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We investigate an m-point boundary value problem for nonlinear fractional differential equations.
The associated Green function for the boundary value problem is given at first, and some useful
properties of the Green function are obtained. By using the fixed point theorems of cone expansion
and compression of norm type and Leggett-Williams fixed point theorem, the existence of multiple
positive solutions is obtained.

1. Introduction

In recent years, the existence of positive solutions multipoint boundary value problems
of fractional order differential equations has been studied by many authors using various
methods (see [1–7]).

The study of multipoint boundary value problems for linear second-order ordinary
differential equations was initiated by II’in and Moiseev [8, 9].

Since then, nonlinear multipoint boundary value problems have been studied by
several authors (see [10–14]). Recently, in [15], the authors have studied the existence of at
least one positive solution for the following nth-order three-point boundary value problem:

u(n)(t) + h(t)f(t, u(t)) = 0, t ∈ [a, b],

u(a) = αu
(
η
)
, u′(a) = u′′(a) = · · · = u(n−2)(a) = 0, u(b) = βu

(
η
)
,

(1.1)
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where a < η < b, 0 ≤ α < 1, f ∈ C([a, b] × [0,∞), [0,∞)) and h ∈ C([a, b] × [0,∞)) may be
singular at t = a and t = b.

Goodrich [16] considered the BVP for thehigher-dimensional fractional differential
equation as follows:

−Dν
0+y(t) = f

(
t, y(t)

)
, 0 < t < 1, n − 1 < ν ≤ n,

y(i)(0) = 0, 0 ≤ i ≤ n − 2,
[
Dα

0+y(t)
]
t=1 = 0, 1 ≤ α ≤ n − 2,

(1.2)

and a Harnack-like inequality associated with the Green function related to the above
problem is obtained improving the results in [17].

Motivated by the aforementioned results and techniques in coping with those
boundary value problems of fractional differential equations, we then turn to investigate the
existence and multiplicity of positive solutions for the following BVP:

CDα
a+u(t) + f(t, u(t)) = 0, a ≤ t ≤ b, n − 1 ≤ α < n, n > 2, (1.3)

u′(a) =
m−2∑

i=1

βiu
′(ηi
)
, u′′(a) = u′′′(a) = · · · = u(n−1)(a) = 0, u(b) =

m−2∑

i=1

γiu
(
ηi
)
, (1.4)

where a < η1 < η2 < · · · < ηm−2 < b,
∑m−2

i=1 βi < 1,
∑m−2

i=1 γi < 1 and CDα
a+ are the Caputo

fractional derivative.
In this paper, we study the existence of at least one positive solution, existence of two

positive solutions associated with the BVP (1.3)-(1.4) by applying the fixed point theorems
of cone expansion and compression of norm type, and the existence of at least three positive
solutions for BVP (1.3)-(1.4) by using Leggett-Williams fixed point theorem.

The rest of the paper is organized as follows. In Section 2, we introduce some basic
definitions and preliminaries used later. In Section 3, the existence of multipoint boundary
value problem (1.3)-(1.4) will be discussed.

2. Preliminaries

In this section, we introduce definitions and preliminary facts which are used throughout this
paper.

Definition 2.1 (see [18]). For a function y : (a,∞) → R, the Caputo derivative of fractional
order α > 0 is defined as

C
D
α
a+y(t) =

1
Γ(n − α)

∫ t

a

(t − s)n−α−1y(n)(s)ds, n − 1 < α ≤ n. (2.1)
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Definition 2.2 (see [18]). The standard Riemann-Liouville fractional derivative of order α > 0
of a continuous function y : (a,∞) → R is given by

Dα
a+y(t) =

1
Γ(n − α)

(
d

dt

)n ∫ t

a

(t − s)n−α−1y(s)ds, (2.2)

where n = [α] + 1, provided that the integral on the right-hand side converges.

Definition 2.3 (see [18]). The Riemann-Liouville fractional integral of order α > 0 of a function
y : (a,∞) → R is given by

Iαa+y(t) =
1

Γ(α)

∫ t

a

(t − s)α−1y(s)ds (2.3)

provided that the integral on the right-hand side converges.

Definition 2.4 (see [19]). Let E be a real Banach space. A nonempty closed convex set K ⊂ E
is called cone of E if it satisfies the following conditions:

(1) x ∈ K, σ ≥ 0 implies σx ∈ K;

(2) x ∈ K, −x ∈ K implies x = 0.

Definition 2.5. An operator is called completely continuous if it is continuous and maps
bounded sets into precompact sets.

Theorem 2.6 (see [20]). Let E be a Banach space and K ⊂ E is a cone in E. Assume that Ω1 and
Ω2 are open subsets of E with 0 ∈ Ω1 and Ω1 ⊂ Ω2. Let T : K ∩ (Ω2 \ Ω1) → K be completely
continuous operator. In addition, suppose either

(i) ‖Tu‖ ≤ ‖u‖, for all u ∈ K ∩ ∂Ω1, and ‖Tu‖ ≥ ‖u‖, for all u ∈ K ∩ ∂Ω2 or

(ii) ‖Tu‖ ≤ ‖u‖, for all u ∈ K ∩ ∂Ω2, and ‖Tu‖ ≥ ‖u‖, for all u ∈ K ∩ ∂Ω1

holds. Then, T has a fixed point in K ∩ (Ω2 \Ω1).

