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The issue ofH∞ estimation for a class of Lipschitz nonlinear discrete-time systems with time delay
and disturbance input is addressed. First, through integrating theH∞ filtering performance index
with the Lipschitz conditions of the nonlinearity, the design of robust estimator is formulated
as a positive minimum problem of indefinite quadratic form. Then, by introducing the Krein
space model and applying innovation analysis approach, the minimum of the indefinite quadratic
form is obtained in terms of innovation sequence. Finally, through guaranteeing the positivity
of the minimum, a sufficient condition for the existence of the H∞ estimator is proposed and the
estimator is derived in terms of Riccati-like difference equations. The proposed algorithm is proved
to be effective by a numerical example.

1. Introduction

In control field, nonlinear estimation is considered to be an important task which is also
of great challenge, and it has been a very active area of research for decades [1–7]. Many
kinds of methods on estimator design have been proposed for different types of nonlinear
dynamical systems. Generally speaking, there are three approaches widely adopted for
nonlinear estimation. In the first one, by using an extended (nonexact) linearization of
the nonlinear systems, the estimator is designed by employing classical linear observer
techniques [1]. The second approach, based on a nonlinear state coordinate transformation
which renders the dynamics driven by nonlinear output injection and the output linear on the
new coordinates, uses the quasilinear approaches to design the nonlinear estimator [2–4]. In
the last one, methods are developed to design nonlinear estimators for systems which consist
of an observable linear part and a locally or globally Lipschitz nonlinear part [5–7]. In this
paper, the problem of H∞ estimator design is investigated for a class of Lipschitz nonlinear
discrete-time systems with time delay and disturbance input.
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In practice, most nonlinearities can be regarded as Lipschitz, at least locally when they
are studied in a given neighborhood [6]. For example, trigonometric nonlinearities occurring
in many robotic problems, non-linear softening spring models frequently used in mechanical
systems, nonlinearities which are square or cubic in nature, and so forth. Thus, in recent years,
increasing attention has been paid to estimator design for Lipschitz nonlinear systems [8–19].
For the purpose of designing this class of nonlinear estimator, a number of approaches have
been developed, such as sliding mode observers [8, 9], H∞ optimization techniques [10–
13], adaptive observers [14, 15], high-gain observers [16], loop transfer recovery observers
[17], proportional integral observers [18], and integral quadratic constraints approach [19].
All of the above results are obtained in the assumption that the Lipschitz nonlinear systems
are delay free. However, time delay is an inherent characteristic of many physical systems,
and it can result in instability and poor performances if it is ignored. The estimator design
for time-delay Lipschitz nonlinear systems has become a substantial need. Unfortunately,
compared with estimator design for delay-free Lipschitz nonlinear systems, less research has
been carried out on the time-delay case. In [20], the linearmatrix inequality-(LMI-) based full-
order and reduced-order robustH∞ observers are proposed for a class of Lipschitz nonlinear
discrete-time systems with time delay. In [21], by using Lyapunov stability theory and LMI
techniques, a delay-dependent approach to theH∞ and L2−L∞ filtering is proposed for a class
of uncertain Lipschitz nonlinear time-delay systems. In [22], by guaranteeing the asymptotic
stability of the error dynamics, the robust observer is presented for a class of uncertain
discrete-time Lipschitz nonlinear state delayed systems; In [23], based on the sliding mode
techniques, a discontinuous observer is designed for a class of Lipschitz nonlinear systems
with uncertainty. In [24], an LMI-based convex optimization approach to observer design is
developed for both constant-delay and time-varying delay Lipschitz nonlinear systems.

In this paper, the H∞ estimation problem is studied for a class of Lipschitz nonlinear
discrete time-delay systems with disturbance input. Inspired by the recent study onH∞ fault
detection for linear discrete time-delay systems in [25], a recursive Kalman-like algorithm
in an indefinite metric space, named the Krein space [26], will be developed to the design
of H∞ estimator for time-delay Lipschitz nonlinear systems. Unlike [20], the delay-free
nonlinearities and the delayed nonlinearities in the presented systems are decoupling. For
the case presented in [20], theH∞ observer design problem, utilizing the technical line of this
paper, can be solved by transforming it into a delay-free system through state augmentation.
Indeed, the state augmentation results in a higher system dimension and, thus, a much
more expensive computational cost. Therefore, this paper based on the presented time-
delay Lipschitz nonlinear systems, focuses on the robust estimator design without state
augmentation by employing innovation analysis approach in the Krein space. The major
contribution of this paper can be summarized as follows: (i) it extends the Krein space linear
estimation methodology [26] to the state estimation of the time-delay Lipschitz nonlinear
systems and (ii) it develops a recursive Kalman-like robust estimator for time-delay Lipschitz
nonlinear systems without state augmentation.

