0) − u0
∥

∥ =
∥

∥

∥L−1F(u0)
∥

∥

∥ ≤ ε0, (3.13)

∥

∥g(u) − g(u0)
∥

∥ ≤ r0
∫1

0
b(r0t)dt =

∫ r0

0
b(r)dr. (3.14)

Combining (3.9), (3.13), and (3.14), we have ‖g(u) − u0‖ ≤ r0, which implies g(B0) ⊂ B0.
Therefore, in view of (3.10) and (3.12) g is a contraction on B0. By the contraction mapping
principle there exists a unique solution u = u∗ on B0 for the equation F(u) = 0. We
immediately obtain from (3.10) and (3.12) that the solution of F(u) = 0 is unique on B(u0; r1).
Finally, it suffices to show that

F ′(u) : X −→ Y is bijective for any u ∈ B(u0; r1) (3.15)

in order to prove that u∗ is isolated. We denote by I the identity operator on X. Let u ∈
B(u0; r1). Then, by (3.7) and (3.10) we have ‖g ′(u)‖ ≤ b(r1) < 1. This implies that I − g ′(u) :
X → X is bijective. Since L is also bijective and F ′(u) = L{I − g ′(u)}, (3.15) holds.

The next result may be considered as a refinement of [7, Theorem 3.1 (3.14)] and [8,
Theorem 3.1 (3.23)].

Proposition 3.4. Let u, v ∈ U , (1− s)u+ sv ∈ U for any s ∈ (0, 1) and L ∈ L(X,Y) be bijective.
We setm := maxs∈[0,1] ‖L − F ′((1 − s)u + sv)‖. Then we have

∥

∥L−1{F(u) − F(v)}∥∥
1 +m

∥

∥L−1∥∥ ≤ ‖u − v‖. (3.16)

Moreover, if m‖L−1‖ < 1 then we also obtain

‖u − v‖ ≤
∥

∥L−1{F(u) − F(v)}∥∥
1 −m∥

∥L−1∥∥ . (3.17)

Proof. The proof is similar to that of Theorem 3.2. Let g : U → X be a map defined by (3.6).
We have

u − v = g(u) − g(v) + L−1{F(u) − F(v)}. (3.18)

It follows from (3.11) that ‖g(u) − g(v)‖ ≤ m‖L−1‖‖u − v‖. Combining this inequality and
(3.18), we obtain (3.16) and (3.17).
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Theorem 3.5. Let u = u∗ ∈ U be an isolated solution of the equation F(u) = 0. Let h0 > 0 be a
positive constant, Fh ∈ C1(U,Y) and Hh ∈ L(X,Y)(0 < h < h0). We setH := F ′(u∗). We assume
that

Fh(u∗) −→ 0 in Y as h −→ 0, (3.19)

F ′
h(u∗) −→ H, Hh −→ H in L(X,Y) as h −→ 0, (3.20)

lim
r↘0

d(r, u) = 0 for any u ∈ U . (3.21)

Here, d(r, u) := sup{‖F ′
h
(u)−F ′

h
(v)‖; 0 < h < h0 and v ∈ U∩B(u; r)}. Then, there exist a constant

h∗ ∈ (0, h0) and sequences {ch}h∈(0,h∗) ⊂ (1, 2), {uh}h∈(0,h∗) ⊂ U such that the following (a)–(f) hold:

(a)

ch −→ 1 as h −→ 0, (3.22)

(b) u = uh is an isolated solution of Fh(u) = 0 for any h ∈ (0, h∗),

(c)

‖uh − u∗‖X ≤ ch
∥

∥

∥H−1
h Fh(u∗)

∥

∥

∥

X
for any h ∈ (0, h∗), (3.23)

(d) Hh is bijective with ‖Hh − F ′
h
(u∗)‖ < 1/2‖H−1

h
‖ and ‖H−1

h
‖ < 2‖H−1‖ for any h ∈

(0, h∗),

(e) the solution of Fh(u) = 0 is unique in B(u∗;Rh) for any h ∈ (0, h∗), where

Rh := sup

{

R > 0;B(u∗;R) ⊂ U, d(R, u∗) <
1

∥

∥H−1
h

∥

∥

− ∥

∥Hh − F ′
h(u∗)

∥

∥

}

> 0, (3.24)

