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Based on the single-leg air cargo issues, we establish a dynamic programming model to consider
the overbooking and space inventory control problem.We analyze the structure of optimal booking
policy for every kind of booking requests and show that the optimal booking decision is of
threshold type (known as booking limit policy). Our research provides a theoretical support for
the air cargo space control.

1. Introduction

For the air cargo carrier, the main purpose of implementing seat inventory control in the
actual operation is to avoid cargo space being occupied by too many low-value goods, caus-
ing the lack of timely transportation of high-value goods and resulting in the loss of some
potential gains. In fact, some customers (FITs or agents) who order the space through tele-
phone or network temporarily cancel the booking or directly do not appear while the aircraft
is taking off. It brings a lot of losses to the air cargo carrier. In order to reduce the losses caused
by the empty cabin, decision makers tend to overbook. However, overbooking too much
may lead to greater economic losses. For this reason, during the air cargo overbooking, it is
necessary to consider freight revenue, but at the same time decision makers have to consider
the cost of overbooking as well. Above all, the decisionmakers’ aim is to obtain themaximum
profit of freight. Usually, most of the goods are transported by single legs (single routes). For
some relatively tight (themarket demand is greater than supply) segments (routes), it is more
suitable for scientific space control and proper overbooking. The problem can be described in
detail as follows: in some tight legs, if there are some booking requests, decision makers will
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decide whether to accept or not. If it is accepted, decision makers will have to set aside proper
space to its customers in accordance with the cargo information. Simply put, in the case of
implementing overbooking, the goal is to maximize air cargo revenue by properly accepting
customers’ booking requests.

2. Related Literature Review

Based on the analysis of the characteristics of the products, Kasilingam [1] establishes the air
cargo overbooking decision-making model on the case of space capacity random, discusses
the production capacity in discrete case and continuous case, and identifies the optimal over-
booking for each situation. Kleywegt and Papastavrou [2] use dynamic random backpack
model to discuss air cargo revenue management problem. The above-mentioned method can
be used to describe the multidimensional problems, but the model is too difficult to solve
easily. Luo et al. [3] establish a two-dimensional air cargo overbooking model and then deter-
mine the approximate optimal overbooking level. In this model, both the weight attributes
and volume attributes are taken into account, and the objective is to minimize freight costs.
Moussawi and Cakanyildrima [4] further study the two-dimensional air cargo overbooking
model. The objective is to maximize freight revenue. What they do is different from Luo et al.
[3]. Considering the benefits of passengers and cargo, Sandhu and Klabjan [5] establish space
inventory control model with the staticmethod. On the assumption of fixed volume, using the
method of reducing dimension, they get themodel’s approximate solution and gain themaxi-
mum revenue. Considering the freight forwarders and the delay of cargo transportation,
Chew et al. [6] establish a stochastic dynamic programmingmodel of short-term space inven-
tory control, and the objective is to minimize transportation costs. Amaruchkul et al. [7] con-
sider a single-leg air cargo space control problem. Under the random cargo volume and
weight, they build aMarkov decision process model and take a heuristic algorithm to analyze
the model. Considering protocol sale customers and free sale customers, Levin and Nediak
[8] build a space inventory control model by using dynamic programming methods, and the
purpose is to make maximum total income rooted in the receipt of the goods. Under uncer-
tain environment, Wang and Kao [9] establish an air cargo overbooking model and solve it
by the fuzzy systems approach. Taking into account the two different demands of customers,
Modarres and Sharifyazdi [10] build a random capacity space inventory control model and
get the optimal decision. By analyzing the expected revenue function in dynamic program-
mingmodel, combining the randomness of cargo volume andweight, Huang and Chang [11]
establish amore efficient algorithm in air cargo revenuemanagement problem. Supposing the
cargo volume, weight and the yields of the air cargo are random and the cargo space booking
process has no aftereffect, Han et al. [12] set up a single-leg air cargo revenue management
space allocation model and take the bid control strategy to determine the goods receiving.
Amaruchkul and Lorchirachoonkul [13] study the allocation of air transport capacity for the
number of freight forwarders, get the probability distribution of the actual use of the transport
capacity through discrete Markov chain, and solve the model by dynamic programming
methods.