The remainder of this paper is arranged as follows. In Section 2, the interest system, the
Lipschitz conditions, and theH∞ estimation problem are introduced. In Section 3, a partially
equivalent Krein space problem is constructed, the H∞ estimator is obtained by computed
Riccati-like difference equations, and sufficient existence condition is derived in terms of
matrix inequalities. An example is given to show the effect of the proposed algorithm in
Section 4. Finally, some concluding remarks are made in Section 5.

In the sequel, the following notation will be used: elements in the Krein space will
be denoted by boldface letters, and elements in the Euclidean space of complex numbers
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will be denoted by normal letters; R
n denotes the real n-dimensional Euclidean space; ‖ · ‖

denotes the Euclidean norm; θ(k) ∈ l2[0,N] means
∑N

k=0(θ
T (k)θ(k)) < ∞; the superscripts

“−1” and “T” stand for the inverse and transpose of a matrix, resp.; I is the identity matrix
with appropriate dimensions; For a real matrix, P > 0 (P < 0, resp.) means that P is
symmetric and positive (negative, resp.) definite; 〈∗, ∗〉 denotes the inner product in the Krein
space; diag{· · · } denotes a block-diagonal matrix; L{· · ·} denotes the linear space spanned by
sequence {· · ·}.

2. System Model and Problem Formulation

Consider a class of nonlinear systems described by the following equations:

x(k + 1) = Ax(k) +Adx(kd) + f(k, Fx(k), u(k))

+ h(k,Hx(kd), u(k)) + Bw(k),

y(k) = Cx(k) + v(k),

z(k) = Lx(k),

(2.1)

where kd = k − d, and the positive integer d denotes the known state delay; x(k) ∈ R
n is the

state, u(k) ∈ R
p is the measurable information, w(k) ∈ R

q and v(k) ∈ R
m are the disturbance

input belonging to l2[0,N], y(k) ∈ R
m is the measurement output, and z(k) ∈ R

r is the signal
to be estimated; the initial condition x0(s) (s = −d,−d + 1, . . . , 0) is unknown; the matrices
A ∈ R

n×n,Ad ∈ R
n×n, B ∈ R

n×q, C ∈ R
m×n and L ∈ R

r×n, are real and known constant matrices.
In addition, f(k, Fx(k), u(k)) and h(k,Hx(kd), u(k)) are assumed to satisfy the

following Lipschitz conditions:

‖f(k, Fx(k), u(k)) − f(k, Fx̆(k), u(k))‖ ≤ α‖F(x(k) − x̆(k))‖,
‖h(k,Hx(kd), u(k)) − h(k,Hx̆(kd), u(k))‖ ≤ β‖H(x(kd) − x̆(kd))‖,

(2.2)

for all k ∈ {0, 1, . . . ,N}, u(k) ∈ R
p and x(k), x̆(k), x(kd), x̆(kd) ∈ R

n. where α > 0 and β > 0
are known Lipschitz constants, and F, H are real matrix with appropriate dimension.

TheH∞ estimation problem under investigation is stated as follows. Given the desired
noise attenuation level γ > 0 and the observation {y(j)}kj=0, find an estimate z̆(k | k) of the
signal z(k), if it exists, such that the following inequality is satisfied:

sup
(x0,w,v)/= 0

∑N
k=0 ‖z̆(k | k) − z(k)‖2

∑0
k=−d ‖x0(k)‖2Π−1(k) +

∑N
k=0 ‖w(k)‖2 +∑N

k=0 ‖v(k)‖2
< γ2, (2.3)

where Π(k) (k = −d,−d + 1, . . . , 0) is a given positive definite matrix function which reflects
the relative uncertainty of the initial state x0(k) (k = −d,−d + 1, . . . , 0) to the input and
measurement noises.