Lemma 2.7. For α > 0, the general solution of the fractional differential equation C
D
α
a+u(t) = 0 is

given by

u(t) = c0 + c1(t − a) + c2(t − a)2 + · · · + cn−1(t − a)n−1, (2.4)

where ci ∈ R, i = 0, 1, 2, . . . , n − 1.
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Remark 2.8 (see [18]). In view of Lemma 2.7, it follows that

Iαa+
C
D
α
a+u(t) = u(t) + c0 + c1(t − a) + c2(t − a)2 + · · · + cn−1(t − a)n−1, (2.5)

for some ci ∈ R, i = 0, 1, 2, . . . , n − 1.

Definition 2.9. The map θ is said to be a nonnegative continuous concave functional on a cone
P of a real Banach space E provided that θ : P → [0,∞) is continuous and

θ
(
λx + (1 − λ)y) ≥ λθ(x) + (1 − λ)θ(y), (2.6)

for all x, y ∈ P, 0 ≤ λ ≤ 1.

Lemma 2.10 (see [21]). Let P be a cone in a real Banach space E, Pc = {x ∈ P : ‖x‖ < c}, θ
is a nonnegative continuous concave functional on P such that θ(x) ≤ ‖x‖, for all x ∈ Pc, and
P(θ, b, d) = {x ∈ P : b ≤ θ(x), x ≤ d}. Suppose that T : Pc → Pc is completely continuous and
there exist positive constants 0 < a < b < d ≤ c such that

(C1) {x ∈ P(θ, b, d) : θ(x) > b}/=φ and θ(x) > b for x ∈ P(θ, b, d),

(C2) ‖Tx‖ < a for x ∈ Pa,

(C3) θ(Tx) > b for x ∈ P(θ, b, d) with ‖Tx‖ > d,

then T has at least three fixed points x1, x2, and x3 with

‖x1‖ < a, b < θ(x2), a < ‖x3‖ with θ(x3) < b. (2.7)

Lemma 2.11. For a given y(t) ∈ C[a, b] and n − 1 ≤ α < n, the unique solution of the boundary
value problem

C
D
α
a+u(t) + y(t) = 0, a ≤ t ≤ b, n − 1 ≤ α < n, n > 2, n ∈N, (2.8)

u′(a) =
m−2∑

i=1

βiu
′(ηi
)
, u′′(a) = u′′′(a) = · · · = u(n−1)(a) = 0, u(b) =

m−2∑

i=1

γiu
(
ηi
)
, (2.9)

is given by

u(t) =
∫b

a

G(t, s)y(s)ds +
∫b

a

H
(
t, s;η1, . . . , ηm−2

)
y(s)ds, (2.10)
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where

G(t, s) =
1

Γ(α)

⎧
⎨

⎩

(b − s)α−1 − (t − s)α−1, a ≤ s ≤ t ≤ b,
(b − s)α−1, a ≤ t ≤ s ≤ b,

H
(
t, s;η1, . . . , ηm−2

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑m−2
i=1 γi

[
(b − s)α−1 − (ηi − s

)α−1]

δ2Γ(α)

+
μ(t)

∑m−2
i=1 βi

(
ηi − s

)α−2

δ1δ2Γ(α − 1)
, a ≤ s ≤ ηi, i = 1, 2, . . . , m − 2,

∑m−2
i=1 γi(b − s)α−1

δ2Γ(α)
, ηi ≤ s ≤ b, i = 1, 2, . . . , m − 2,

δ1 = 1 −
m−2∑

i=1

βi, δ2 = 1 −
m−2∑

i=1

γi, μ(t) =

(

b −
m−2∑

i=1

γiηi

)

− δ2t.

(2.11)

Proof. Using Remark 2.8, for arbitrary constants ci ∈ R, i = 0, 1, 2, . . . , n − 1, we have

u(t) =
−1
Γ(α)

∫ t

a

(t − s)α−1y(s)ds + c0 + c1(t − a) + c2(t − a)2 + · · · + cn−1(t − a)n−1

= −Iαa+y(t) + c0 + c1(t − a) + c2(t − a)2 + · · · + cn−1(t − a)n−1.
(2.12)

In view of the relations CDα
a+I

α
a+u(t) = u(t) and I

α
a+I

β
a+u(t) = I

α+β
a+ u(t) for α, β > 0, we obtain

u′(t) = −Iα−1a+ y(t) + c1 + 2c2(t − a) + · · · + (n − 1)cn−1(t − a)n−2,

u′′(t) = −Iα−2a+ y(t) + 2c2 + · · · + (n − 1)(n − 2)cn−1(t − a)n−3,
...

u(n−1)(t) = −Iα−n+1a+ y(t) + (n − 1)!cn−1.