By contrast, ourwork is to consider a single-leg air cargo overbooking and space inven-
tory control problem by dynamic programming. We analyze the structure of optimal booking
policy for every kind of booking requests and show that the optimal booking decision is of
booking limit policy.
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3. Model Description

Next we will study the single-leg air cargo space inventory control and overbooking under
the conditions of shipping season (the demand is greater than supply). Because of the com-
plexity of the actual situation, in order to abstract practical problems to theoretical issues, we
need some basic assumptions.

(i) Aircraft total capacity is fixed (cargo size is unchanged);

(ii) customers’ booking requests are sufficient, namely, the supply is adequate;

(iii) the booking requests are divided into multiple classes;

(iv) each class’s arrival is independent;

(v) there is at most one booking request at any time;

(vi) on the condition that the aircraft is due to take off, whether or not to show up for
each booking request is independent;

(vii) each booking request’s weight (volume) is identically independently distributed;

(viii) during whole booking period, accepted booking requests will not be free to cancel.

Based on the above assumptions, we will establish mathematical model and make
decisions on air cargo. In our model, the main parameters and variables are as follows:

t: decision time, 0 ≤ t ≤ T , where T is a booking period;

j: jth class booking request, j = 1, 2, . . . , n, where n is the number of booking classes;

pjt: the arrival probability of jth class booking request in time t;

p0t = 1 −∑n
j=1 pjt: probability of no booking request in time t;

rj : unit tariff of jth class booking request;

ρ: penalty cost because of overbooking resulting in denying a booking request;

yj : cumulative number of the accepted jth class booking request in time t;

y =
∑n

j=1 yj : cumulative number of all accepted booking requests in time t;

θ: the show-up rate of each accepted booking request near the takeoff;

Cw: the maximum available load of the aircraft;

Cv: the maximum available volume of the aircraft;

W : weight of each booking request in time t;

V : volume of each booking request in time t;

w: expected weight of each booking request in time t, namely, E(W);

v: expected volume of each booking request in time t, namely, E(V );

λ: IATA required standard density, value of 0.006m3/kg.

In order to meet up only one request in a period, we will divide booking lead time into
a number of small discrete booking periods. t = 0 means that air cargo carrier begins to accept
the booking; t = T marks the end of booking, then the air cargo carrier should consider the
DB (denying booking) problem.
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When 0 < t < T , Ut(y) is the maximum total expected profit given state y in time t.
Given t and y, the dynamic programming optimality equation can be written as
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where ΔUt(y) = Ut+1(y) − Ut+1(y + 1) is the opportunity cost of accepting some class
request in time t. From (3.1)’, it is optimal to accept jth class booking request in time t if
rj max{w,v/λ } −ΔUt(y) ≥ 0.

Obviously,U0(0) is the maximum total expected profit from the beginning of booking
to the end of booking. In t = T , the penalty cost of overbooking is
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The boundary condition (3.2) shows that because of overbooking and relatively fixed
capacity, air cargo carrier needs to deny some accepted requests at the end of booking.

4. Structural Properties

In (3.2), there exist continuous random variables W and V . The cumulative distribution
function and probability density function are FW(·), FV (·) and fW(·), fV (·), respectively.

Next, we will prove that Ut(y) satisfies the following first-order and second-order
properties as follows.

Property 1. ΔUt(y) ≥ 0, namely, Ut(y) is decreasing in y.

Proof. When t = T ,
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Then, UT (y) is decreasing in y.
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Suppose that Ut+1(y) is decreasing in y. Next, we will show that Ut(y) is decreasing
in y.

From (3.1), we can get the conclusion easily. This completes the proof.

Property 2. Ut(y) is concave in y, that is, for each given t, ΔUt(y) is increasing in y.

Proof. When t = T ,
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Then ΔUT (y) is increasing in y, namely, UT (y) is concave in y.
Suppose thatΔUt(y) is increasing in y. Next, we will show thatΔUt−1(y) is increasing

in y.
By (3.1)’, we have
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For B, by the above assumption, ΔUt(y + 1) is increasing in y, then B is increasing in
y.

For A, suppose that there are m = 0, 1, . . . , n classes booking requests satisfying
rj max{w,v/λ} ≥ ΔUt(y), n−m classes booking requests meeting rj max{w,v/λ} ≤ ΔUt(y).
We may assume that the first m classes in total n satisfy rj max{w,v/λ} ≥ ΔUt(y), and the
last n −m classes satisfy rj max{w,v/λ} ≤ ΔUt(y). Then,
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By above hypothesis, we know that ΔUt(y) is increasing in y, then A is increasing in
y.