Remark 2.1. For the sake of simplicity, the initial state estimate x̂0(k) (k = −d,−d + 1, . . . , 0) is
assumed to be zero in inequality (2.3).
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Remark 2.2. Although the system given in [20] is different from the one given in this paper,
the problem mentioned in [20] can also be solved by using the presented approach. The
resolvent first converts the system given in [20] into a delay-free one by using the classical
system augmentation approach, and then designs estimator by employing the similar but
easier technical line with our paper.

3. Main Results

In this section, the Krein space-based approach is proposed to design the H∞ estimator
for Lipschitz nonlinear systems. To begin with, the H∞ estimation problem (2.3) and the
Lipschitz conditions (2.2) are combined in an indefinite quadratic form, and the nonlinearities
are assumed to be obtained by {y(i)}ki=0 at the time step k. Then, an equivalent Krein
space problem is constructed by introducing an imaginary Krein space stochastic system.
Finally, based on projection formula and innovation analysis approach in the Krein space, the
recursive estimator is derived.

3.1. Construct a Partially Equivalent Krein Space Problem

It is proved in this subsection that the H∞ estimation problem can be reduced to a positive
minimum problem of indefinite quadratic form, and the minimum can be obtained by using
the Krein space-based approach.

Since the denominator of the left side of (2.3) is positive, the inequality (2.3) is
equivalent to

0∑

k=−d
‖x0(k)‖2Π−1(k) +

N∑

k=0

‖w(k)‖2 +
N∑

k=0

‖v(k)‖2 − γ−2
N∑

k=0

‖vz(k)‖2
︸ ︷︷ ︸

�J∗N

> 0, ∀(x0, w, v)/= 0,
(3.1)

where vz(k) = z̆(k | k) − z(k).
Moreover, we denote

zf(k) = Fx(k), z̆f(k | k) = Fx̆(k | k),
zh(kd) = Hx(kd), z̆h(kd | k) = Hx̆(kd | k),

(3.2)

where z̆f(k | k) and z̆h(kd | k) denote the optimal estimation of zf(k) and zh(kd) based on
the observation {y(j)}kj=0, respectively. And, let

wf(k) = f
(
k, zf(k), u(k)

) − f
(
k, z̆f(k | k), u(k)),

wh(kd) = h(k, zh(kd), u(k)) − h(k, z̆h(kd | k), u(k)),
vzf (k) = z̆f(k | k) − zf(k),

vzh(kd) = z̆h(kd | k) − zh(kd).

(3.3)
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From the Lipschitz conditions (2.2), we derive that

J∗N +
N∑

k=0

∥
∥wf(k)

∥
∥2 +

N∑

k=0

‖wh(kd)‖2 − α2
N∑

k=0

∥
∥
∥vzf (k)

∥
∥
∥
2 − β2

N∑

k=0

‖vzh(kd)‖2
︸ ︷︷ ︸

�JN

≤ J∗N.
(3.4)

Note that the left side of (3.1) and (3.4), JN , can be recast into the form

JN =
0∑

k=−d
‖x0(k)‖2

Π
−1
(k)

+
N∑

k=0

‖w(k)‖2 +
N∑

k=0

‖v(k)‖2

− γ−2
N∑

k=0

‖vz(k)‖2 − α2
N∑

k=0

∥
∥
∥vzf (k)

∥
∥
∥
2 − β2

N∑

k=d

‖vzh(kd)‖2,
(3.5)

where

Π(k) =

⎧
⎨

⎩

(
Π−1(k) − β2HTH

)−1
, k = −d, . . . ,−1,

Π(k), k = 0,

w(k) =
[
wT (k) wT

f (k) wT
h (kd)

]T
.

(3.6)

Since JN ≤ J∗N , it is natural to see that if JN > 0 then the H∞ estimation problem (2.3)
is satisfied, that is, J∗N > 0. Hence, the H∞ estimation problem (2.3) can be converted into
finding the estimate sequence {{z̆(k | k)}Nk=0; {z̆f (k | k)}Nk=0; {z̆h(kd | k)}Nk=d} such that JN
has a minimum with respect to {x0, w} and the minimum of JN is positive. As mentioned in
[25, 26], the formulated H∞ estimation problem can be solved by employing the Krein space
approach.