(f)

ch
∥

∥

∥H−1
h Fh(u∗)

∥

∥

∥ < Rh for any h ∈ (0, h∗). (3.25)

Proof. By (3.20) and the stability property of linear operators (e.g., [3, Corollary 2.4.1]), F ′
h(u∗)

andHh are bijective for sufficiently small h > 0 and F ′
h
(u∗)

−1 → H−1,H−1
h

→ H−1 inL(Y,X)
as h → 0. Let ηh := ‖H−1

h Fh(u∗)‖ and gh(u) := u −H−1
h Fh(u). We set d(r) := d(r, u∗) for r > 0

and define bh(r) := ‖H−1
h
‖{‖Hh − F ′

h
(u∗)‖ + d(r)}. Let ch := 1/{1 − bh(2ηh)}, rh := chηh and

δh := (1/2‖H−1
h
‖) − ‖Hh − F ′

h
(u∗)‖. Then, we easily verify that as h → 0,

ηh −→ 0, ch −→ 1, rh −→ 0, δh −→ 1
2
∥

∥H−1∥∥(> 0). (3.26)
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Therefore, there exist h∗ ∈ (0, h0) and ε ∈ (0, 1) such that for any h ∈ (0, h∗), F ′
h(u∗) is bijective

with (d), 1 ≤ ch < 2, d(rh + ε) < δh and B(u∗; rh + ε) ⊂ U. It follows that ‖g ′
h
(u)‖ ≤ bh(r) for

any h ∈ (0, h∗), r > 0, and u ∈ U ∩ B(u∗; r). We also have rh + ε ≤ Rh and

ηh +
∫ rh

0
bh(r) dr ≤ ηh + rhbh(rh) ≤ rh. (3.27)

Let h ∈ (0, h∗) and R ∈ (rh, Rh). We apply Theorem 3.2 by setting F := Fh, u0 := u∗, L := Hh,
b := bh, r0 := rh, r1 := R and ε0 := ηh. Then, we obtain the desired conclusions.

Remark 3.6. Theorem 3.5 is related to [7, Theorem 3.1] and [8, Theorem 3.1]. Actually, their
proofs are similar to ours. Our proof is based on the convergence theorem of simplified
Newton’s method, from which they may be derived similarly.

4. Proofs of Main Theorems

We prove the results in Section 2. We use the notation (2.1).

Proof of Proposition 2.1. We apply Theorem 3.5 by puttingX = Y := X, F := f , Fh := fh,H := A
and Hh := Ah. We show (3.19)–(3.21). By (H1) we have fh(u∗) = (I − Ph)u∗ → 0 in X as
h → 0. Therefore, (3.19) holds. It follows from (H2) and Proposition 3.1 that

f ′
h(u∗) = I − PhT −→ I − T = A, Ah −→ A in L(X) as h −→ 0. (4.1)

So, (3.20) holds. Let r > 0, u ∈ U and v ∈ U ∩B(u; r). Since ϕ′ is continuous, we have ‖f ′
h
(u) −

f ′
h
(v)‖ ≤ ‖ϕ′(u) − ϕ′(v)‖ → 0 as r ↘ 0, which implies (3.21). Therefore, by Theorem 3.5,

there exist a small constant h∗ > 0, {uh}h∈(0,h∗) and {Ch}h∈(0,h∗) such that (a)–(f) with ch := Ch

hold. So, we immediately obtain (ii) and uh → u∗ in X as h → 0. Since A−1
h
fh(u∗) = fh(u∗) =

(I − Ph)u∗, (a) and (c) imply (2.2). So, (iii) holds. In view of (d) and (e), we have (i)with

R∗ := sup

{

R > 0;B(u∗;R) ⊂ U and ̂d(R) <
1

4
∥

∥A−1∥∥

}

, (4.2)

where ̂d(R) := sup{‖{ϕ′(v) − ϕ′(u∗)}‖;v ∈ U ∩ B(u∗;R)}. The proof is complete.