(2.13)

Applying the boundary conditions (2.9), we find that

c2 = c3 = · · · = cn−1 = 0,
(

1 −
m−2∑

i=1

βi

)

c1 = −
m−2∑

i=1

βiI
α−1
a+ y

(
ηi
)
,

(2.14)
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then c1 = −∑m−2
i=1 βiI

α−1
a+ y(ηi)/δ1, and

c0 =
Iαa+y(b)(

1 −∑m−2
i=1 γi

) −
∑m−2

i=1 γiI
α
a+y
(
ηi
)

(
1 −∑m−2

i=1 γi
) +

[
(b − a) −∑m−2

i=1 γi
(
ηi − a

)]∑m−2
i=1 βiI

α−1
a+ y

(
ηi
)

(
1 −∑m−2

i=1 βi
)(

1 −∑m−2
i=1 γi

)

=
Iαa+y(b)
δ2

−
∑m−2

i=1 γiI
α
a+y
(
ηi
)

δ2
+

[
(b − a) −∑m−2

i=1 γi
(
ηi − a

)]∑m−2
i=1 βiI

α−1
a+ y

(
ηi
)

δ1δ2
.

(2.15)

Substituting the values of the constants ci, i = 0, 1, 2, . . . , n − 1, in (2.12), we obtain

u(t) = −Iαa+y(t) +
Iαa+y(b)
δ2

−
∑m−2

i=1 γiI
α
a+y
(
ηi
)

δ2
+

[
(b − a) −∑m−2

i=1 γi
(
ηi − a

)]∑m−2
i=1 βiI

α−1
a+ y

(
ηi
)

δ1δ2

−
∑m−2

i=1 βiI
α−1
a+ y

(
ηi
)

δ1
(t − a)

= −Iαa+y(t) +
Iαa+y(b)
δ2

−
∑m−2

i=1 γiI
α
a+y
(
ηi
)

δ2
+
μ(t)
δ1δ2

m−2∑

i=1

βiI
α−1
a+ y

(
ηi
)

= −Iαa+y(t) + Iαa+y(b) +
(1 − δ2)
δ2

Iαa+y(b) −
∑m−2

i=1 γiI
α
a+y
(
ηi
)

δ2
+
μ(t)
δ1δ2

m−2∑

i=1

βiI
α−1
a+ y

(
ηi
)

= −
∫ t

a

(t − s)α−1
Γ(α)

y(s)ds +
∫b

a

(b − s)α−1
Γ(α)

y(s)ds +
∑m−2

i=1 γi
δ2

∫b

a

(b − s)α−1
Γ(α)

y(s)ds

−
∑m−2

i=1 γi
δ2

∫ηi

a

(
ηi − s

)α−1

Γ(α)
y(s)ds +

μ(t)
δ1δ2

m−2∑

i=1

βi

∫ηi

a

(
ηi − s

)α−2

Γ(α − 1)
y(s)ds

= −
∫ t

a

(t − s)α−1
Γ(α)

y(s)ds +
∫b

a

(b − s)α−1
Γ(α)

y(s)ds

+
∑m−2

i=1 γi
δ2

∫ηi

a

[
(b − s)α−1 − (ηi − s

)α−1

Γ(α)

]

y(s)ds

+
∑m−2

i=1 γi
δ2

∫b

ηi

(b − s)α−1
Γ(α)

y(s)ds +
μ(t)
δ1δ2

m−2∑

i=1

βi

∫ηi

a

(
ηi − s

)α−2

Γ(α − 1)
y(s)ds.

(2.16)

Lemma 2.12. μ(t) = (b −∑m−2
i=1 γiηi) − δ2t ≥ 0, for t, ηi ∈ [a, b], i = 1, 2, . . . , m − 2.
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Proof. We have

μ =

(

b −
m−2∑

i=1

γiηi

)

− δ2t

≥
(

b −
m−2∑

i=1

γiηi

)

−
(

1 −
m−2∑

i=1

γi

)

b

≥
m−2∑

i=1

γi
(
b − ηi

)
> 0.

(2.17)

Lemma 2.13. The functions G(t, s), H(t, s;η1, η2, . . . , ηm−2) defined by (2.11) satisfy

(i) G(t, s) ≥ 0, H(t, s;η1, η2, . . . , ηm−2) ≥ 0, for all t, s ∈ [a, b],

(ii) minτ1≤t≤τ2G(t, s) ≥ τ0maxa≤t≤bG(t, s) = τ0G(s, s), for all t, s ∈ (a, b), a < τ1 < τ2 <
b, τ0 = minτ1≤t≤τ2ϕ(t) = (b − τ2)/(b − a),

(iii) N2q(s) ≤ H(t, s;η1, η2, . . . , ηm−2) ≤N1q(s), where

q(s) =
(b − s)α−2
δ1δ2Γ(α)

, N1 = (α − 1)

[

δ1(b − a)
m−2∑

i=1

γi + b
m−2∑

i=1

βi

]

,

N2 = min

{
δ1
∑m−2

i=1 γi
(α − 1)