Introduce the following Krein space stochastic system

x(k + 1) = Ax(k) +Adx(kd) + f
(
k, z̆f(k | k),u(k))

+ h(k, z̆h(kd | k),u(k)) + Bw(k),

y(k) = Cx(k) + v(k),

z̆f(k | k) = Fx(k) + vzf (k),

z̆(k | k) = Lx(k) + vz(k),

z̆h(kd | k) = Hx(kd) + vzh(kd), k ≥ d,

(3.7)

where B = [B I I] ; the initial state x0(s) (s = −d,−d + 1, . . . , 0) andw(k), v(k), vzf (k), vz(k)
and vzh(k) are mutually uncorrelated white noises with zero means and known covariance
matrices Π(s), Qw(k) = I, Qv(k) = I, Qvzf (k) = −α−2I, Qvz(k) = −γ2I, and Qvzh(k) = −β−2I;
z̆f(k | k), z̆(k | k) and z̆h(kd | k) are regarded as the imaginary measurement at time k for the
linear combination Fx(k), Lx(k), andHx(kd), respectively.
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Let

yz(k) =

⎧
⎪⎨

⎪⎩

[
yT (k) z̆Tm(k | k)

]T
, 0 ≤ k < d,

[
yT (k) z̆Tm(k | k) z̆T

h(kd | k)
]T
, k ≥ d,

vz,a(k) =

⎧
⎪⎨

⎪⎩

[
vT (k) vTzf (k) vTz (k)

]T
, 0 ≤ k < d,

[
vT (k) vTzf (k) vTz (k) vTzh(kd)

]T
, k ≥ d,

z̆m(k | k) =
[
z̆Tf (k | k) z̆T (k | k)

]T
.

(3.8)

Definition 3.1. The estimator ŷ(i | i − 1) denotes the optimal estimation of y(i) given the
observation L{{yz(j)}i−1j=0}; the estimator ẑm(i | i) denotes the optimal estimation of z̆m(i |
i) given the observation L{{yz(j)}i−1j=0;y(i)}; the estimator ẑh(id | i) denotes the optimal

estimation of z̆h(id | i) given the observation L{{yz(j)}i−1j=0;y(i), z̆m(i | i)}.

Furthermore, introduce the following stochastic vectors and the corresponding
covariance matrices

ỹ(i | i − 1) = y(i) − ŷ(ii − 1), Rỹ(ii − 1) = 〈ỹ(ii − 1), ỹ(ii − 1)〉,
z̃m(i | i) = z̆m(ii) − ẑm(ii), Rz̃m(ii) = 〈z̃m(ii), z̃m(ii)〉,
z̃h(id | i) = z̆h(idi) − ẑh(idi), Rz̃h(idi) = 〈z̃h(idi), z̃h(idi)〉.

(3.9)

And, denote

ỹz(i) =

⎧
⎪⎨

⎪⎩

[
ỹT (i | i − 1) z̃Tm(i | i)

]T
, 0 ≤ i < d,

[
ỹT (i | i − 1) z̃Tm(i | i) z̃T

h
(id | i)

]T
, i ≥ d,

Rỹz(i) = 〈ỹz(i), ỹz(i)〉.

(3.10)

For calculating the minimum of JN , we present the following Lemma 3.2.

Lemma 3.2. {{ỹz(i)}ki=0} is the innovation sequence which spans the same linear space as that of
L{{yz(i)}ki=0}.

Proof. From Definition 3.1 and (3.9), ỹ(i | i − 1), z̃m(i | i) and z̃h(id | i) are the linear
combination of the observation sequence {{yz(j)}i−1j=0;y(i)}, {{yz(j)}i−1j=0; y(i), z̆m(i | i)}, and
{{yz(j)}ij=0}, respectively. Conversely, y(i), z̆m(i | i) and z̆h(id | i) can be given by the linear

combination of {{ỹz(j)}i−1j=0; ỹ(i | i − 1)}, {{ỹz(j)}i−1j=0; ỹ(i | i − 1), z̃m(i | i)} and {{ỹz(j)}ij=0},
respectively. Hence,

L
{
{ỹz(i)}ki=0

}
= L
{
{yz(i)}ki=0

}
. (3.11)
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It is also shown by (3.9) that ỹ(i | i − 1), z̃m(i | i) and z̃h(id | i) satisfy

ỹ(i | i − 1) ⊥ L
{{

yz
(
j
)}i−1

j=0

}
,

z̃m(i | i) ⊥ L
{{

yz
(
j
)}i−1

j=0;y(i)
}
,

z̃h(id | i) ⊥ L
{{

yz
(
j
)}i−1

j=0;y(i), z̃m(i | i)
}
.