Proof of Theorem 2.4. We set u(s, h) := (1−s)uh+su∗ for simplicity. Proposition 2.1 (iii) implies
maxs∈[0,1]‖u∗ − u(s, h)‖ = ‖u∗ − uh‖ → 0 as h → 0. First we show (2.6). We have f(uh) =
−(I − Ph)ϕ(uh) = (I − Ph)f(uh), A−1

h
→ A−1 in L(X) as h → 0 and

mh := max
s∈[0,1]

∥

∥Ah − f ′(u(s, h))
∥

∥

≤ ‖Ah −A‖ + max
s∈[0,1]

∥

∥f ′(u∗) − f ′(u(s, h))
∥

∥ −→ 0 as h −→ 0.
(4.3)
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Since Ahf(uh) = f(uh), we have A−1
h f(uh) = f(uh). We apply Proposition 3.4 with L := Ah,

u := uh, v := u∗ and F := f to obtain

∥

∥f(uh)
∥

∥

1 +mh

∥

∥A−1
h

∥

∥

≤ ‖uh − u∗‖ ≤
∥

∥f(uh)
∥

∥

1 −mh

∥

∥A−1
h

∥

∥

for small h > 0, (4.4)

which implies ‖uh − u∗‖ � ‖f(uh)‖. We also have ‖uh − u∗‖ � ‖A−1f(uh)‖ by the above
discussion with L := Ah replaced by L := A. Next, we show (2.7). In the same way as above
we apply Proposition 3.4 with L := A (resp., L := Ah), u := uh, v := Phu∗ and F := fh to have

‖Phu∗ − uh‖ �
∥

∥

∥A−1fh(Phu∗)
∥

∥

∥

(

resp., ‖Phu∗ − uh‖ �
∥

∥

∥A−1
h fh(Phu∗)

∥

∥

∥

)

. (4.5)

Since fh(Phu∗) = Phf(Phu∗) and Ah commutes with Ph, we have ‖Phu∗ − uh‖ �
‖PhA−1

h f(Phu∗)‖. Combining (4.5) and fh(Phu∗) = Ph{ϕ(u∗)−ϕ(Phu∗)}, we obtain ‖Phu∗−uh‖ ∼
‖Ph{ϕ(u∗) − ϕ(Phu∗)}‖.

Proof of Theorem 2.5. We set u∗(s, h) := (1 − s)u∗ + sPhu∗ for simplicity.

(i) It follows from (H2) and Proposition 3.1 that

∥

∥ϕ′(u∗)(I − Ph)
∥

∥ −→ 0. (4.6)

By (H1) and the continuity of ϕ′(u) at u = u∗ we have

sup
s∈[0,1]

∥

∥ϕ′(u∗) − ϕ′(u∗(s, h))
∥

∥ −→ 0 as h −→ 0. (4.7)

We obtain (2.8) from (4.6) and (4.7).

(ii) In the same way as (3.11) we have

ϕ(u∗) − ϕ(Phu∗) =
∫1

0
ϕ′(u∗(s, h))ds (I − Ph)u∗. (4.8)

By this equality, (2.7) and (2.9), we have (2.10).

Finally we derive (2.11) and (2.12).

Proof of (2.11) and (2.13). Without loss of generality we assume ε̂h =
√

η2
h
+ 2ηh. First we

derive (2.11). This proof is essentially the same as that of [1, Theorem 3.2]. It suffices to prove

‖u∗ − uh‖ ≤ (

1 + ηh
)‖(I − Ph)u∗‖, (4.9)
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which implies (2.11) in view of ‖u∗ − uh‖2 = ‖Phu∗ − uh‖2 + ‖(I − Ph)u∗‖2. We have

A(uh − u∗) + (I − Ph)T(uh − u∗) − PhT(I − Ph)(uh − u∗)
− Ph

{

ϕ(uh) − ϕ(u∗) − T(uh − u∗)
}

= −A(I − Ph)u∗ − (I − Ph)T(I − Ph)u∗

(4.10)

It follows that

‖uh − u∗‖ ≤ (

ph + qh + rh
)‖uh − u∗‖ +

(

1 + ph
)‖(I − Ph)u∗‖, (4.11)

which implies (4.9). Next we derive (2.13). SinceA−1 = I +K withK := T(I − T)−1, we obtain
from Proposition 3.1 that

∥

∥

∥A−1(I − Ph)T − (I − Ph)T
∥

∥

∥ = ‖K(I − Ph)T‖ ≤ ‖K(I − Ph)‖‖(I − Ph)T‖

= o(1)‖(I − Ph)T‖ as h −→ 0.
(4.12)

So, (2.13) holds.