, δ1
m−2∑

i=1

γi
(
b − ηi

)
}

,

(2.18)

(iv) minτ1≤t≤τ2H(t, s;η1, η2, . . . , ηm−2) ≥ τ∗maxa≤t≤bH(t, s;η1, η2, . . . , ηm−2), s ∈ (a, b),
where

τ∗ =

[(
b −∑m−2

i=1 γiηi
)
− δ2τ2

]

[(
b −∑m−2

i=1 γiηi
)
− δ2a

] < 1, a < τ1 < τ2 < b. (2.19)

Proof. It is clear that (i) holds. So, we prove that (ii) is true.
(ii) For α > 1, in view of the expression for G(t, s), it follows that G(t, s) ≤ G(s, s) for

all s, t ∈ [a, b], where G(s, s) = (b − s)α−1/Γ(α).
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If a ≤ s ≤ t ≤ b, we have

G(t, s)
G(s, s)

=

[
(b − s)α−1 − (t − s)α−1

]

(b − s)α−1

=

[
(b − s)α−2(b − s) − (t − s)α−2(t − s)

]

(b − s)α−1

≥ (b − s)α−2[(b − s) − (t − s)]
(b − s)α−1

=
(b − t)
(b − a) := ϕ(t).

(2.20)

If a ≤ t ≤ s ≤ b, then we have

G(t, s)
G(s, s)

= 1 ≥ (b − t)
(b − a) := ϕ(t). (2.21)

Thus

max
a≤t≤b

G(t, s) = G(s, s), ϕ(t)G(s, s) ≤ G(t, s) ≤ G(s, s), ∀t, s ∈ (a, b). (2.22)

Therefore,

min
τ1≤t≤τ2

G(t, s) ≥ τ0 max
a≤t≤b

G(t, s) = τ0G(s, s), ∀t, s ∈ (a, b), a < τ1 < τ2 < b. (2.23)

(iii) If a ≤ s ≤ ηi, i = 1, 2, . . . , m − 2, then

H
(
t, s;η1, η2, . . . , ηm−2

)
=

∑m−2
i=1 γi

[
(b − s)α−1 − (ηi − s

)α−1]

δ2Γ(α)
+
μ(t)

∑m−2
i=1 βi

(
ηi − s

)α−2

δ1δ2Γ(α − 1)

≤
∑m−2

i=1 γi(b − s)α−1
δ2Γ(α)

+
(α − 1)b

∑m−2
i=1 βi

(
ηi − s

)α−2

δ1δ2Γ(α)

=
1

δ1δ2Γ(α)

[

δ1
m−2∑

i=1

γi(b − s)α−1 + (α − 1)b
m−2∑

i=1

βi
(
ηi − s

)α−2
]

≤ (α − 1)(b − s)α−2
δ1δ2Γ(α)

[

δ1
m−2∑

i=1

γi(b − s) + b
m−2∑

i=1

βi

]

≤ (α − 1)(b − s)α−2
δ1δ2Γ(α)

[

δ1(b − a)
m−2∑

i=1

γi + b
m−2∑

i=1

βi

]

:=N1q(s),
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H
(
t, s;η1, η2, . . . , ηm−2

)
=

∑m−2
i=1 γi

[
(b − s)α−1 − (ηi − s

)α−1]

δ2Γ(α)
+
μ(t)

∑m−2
i=1 βi

(
ηi − s

)α−2

δ1δ2Γ(α − 1)

≥
∑m−2

i=1 γi
[
(b − s)α−1 − (ηi − s

)α−1]

δ2Γ(α)

=

∑m−2
i=1 γi

[
(b − s)α−2(b − s) − (ηi − s

)α−2(
ηi − s

)]

δ2Γ(α)

=
(b − s)α−2
δ2Γ(α)

m−2∑

i=1

γi
(
b − ηi

) ≥N2q(s).

(2.24)

If ηi ≤ s ≤ b, i = 1, 2, . . . , m − 2, then we have

H
(
t, s;η1, η2, . . . , ηm−2

)
=
∑m−2

i=1 γi(b − s)α−1
δ2Γ(α)

= δ1
m−2∑

i=1

γi(b − s) (b − s)
α−2

δ1δ2Γ(α)

≤ δ1
m−2∑

i=1

γi(b − a)q(s)

< N1q(s),

H
(
t, s;η1, η2, ..., ηm−2

)
=
∑m−2

i=1 γi(α − 1)(b − s)α−1
(α − 1)δ2Γ(α)

≥
∑m−2

i=1 γi(b − s)α−2
(α − 1)δ2Γ(α)

≥ δ1
∑m−2

i=1 γi
(α − 1)

q(s) ≥N2q(s).