(3.12)

Consequently,

ỹ(i | i − 1) ⊥ L
{{

ỹz
(
j
)}i−1

j=0

}
,

z̃m(i | i) ⊥ L
{{

ỹz
(
j
)}i−1

j=0; ỹ(i | i − 1)
}
,

z̃h(id | i) ⊥ L
{{

ỹz
(
j
)}i−1

j=0; ỹ(i | i − 1), z̃m(i | i)
}
.

(3.13)

This completes the proof.

Now, an existence condition and a solution to the minimum of JN are derived as
follows.

Theorem 3.3. Consider system (2.1), given a scalar γ > 0 and the positive definite matrixΠ(k) (k =
−d,−d + 1, . . . , 0), then JN has the minimum if only if

Rỹ(k | k − 1) > 0, 0 ≤ k ≤ N,

Rz̃m(k | k) < 0, 0 ≤ k ≤ N,

Rz̃h(kd | k) < 0, d ≤ k ≤ N.

(3.14)

In this case the minimum value of JN is given by

min JN =
N∑

k=0

ỹT (k | k − 1)R−1
ỹ (k | k − 1)ỹ(k | k − 1) +

N∑

k=0

z̃Tm(k | k)R−1
z̃m
(k | k)z̃m(k | k)

+
N∑

k=d

z̃Th(kd | k)R−1
z̃h
(kd | k)z̃h(kd | k),

(3.15)

where

ỹ(k | k − 1) = y(k) − ŷ(k | k − 1),

z̃m(k | k) = z̆m(k | k) − ẑm(k | k),
z̃h(kd | k) = z̆h(kd | k) − ẑh(kd | k),

z̆m(k | k) =
[
z̆Tf (k | k) z̆T (k | k)

]T
,

(3.16)
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ŷ(k | k − 1) is obtained from the Krein space projection of y(k) onto L{{yz(j)}k−1j=0 }, ẑm(k | k) is
obtained from the Krein space projection of z̆m(k | k) onto L{{yz(j)}k−1j=0 ; y(k)}, and ẑh(kd | k) is
obtained from the Krein space projection of z̆h(kd | k) onto L{{yz(j)}k−1j=0 ; y(k), z̆m(k | k)}.

Proof. Based on the definition (3.2) and (3.3), the state equation in system (2.1) can be
rewritten as

x(k + 1) = Ax(k) +Adx(kd) + f
(
k, z̆f(k | k), u(k))

+ h(k, z̆h(kd | k), u(k)) + Bw(k).
(3.17)

In this case, it is assumed that f(k, z̆f(k | k), u(k)) and h(k, z̆h(kd | k), u(k)) are known at
time k. Then, we define

yz(k) =

⎧
⎪⎨

⎪⎩

[
yT (k) z̆T

f (k | k) z̆T (k | k)
]T
, 0 ≤ k < d,

[
yT (k) z̆T

f (k | k) z̆T (k | k) z̆T
h(kd | k)

]T
, k ≥ d.

(3.18)

By introducing an augmented state

xa(k) =
[
xT (k) xT (k − 1) · · · xT (k − d)

]T
, (3.19)

we obtain an augmented state-space model

xa(k + 1) = Aaxa(k) + Bu,au(k) + Baw(k),

yz(k) = Cz,a(k)xa(k) + vz,a(k),
(3.20)

where

Aa =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A 0 · · · 0 Ad

I 0 · · · 0 0

0 I · · · 0 0

...
...

. . .
...

...

0 0 · · · I 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Bu,a =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I I

0 0

0 0

...
...

0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Ba =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

B

0

0

...