5. Concrete Examples

In this section we consider the following semilinear elliptic boundary value problem:

−Δu = G(x, u,∇u) in Ω with u = 0 on ∂Ω, (5.1)

where Ω is a bounded convex domain in RN (N ≤ 3) with piecewise smooth boundary
∂Ω. We will rewrite (5.1) as the form (1.1) under the appropriate setting of functional
spaces. We simply denote G(u) := G(·, u,∇u). We assume G ∈ C1(H1

0(Ω), H−1(Ω)). Let
L ∈ L(H1

0(Ω), H−1(Ω)) be the operator defined by Lu := −Δu. We set X := H1
0(Ω) with

the norm ‖u‖X := ‖∇u‖L2(Ω) and ϕ(u) := L−1G(u). Then, we have ϕ, f ∈ C1(X,X). We can
rewrite (5.1) as f(u) = 0. We choose Xh as an approximate finite element subspace of X with
mesh size h.

In what follows, we concentrate on the cases:Ω = (0, 1) ⊂ R andΩ = (0, 1)×(0, 1) ⊂ R2.
We use finite element methods with piecewise linear and bilinear elements on the uniform
(rectangular) mesh with mesh size h = 1/n(n ∈ N). Then, we have dimXh = n − 1 in the 1-
dimensional case and dimXh = (n−1)2 in the 2-dimensional case. In this context the following
basic estimates hold:

‖(I − Ph)u‖L2(Ω) ≤ Cah ‖u‖X for any u ∈ X, (5.2a)

‖(I − Ph)u‖X ≤ Cbh ‖Δu‖L2(Ω) for any u ∈ X ∩H2(Ω), (5.2b)

‖(I − Ph)u‖L∞(Ω) ≤ Cch ‖Δu‖L2(Ω) for any u ∈ X ∩H2(Ω), (5.2c)
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where Ca, Cb, and Cc are some positive constants independent of h and u. As in previous
sections, we denote by u∗ an isolated solution of f(u) = 0 and by uh a finite element solution of
f(u) = 0 (i.e., a solution of ˜fh(u) = 0) in a small neighborhood of u∗. In view of Proposition 2.1,
uh exists uniquely in a small neighborhood of u∗ for sufficiently small h > 0. In our examples
below we show that the following error estimate holds:

‖Phu∗ − uh‖ = O
(

h2
)

as h −→ 0. (5.3)

For simplicity we denote u∗(s, h) := (1 − s)u∗ + sPhu∗. We will derive (5.3) from Theorem 2.5
and the duality

∥

∥ϕ′(u∗(s, h))(I − Ph)
∥

∥ =
∥

∥(I − Ph)ϕ′(u∗(s, h))
∗∥
∥. (5.4)

We now present two examples.

Example 5.1. We consider the following Burgers equation:

−Δu + uux = g in Ω := (0, 1) × (0, 1) with u = 0 on ∂Ω. (5.5)

Here, g(x, y) is a given function with g ∈ L2(Ω). As mentioned above, we rewrite (5.5) as
f(u) := u − ϕ(u) = 0. In the present case ϕ : X → X is a nonlinear map defined by ϕ(u) :=
L−1(−uux + g). By the elliptic regularity property we have u∗ ∈ H2(Ω) (see e.g., [9]). We will
derive (5.3). Let u, v ∈ X. We easily verify that

ϕ′(v)u = −L−1(vux + vxu), ϕ′(v)∗u = L−1(vux) for any u ∈ X. (5.6)

By (5.2b)we have

∥

∥(I − Ph)ϕ′(u∗(s, h))
∗u
∥

∥ ≤ Cbh‖u∗(s, h)ux‖L2(Ω) ≤ Cbh‖u∗(s, h)‖L∞(Ω)‖u‖X. (5.7)

It follows that

∥

∥(I − Ph)ϕ′(u∗(s, h))
∗∥
∥ ≤ Cbh‖u∗(s, h)‖L∞(Ω). (5.8)

We obtain from (5.2c) that

‖u∗(s, h)‖L∞(Ω) ≤ ‖u∗‖L∞(Ω) + Cchs‖Δu∗‖L2(Ω). (5.9)

It follows from (5.4), (5.8), and (5.9) that

sup
s∈[0,1]