(2.25)

(iv) Since ∂H(t, s;η1, η2, . . . , ηm−2)/∂t = −(∑m−2
i=1 βi(ηi − s)α−2/δ1Γ(α − 1)) ≤ 0, then

H(t, s;η1, η2, . . . , ηm−2) is nonincreasing in t, so

max
a≤t≤b

H
(
t, s;η1, η2, . . . , ηm−2

)
= H

(
a, s;η1, η2, . . . , ηm−2

)

=

∑m−2
i=1 γi

[
(b − s)α−1 − (ηi − s

)α−1]

δ2Γ(α)

+

[(
b −∑m−2

i=1 γiηi
)
− δ2a

]∑m−2
i=1 βi

(
ηi − s

)α−2

δ1δ2Γ(α − 1)
,
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min
τ1≤t≤τ2

H
(
t, s;η1, η2, . . . , ηm−2

)
=

∑m−2
i=1 γi

[
(b − s)α−1 − (ηi − s

)α−1]

δ2Γ(α)

+

[(
b −∑m−2

i=1 γiηi
)
− δ2τ2

]∑m−2
i=1 βi

(
ηi − s

)α−2

δ1δ2Γ(α − 1)

=

∑m−2
i=1 γi

[
(b − s)α−1 − (ηi − s

)α−1]

δ2Γ(α)

+ τ∗

[(
b −∑m−2

i=1 γiηi
)
− δ2a

]∑m−2
i=1 βi

(
ηi − s

)α−2

δ1δ2Γ(α − 1)

> τ∗max
a≤t≤b

H
(
t;η1, η2, . . . , ηm−2, s

)
.

(2.26)

3. Main Results

Let us denote by E = C[a, b] the Banach space of all continuous real functions on [a, b]
endowed with the norm ‖u‖ = maxa≤t≤b|u(t)| and P the cone

P =
{
u ∈ E : u ≥ 0, min

τ1≤t≤τ2
u(t) ≥ τ‖u‖, t ∈ [a, b]

}
, (3.1)

where τ = min{τ0, τ∗}, since τ0, τ∗ are constants do not depend on t.
Let the nonnegative continuous concave functional θ on the cone P be defined by

θ(u) = minτ1≤t≤τ2u(t).
Set T : P → E by

Tu(t) =
∫b

a

[
G(t, s) +H

(
t, s;η1, η2, . . . , ηm−2

)]
f(s, u(s))ds, a ≤ t ≤ b, (3.2)

where G(t, s), H(t, s;η1, η2, . . . , ηm−2) are defined as in Lemma 2.11.
From (3.2) and Lemma 2.13, we have

min
τ1≤t≤τ2

(Tu(t)) ≥
∫b

a

[
τ0G(s, s) + τ∗max

a≤t≤b
H
(
t, s;η1, . . . , ηm−2

)
]
f(s, u(s))ds

≥ τ‖Tu‖.
(3.3)

Hence, we have T(P) ⊂ P .
By standard argument, one can prove that T : P → P is a completely continuous

operator.



Abstract and Applied Analysis 11

The Existence of One Positive Solution

We introduce the following definitions:

f(u) := sup
t∈[a,b]

f(t, u), f(u) := inf
t∈[a,b]

f(t, u),

f0 = lim supu→ 0+
f(u)
u

, f0 = lim infu→ 0+
f(u)

u
,

f∞ = lim supu→∞
f(u)
u

, f∞ = lim infu→∞
f(u)

u
,

M =

(∫b

a

[
G(s, s) +N1q(s)

]
ds

)−1
, N =

(∫ τ2

τ1

τ
[
G(s, s) +N2q(s)

]
ds

)−1
.

(3.4)

Theorem 3.1. Let f(t, u) be continuous on [a, b] × [0,∞) → [0,∞). If there exist two positive
constants r2 > r1 > 0 such that

(H1) f(t, u) ≤Mr2, for (t, u) ∈ [a, b] × [0, r2],

(H2) f(t, u) ≥Nr1, for (t, u) ∈ [a, b] × [0, r1],

then the BVP (1.3)-(1.4) has at least a positive solution.

Proof. We know that the operator T : P → P defined by (3.2) is completely continuous.
(a) Let Ω2 = {u ∈ E : ‖u‖ < r2}. For any u ∈ P ∩ ∂Ω2, we have ‖u‖ = r2 which implies

that 0 ≤ u(t) ≤ r2 for every t ∈ [a, b]:

Tu(t) =
∫b

a

[
G(t, s) +H

(
t, s;η1, . . . , ηm−2

)]
f(s, u(s))ds

≤Mr2

∫b

a

[
G(s, s) +N1q(s)

]
ds

≤ r2 = ‖u‖,

(3.5)

which implies that

‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2. (3.6)
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(b) Let Ω1 = {u ∈ E : ‖u‖ < r1}. For any t ∈ [τ1, τ2], u ∈ P ∩ ∂Ω1. We have

Tu(t) =
∫b

a

[
G(t, s) +H

(
t, s;η1, . . . , ηm−2

)]
f(s, u(s))ds

≥
∫b

a

ϕ(t)
[
G(s, s) +N2q(s)

]
f(s, u(s))ds

≥Nr1

∫ τ2

τ1

τ
[
G(s, s) +N2q(s)

]
ds

= r1 = ‖u‖,

(3.7)

which implies that

‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1. (3.8)

In view of Theorem 2.6, T has a fixed point u0 ∈ P ∩ (Ω2 \Ω1) which is a solution of the BVP
(1.3)-(1.4).