From above, we can get: ΔUt−1(y) is increasing in y. This completes the proof.

Property 3. ΔUt(y) is decreasing in t, that is, ΔUt−1(y) ≥ ΔUt(y).

Proof. From (4.3), we have
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By Property 2, we haveΔUt(y) ≤ ΔUt(y+1), thenΔUt−1(y) ≥ ΔUt(y). This completes
the proof.

Define n∗
jt = max{y|rj max{w,v/λ} ≥ ΔUt(y)}, combining Property 3, we have at any

time t, as long as y ≤ n∗
jt, air cargo carrier will accept jth class booking request. And then, we

have the following optimal control policy.

Theorem 4.1. The optimal control policy of the n classes booking requests is a booking limit policy: it
is optimal to accept jth class booking request in time t if y ≤ n∗

jt, or reject it. Furthermore, the threshold
n∗
jt has the following properties:

(1) If r1 ≥ r2 ≥ · · · ≥ rn, n∗
jt is decreasing in j, that is, n∗

1t ≥ n∗
2t ≥ · · · ≥ n∗

nt;

(2) n∗
jt is increasing in t, that is, n∗

j1 ≤ n∗
j2 ≤ · · · ≤ n∗

jn.

Proof. From Properties 2 and 3, we can have the conclusions easily. This theorem is verified.

The theorem shows that the optimal booking limits are time-dependent and nested
in classes. Furthermore, the unit tariff is higher, the optimal booking control policy is more
relaxed; the optimal booking limit policy of each class is increasing in time.

5. Conclusions

In this paper, we consider a single-leg air cargo overbooking and space inventory control
problem. Based on actual problem, we discrete the booking time into small pieces and
establish the dynamic space inventory control model of considering overbooking. After some
powerful proofs, we get the optimal booking-limit policy for each class of goods.
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[3] S. Luo, M. Çakanyıldırım, and R. G. Kasilingam, “Two-dimensional cargo overbooking models,”
European Journal of Operational Research, vol. 197, no. 3, pp. 862–883, 2009.

[4] L. Moussawi andM. Cakanyildrima, “Profit maximization in air cargo overbooking,” Working Paper,
2005.

[5] R. Sandhu and D. Klabjan, “Fleeting with passenger and cargo origin-destination booking control,”
Transportation Science, vol. 40, no. 4, pp. 517–528, 2006.

[6] E. P. Chew, H. C. Huang, E. L. Johnson, G. L. Nemhauser, J. S. Sokol, and C. H. Leong, “Short-term
booking of air cargo space,” European Journal of Operational Research, vol. 174, no. 3, pp. 1979–1990,
2006.

[7] K. Amaruchkul, W. L. Cooper, and D. Gupta, “Single-leg air-cargo revenue management,”
Transportation Science, vol. 41, no. 4, pp. 457–469, 2007.

[8] Y. Levin and M. Nediak, “Cargo capacity management with allotments and spot market demand,”
Operations Research, vol. 60, no. 2, pp. 351–365, 2012.

[9] Y. J. Wang and C. S. Kao, “An application of a fuzzy knowledge system for air cargo overbooking
under uncertain capacity,” Computers and Mathematics with Applications, vol. 56, no. 10, pp. 2666–2675,
2008.

[10] M. Modarres and M. Sharifyazdi, “Revenue management approach to stochastic capacity allocation
problem,” European Journal of Operational Research, vol. 192, no. 2, pp. 442–459, 2009.

[11] K. Huang and K. C. Chang, “An approximate algorithm for the two-dimensional air cargo revenue
management problem,” Transportation Research Part E, vol. 46, no. 3, pp. 426–435, 2010.

[12] D. L. Han, L. C. Tang, and H. C. Huang, “A Markov model for single-leg air cargo revenue
management under a bid-price policy,” European Journal of Operational Research, vol. 200, no. 3, pp.
800–811, 2010.

[13] K. Amaruchkul and V. Lorchirachoonkul, “Air-cargo capacity allocation for multiple freight
forwarders,” Transportation Research Part E, vol. 47, no. 1, pp. 30–40, 2011.