∥

∥ϕ′(u∗(s, h))(I − Ph)
∥

∥ ≤ Cbh
(

‖u∗‖L∞(Ω) + Cch‖Δu∗‖L2(Ω)

)

:= εh. (5.10)

By (5.10), (5.2b), and Theorem 2.5 we have (5.3).
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Example 5.2. We consider the Emden equation

−Δu = u2 in Ω := (0, 1) × (0, 1) with u = 0 on ∂Ω. (5.11)

We omit the one-dimensional case since it is easier. We can treat the present case in a similar
way to Example 5.1. We rewrite (5.11) as (1.1). In the present case ϕ : X → X is defined by
ϕ(u) := L−1(u2). Let u, v ∈ X. We verify that ϕ′(v)u = 2L−1(vu) and that ϕ′(v) is self-adjoint.
By (5.2b) and Sobolev’s inequality we have

∥

∥(I − Ph)ϕ′(u∗(s, h))u
∥

∥ ≤ 2Cbh‖u∗(s, h)‖L4(Ω)‖u‖L4(Ω)

≤ Ch‖u∗(s, h)‖‖u‖ ≤ Ch‖u∗‖‖u‖
(5.12)

for any s ∈ [0, 1] and u ∈ X. Here, C > 0 is a constant independent of s, h, and u. It follows
from this inequality and (5.4) that

sup
s∈[0,1]

∥

∥ϕ′(u∗(s, h))(I − Ph)
∥

∥ ≤ Ch‖u∗‖ := εh. (5.13)

By (5.13), (5.2b), and Theorem 2.5 we have (5.3).

Remark 5.3. This remark is related to Remark 2.6.
(i)Asmentioned in Remark 2.6 (ii), sups∈[0,1]‖ϕ′((1−s)u∗+sPhu∗)(I−Ph)‖ ≈ ‖T(I−Ph)‖

holds in general. Actually, in Example 5.2 (resp., Example 5.1) our best possible upper bound
of sups∈[0,1]‖ϕ′(u∗(s, h))(I − Ph)‖ is the right-hand side of (5.13) (resp., (5.10)), which is just
the same (resp., has the same order) as that of ‖T(I − Ph)‖.

(ii) We pointed out that our estimate (2.10) is in general sharper than (2.11), which is
directly derived from the discussion in [1]. In order to show it concretely, we apply (2.11) to
the equations in Examples 5.1 and 5.2. In both cases our best possible error estimate is the
following:

‖Phu∗ − uh‖ = O
(

h3/2
)

as h −→ 0. (5.14)

Compare (5.14)with (5.3), which is based on (2.10). Though we omit the detailed derivation
of (5.14), we show here that we cannot obtain a better estimate than (5.14) if we use (2.11) as
a basic estimate. By the same discussion in Examples 5.1 and 5.2 we have

∥

∥(I − Ph)ϕ′(u∗)
∥

∥ = O(h) as h −→ 0, (5.15)

which is our best possible upper estimate of ‖(I−Ph)T‖. So, in view of (2.13), it is necessary to
take ε̂h such that ε̂h ≥ Ch1/2 for small h. Here, C > 0 is a constant independent of h. (Compare
this estimate with (5.10) and (5.13).) Therefore, we cannot improve (5.14) if we use (2.11) and
(5.2b) as basic estimates.

Remark 5.4. Various numerical verification algorithms for solutions of differential equations
were proposed up to now (see e.g., [10]). Some of them give upper bounds of ‖Phu∗ − uh‖ as
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output data (see [5]). Theorem 2.5may be applicable for checking the accuracy of such output
upper bounds since we can apply it to given problems in order to compute the concrete order
of ‖Phu∗ − uh‖ as h → 0. For example, we treated problems (5.5) and (5.11) as concrete
numerical examples in [5], where we proposed a numerical verification algorithm based on a
convergence theorem of Newton’s method. In these problems (5.3) is the theoretical estimate
of ‖Phu∗ −uh‖ derived from our Theorem 2.5. The output data as upper bounds of ‖Phu∗ −uh‖
in [5, Section 3] seem to have just the order of h2 as h → 0. So, the accuracy of such output
upper bounds in [5, Section 3] is satisfactory as long as we judge it by the theoretical estimate
(5.3).
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