The Existence of Two Positive Solutions

Theorem 3.2. Assume that all assumptions of Theorem 3.1, hold. Moreover, one assumes that f(t, u)
also satisfies

(H3) f∞ = ∞.

Then, the BVP (1.3)-(1.4) has at least two positive solutions.

Proof. At first, it follows from condition (H1) that

‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2. (3.9)

Further, it follows from condition (H2) that

‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1. (3.10)

Finally, since f∞ = ∞, there exists ψ > (τ2
∫τ2
τ1
[G(s, s) +N2q(s)]ds)

−1
and r3 > r2 such that

f(t, u) ≥ ψu(t), t ∈ [a, b], u ≥ r3. (3.11)
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Let r∗ = max{2r2, τ−1r3} and set Ω3 = {u ∈ E : ‖u‖ < r∗}, then u ∈ P ∩ ∂Ω3implies
minτ1≤t≤τ2u(t) ≥ τ‖u‖ ≥ τr∗ ≥ r3,

Tu(t) =
∫b

a

[
G(t, s) +H

(
t, s;η1, η2, . . . , ηm−2

)]
f(s, u(s))ds

≥
∫b

a

ϕ(t)
[
G(s, s) +N2q(s)

]
f(s, u(s))ds

≥ ψ
∫b

a

ϕ(t)
[
G(s, s) +N2q(s)

]
u(s)ds

≥ r∗ψ
∫ τ2

τ1

τ2
[
G(s, s) +N2q(s)

]
ds > r∗ = ‖u‖.

(3.12)

Therefore, we have

‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω3. (3.13)

Thus, from (3.6), (3.8), (3.13), and Theorem 2.6, T has a fixed point u1, in P ∩ (Ω2 \Ω1) and a
fixed point u2, in P ∩ (Ω3 \Ω2). Both are positive solutions of BVP (1.3)-(1.4) and satisfy

0 < ‖u1‖ < r2 < ‖u2‖. (3.14)

Theorem 3.3. Assume that f(t, u) be continuous on [a, b] × [0,∞) → [0,∞). If the following
assumptions hold:

(H1) f0 > ψ,

(H2) f∞ > ψ,

(H3) there exists a constant ρ > 0 such that f(t, u) ≤ ρM, (t, u) ∈ [a, b] × [0, ρ],

then the BVP (1.3)-(1.4) has at least two positive solutions u1 and u2 such that

0 < ‖u1‖ < ρ < ‖u2‖. (3.15)

Proof. At first, it follows from condition (H1) that we may choose ρ1 ∈ (0, ρ) such that

f(t, u) > ψu, 0 < u ≤ ρ1, (3.16)



14 Abstract and Applied Analysis

where ψ is defined as in Theorem 3.2. SetΩ1 = {u ∈ E : ‖u‖ < ρ1}, and u ∈ P ∩∂Ω1; from (3.2)
and Lemma 2.13, for a ≤ t ≤ b, we have

Tu(t) =
∫b

a

[
G(t, s) +H

(
t, s;η1, η2, . . . , ηm−2

)]
f(s, u(s))ds

≥
∫b

a

ϕ(t)
[
G(s, s) +N2q(s)

]
f(s, u(s))ds

≥ ψ
∫b

a

ϕ(t)
[
G(s, s) +N2q(s)

]
u(s)ds

≥ ρ1ψ
∫ τ2

τ1

τ2
[
G(s, s) +N2q(s)

]
ds

> ρ1 = ‖u‖.

(3.17)

Therefore, we have

‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1. (3.18)

Further, it follows from condition (H2) that there exists ρ2 > ρ such that

f(t, u) > ψu(t), u ≥ ρ2. (3.19)

Let ρ∗ = max{2ρ, τ−1ρ2}, set Ω2 = {u ∈ E : ‖u‖ < ρ∗}, then u ∈ P ∩ ∂Ω2implies minτ1≤t≤τ2u(t) ≥
τ‖u‖ ≥ τρ∗ ≥ ρ2,

Tu(t) =
∫b

a

[
G(t, s) +H

(
t, s;η1, η2, . . . , ηm−2

)]
f(s, u(s))ds

≥
∫b

a

ϕ(t)
[
G(s, s) +N2q(s)

]
f(s, u(s))ds

≥ ψ
∫b

a

ϕ(t)
[
G(s, s) +N2q(s)

]
u(s)ds

≥ ρ∗ψ
∫ τ2

τ1

τ2
[
G(s, s) +N2q(s)

]
ds > ρ∗ = ‖u‖.