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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Cz,a(k) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎢
⎢
⎢
⎣

C 0 · · · 0

F 0 · · · 0

L 0 · · · 0

⎤

⎥
⎥
⎥
⎦
, 0 ≤ k < d,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C 0 · · · 0

F 0 · · · 0

L 0 · · · 0

0 · · · 0 H

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, k ≥ d,

vz,a(k) =

⎧
⎪⎨

⎪⎩

[
vT (k) vT

zf (k) vT
z (k)
]T
, 0 ≤ k < d,

[
vT (k) vT

zf (k) vT
z (k) vT

zh(kd)
]T
, k ≥ d,

u(k) =
[
fT
(
k, z̆f(k | k), u(k)) hT (k, z̆h(kd | k), u(k))]T .

(3.21)

Additionally, we can rewrite JN as

JN =

⎡

⎢
⎢
⎣

xa(0)

wN

vz,aN

⎤

⎥
⎥
⎦

T⎡

⎢
⎢
⎣

Pa(0) 0 0

0 I 0

0 0 Qvz,aN

⎤

⎥
⎥
⎦

−1⎡

⎢
⎢
⎣

xa(0)

wN

vz,aN

⎤

⎥
⎥
⎦, (3.22)

where

Pa(0) = diag
{
Π(0),Π(−1), . . . ,Π(−d)

}
,

wN =
[
wT (0) wT (1) · · · wT (N)

]T
,

vz,aN =
[
vT
z,a(0) vT

z,a(1) · · · vT
z,a(N)

]T
,

Qvz,aN = diag
{
Qvz,a(0), Qvz,a(1), . . . , Qvz,a(N)

}
,

Qvz,a(k) =

⎧
⎨

⎩

diag
{
I,−γ2,−α−2}, 0 ≤ k < d,

diag
{
I,−γ2,−α−2,−β−2}, k ≥ d.

(3.23)

Define the following state transition matrix

Φ(k + 1, m) = AaΦ(k,m),

Φ(m,m) = I,
(3.24)
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and let

yzN =
[
yT
z (0) yT

z (1) · · · yT
z (N)

] T
,

uN =
[
uT (0) uT (1) · · · uT (N)

]T
.

(3.25)

Using (3.20) and (3.24), we have

yzN = Ψ0Nxa(0) + ΨuNuN + ΨwNwN + vz,aN, (3.26)

where

Ψ0N =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Cz,a(0)Φ(0, 0)

Cz,a(1)Φ(1, 0)

...

Cz,a(N)Φ(N, 0)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, ΨuN =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ϕ00 ϕ01 · · · ϕ0N

ϕ10 ϕ11 · · · ϕ1N

...
...

. . .
...

ϕN0 ϕN1 · · · ϕNN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

ϕij =

⎧
⎨

⎩

Cz,a(i)Φ
(
i, j + 1

)
Bu,a, i > j,

0, i ≤ j.

(3.27)

The matrix ΨwN is derived by replacing Bu,a in ΨuN with Ba.
Thus, JN can be reexpressed as

JN =

⎡

⎢
⎢
⎣

xa(0)

wN

yzN

⎤

⎥
⎥
⎦

T⎧
⎪⎪⎨

⎪⎪⎩
ΓN

⎡

⎢
⎢
⎣

Pa(0) 0 0

0 I 0

0 0 Qvz,aN

⎤

⎥
⎥
⎦Γ

T
N

⎫
⎪⎪⎬

⎪⎪⎭

−1⎡

⎢
⎢
⎣

xa(0)

wN

yzN

⎤

⎥
⎥
⎦, (3.28)

where

yzN = yzN −ΨuNuN,

ΓN =

⎡

⎢
⎢
⎣

I 0 0

0 I 0

Ψ0N ΨwN I

⎤

⎥
⎥
⎦.

(3.29)

Considering the Krein space stochastic system defined by (3.7) and state transition
matrix (3.24), we have

yzN = Ψ0Nxa(0) + ΨuNuN + ΨwNwN + vz,aN, (3.30)

where matrices Ψ0N , ΨuN , and ΨwN are the same as given in (3.26), vectors yzN and uN are,
respectively, defined by replacing Euclidean space element yz and u in yzN and uN given
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by (3.25) with the Krein space element yz and u, vectors wN and vz,aN are also defined by
replacing Euclidean space elementw and vz,a inwN and vz,aN given by (3.23)with the Krein
space element w and vz,a, and vector xa(0) is given by replacing Euclidean space element x
in xa(k) given by (3.19) with the Krein space element xwhen k = 0.