(3.20)

Therefore, we have

‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω2. (3.21)
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Finally, let Ω3 = {u ∈ E : ‖u‖ < ρ} and u ∈ P ∩ ∂Ω3. By condition (H3), we have

Tu(t) ≤
∫b

a

[
G(s, s) +N1q(s)

]
f(s, u(s))ds

≤Mρ

∫b

a

[
G(s, s) +N1q(s)

]
ds

= ρ = ‖u‖,

(3.22)

which implies

‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω3. (3.23)

Thus, from (3.18), (3.21), (3.23), and Theorem 2.6, T has a fixed point u1 in P ∩ (Ω3 \Ω1) and
a fixed point u2, in P ∩ (Ω2 \Ω3). Both are positive solutions of BVP (1.3)-(1.4) and satisfy

0 < ‖u1‖ < ρ < ‖u2‖. (3.24)

Theorem 3.4. Assume that f(t, u) be continuous on [a, b] × [0,∞) → [0,∞). If the following
assumptions hold:

(H ′
1) f0 = ∞,

(H ′
2) f∞ = ∞,

(H ′
3) there exists a constant ρ

′ > 0 such that f(t, u) ≤ ρ′M, (t, u) ∈ [a, b] × [0, ρ′],

then the BVP (1.3)-(1.4) has at least two positive solutions u1 and u2 such that

0 < ‖u1‖ < ρ′ < ‖u2‖. (3.25)

The proof of Theorem 3.4 is very similar to that of Theorem 3.3 and therefore is omitted.

Theorem 3.5. Assume that f(t, u) be continuous on [a, b] × [0,∞) → [0,∞). If the following
assumptions hold:

(H1) f0 < M,

(H2) f∞ < M,

(H3) there exists a constant l > 0 such that f(t, u) ≥Nl, (t, u) ∈ [a, b] × [τl, l],

then the BVP (1.3)-(1.4) has at least two positive solutions u1 and u2 such that

0 < ‖u1‖ < l < ‖u2‖. (3.26)

Proof. It follows from condition (H1) that we may choose ρ3 ∈ (0, l) such that

f(t, u) < Mu, 0 < u ≤ ρ3. (3.27)
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Set Ω4 = {u ∈ E : ‖u‖ < ρ3}, and u ∈ P ∩ ∂Ω4; from (3.2) and Lemma 2.13, for a ≤ t ≤ b, we
have

Tu(t) =
∫b

a

[
G(t, s) +H

(
t, s;η1, η2, . . . , ηm−2

)]
f(s, u(s))ds

< M

∫b

a

[
G(s, s) +N1q(s)

]
ds · ‖u‖ =M ·M−1‖u‖ = ‖u‖.

(3.28)

Therefore, we have

‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω4. (3.29)

It follows from condition (H2) that there exists ρ4 > l such that

f(t, u) < Mu, u ≥ ρ4, (3.30)

and we consider two cases.

Case 1. Suppose that f is unbounded, there exists l∗ > ρ4 such that f(t, u)≤f(t, l∗) for 0<u≤ l∗.

Then, for u ∈ P and ‖u‖ = l∗, we have

Tu(t) =
∫b

a

[
G(t, s) +H

(
t, s;η1, η2, . . . , ηm−2

)]
f(s, u(s))ds

≤
∫b

a

[
G(s, s) +N1q(s)

]
f(s, l∗)ds

< Ml∗
∫b

a

[
G(s, s) +N1q(s)

]
ds = l∗ = ‖u‖.

(3.31)

Case 2. If f is bounded, that is, f(t, u) ≤ k for all u ∈ [0,∞), taking l∗ ≥ max{2l, kM−1}, for
u ∈ P and ‖u‖ = l∗, then we have

Tu(t) =
∫b

a

[
G(t, s) +H

(
t, s;η1, η2, . . . , ηm−2

)]
f(s, u(s))ds

≤ k
∫b

a

[
G(s, s) +N1q(s)

]
ds = kM−1 ≤ l∗ = ‖u‖.

(3.32)

Hence, in either case, we always may set Ω5 = {u ∈ E : ‖u‖ < l∗} such that

‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω5. (3.33)
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Finally, set Ω6 = {u ∈ E : ‖u‖ < l}, then u ∈ P ∩ ∂Ω6 and

min
τ1≤t≤τ2

u(t) ≥ τ‖u‖ = τl, (3.34)

and by condition (H3) and (3.2), we have

Tu(t) =
∫b

a

[
G(t, s) +H

(
t, s;η1, η2, . . . , ηm−2

)]
f(s, u(s))ds

≥Nl

∫b

a

ϕ(t)
[
G(s, s) +N2q(s)

]
ds

≥Nl

∫ τ2

τ1

τ
[
G(s, s) +N2q(s)

]
ds = l = ‖u‖.

(3.35)

Hence, we have

‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω6. (3.36)

Thus, from (3.29), (3.33), (3.36) and Theorem 2.6, T has a fixed point u1 in P ∩ (Ω6 \Ω4) and
a fixed point u2 in P ∩ (Ω5 \Ω6). Both are positive solutions of BVP (1.3)-(1.4) and satisfy

0 < ‖u1‖ < l < ‖u2‖. (3.37)

Theorem 3.6. Assume that f(t, u) be continuous on [a, b] × [0,∞) → [0,∞). If the following
assumptions hold:

(H ′
1) f

0 = 0,

(H ′
2) f

∞ = 0,

(H ′
3) there exists a constant ρ

′′ > 0 such that f(t, u) ≥Nρ′′, (t, u) ∈ [a, b] × [τρ′′, ρ′′],

then the BVP (1.3)-(1.4) has at least two positive solutions u1 and u2 such that

0 < ‖u1‖ < ρ′′ < ‖u2‖. (3.38)

The proof of Theorem 3.6 is very similar to that of Theorem 3.5 and therefore omitted.

The Existence of Three Positive Solutions

Theorem 3.7. Let f(t, u) be continuous on [a, b] × [0,∞) → [0,∞). If there exist constants 0 <
a1 < a2 ≤ a3 such that the following assumptions

(i) f(t, u) < Ma1, (t, u) ∈ [a, b] × [0, a1],

(ii) f(t, u) ≤Ma3, (t, u) ∈ [a, b] × [0, a3],

(iii) f(t, u) ≥Na2, (t, u) ∈ [τ1, τ2] × [a2, a2/τ],
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hold, then BVP (1.3)-(1.4) has at least three positive solutions u1, u2, and u3 with

‖u1‖ < a1, a2 < θ(u2) < ‖u2‖ ≤ a3,
a1 < ‖u3‖, θ(u3) < a2.

(3.39)

Proof. We will show that all conditions of Lemma 2.10, are satisfied.
First, if u ∈ Pa3 , then ‖u‖ ≤ a3. So, 0 ≤ u(t) ≤ a3, t ∈ [a, b].
By condition (ii), we have

Tu(t) =
∫b

a

[
G(t, s) +H

(
t, s;η1, . . . , ηm−2

)]
f(s, u(s))ds

≤
∫b

a

[
G(s, s) +N1q(s)

]
Ma3ds

=Ma3

∫b

a

[
G(s, s) +N1q(s)

]
ds = a3,

(3.40)

which implies that ‖Tu‖ ≤ a3, u ∈ Pa3 . Hence T : Pa3 → Pa3 .
Next, by using the analogous argument, it follows from condition (i) that if u ∈ Pa1 ,

then ‖Tu‖ < a1.
Choose u(t) = (a2 + a2/τ)/2, t ∈ [a, b], it is easy to see that u(t) = (a2 + a2/τ)/2 ∈

P(θ, a2, a3), θ(u) = (a2 + a2/τ)/2 > a2.
Therefore, {u ∈ P(θ, a2, a2/τ) | θ(u) > a2}/=φ. On the other hand, if u ∈ P(θ, a2, a2/τ),

then a2 ≤ u(t) ≤ a2/τ, t ∈ [τ1, τ2]. By condition (iii), we have f(t, u(t)) ≥Na2.
Hence,

θ(Tu(t)) = min
τ1≤t≤τ2

Tu(t)

= min
τ1≤t≤τ2

∫b

a

[
G(t, s) +H

(
t, s;η1, . . . , ηm−2

)]
f(s, u(s))ds

≥Na2

∫b

a

τ
[
G(s, s) +N2q(s)

]
ds

> Na2

∫ τ2

τ1

τ
[
G(s, s) +N2q(s)

]
ds = a2,

(3.41)

which implies that θ(Tu) > a2, for u ∈ P(θ, a2, a2/τ).
Finally, if u ∈ P(θ, a2, a3) and ‖Tu‖ > a2/τ , then

θ(u) = min
τ1≤t≤τ2

Tu(t) ≥ τ‖Tu‖ > a2. (3.42)
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Thus, all the conditions of the Leggett-Williams fixed point theorem are satisfied by taking
d = a2/τ . Hence, the BVPs have at least three solutions in P , that is, three positive solutions
ui (i = 1, 2, 3) such that

‖u1‖ < a1, a2 < θ(u2) < ‖u2‖ ≤ a3,
a1 < ‖u3‖, θ(u3) < a2.

(3.43)

Example 3.8. Consider the problem

D
(4.2)
0+ u(t) +

1
3
(1 + ueu) = 0, t ∈ (0, 1),

u′(0) =
1
4
u′
(
1
2

)
, u′′(0) = u′′′(0) = u′′′′(0) = 0, u(1)=

3
4
u

(
1
2

)
,

(3.44)

where α = 4.2, a = 0, b = 1, β = 0.25, γ = 0.75, η = 0.5, τ1 = 0.25, τ2 = 0.75, N1 = 2.6, N2 =
0.1758, N = 168.9596, andM = 1.6968, f(t, u) = (1/3)(1 + ueu).

Since f(t, u) = (1/3)(1 + ueu) is a monotone increasing function on [0,∞), we take
r1 = 0.001, r2 = 0.8. We can get

f(t, u) ≤ f(0.8) = 0.9268 < Mr2,

f(t, u) ≥ f(0) = 0.3333 > Nr1.
(3.45)

So, conditions (H1) and (H2) hold. By Theorem 3.1, the BVP (3.44) has at least one positive
solution.
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