Using the stochastic characteristic of xa(0),wN and vz,a, we have

JN =

⎡

⎢
⎢
⎣

xa(0)

wN

yzN

⎤

⎥
⎥
⎦

T
〈
⎡

⎢
⎢
⎣

xa(0)

wN

yzN

⎤

⎥
⎥
⎦,

⎡

⎢
⎢
⎣

xa(0)

wN

yzN

⎤

⎥
⎥
⎦

〉
−1⎡

⎢
⎢
⎣

xa(0)

wN

yzN

⎤

⎥
⎥
⎦, (3.31)

where yzN = yzN −ΨuNuN .
In the light of Theorem 2.4.2 and Lemma 2.4.3 in [26], JN has a minimum over

{xa(0), wN} if and only if RyzN
= 〈yzN,yzN〉 andQvz,aN = 〈vz,aN,vz,aN〉 have the same inertia.

Moreover, the minimum of JN is given by

min JN = yT
zNR−1

yzN
yzN. (3.32)

On the other hand, applying the Krein space projection formula, we have

yzN = ΘN ỹzN, (3.33)

where

ỹzN =
[
ỹTz (0) ỹTz (1) · · · ỹTz (N)

]T
,

ΘN =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

θ00 θ01 · · · θ0N

θ10 θ11 · · · θ1N

...
...

. . .
...

θN0 θN1 · · · θNN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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θij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈
yz(i), ỹz

(
j
)〉
R−1

ỹz

(
j
)
, i > j ≥ 0,

⎡

⎣
I 0

m1 I

⎤

⎦, d > i = j ≥ 0,

⎡

⎢
⎢
⎢
⎣

I 0 0

m1 I 0

m2 m3 I

⎤

⎥
⎥
⎥
⎦
, i = j ≥ d,

0, 0 ≤ i < j,

m1 =
〈
z̆m(i | i), ỹ

(
j | j − 1

)〉
R−1

ỹ

(
j | j − 1

)
,

m2 =
〈
z̆h(id | i), ỹ(j | j − 1

)〉
R−1

ỹ

(
j | j − 1

)
,

m3 =
〈
z̆h(id | i), z̃m

(
j | j)

〉
R−1

z̃m

(
j | j),

yz(i) = yz(i) −
N∑

j=0

ϕiju
(
j
)
,

z̆m(i | i) = z̆m(i | i) −
N∑

j=0

ϕm,iju
(
j
)
,

z̆h(id | i) = z̆h(id | i) −
N∑

j=0

ϕh,iju
(
j
)
,

(3.34)

where ϕm,ij is derived by replacing Cz,a in ϕij with
[
F 0 ··· 0
L 0 ··· 0

]
, ϕh,ij is derived by replacing Cz,a

in ϕij with [0 0 · · · H] Furthermore, it follows from (3.33) that

RyzN
= ΘNRỹzNΘ

T
N, yzN = ΘNỹzN, (3.35)

where

RỹzN = 〈ỹzN, ỹzN〉,

ỹzN =
[
ỹT
z (0) ỹT

z (1) · · · ỹT
z (N)

]T
,

ỹz(i) =

⎧
⎪⎨

⎪⎩

[
ỹT (i | i − 1) z̃Tm(i | i)

]T
, 0 ≤ i < d,

[
ỹT (i | i − 1) z̃Tm(i | i) z̃T

h(id | i)
]T
, i ≥ d.

(3.36)
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SincematrixΘN is nonsingular, it follows from (3.35) thatRyzN
andRỹzN are congruent, which

also means that RyzN
and RỹzN have the same inertia. Note that both RỹzN andQvz,aN are block-

diagonal matrices, and

Rỹz(k) =

⎧
⎨

⎩

diag
{
Rỹ(k | k − 1), Rz̃m(k | k)}, 0 ≤ k < d,

diag
{
Rỹ(k | k − 1), Rz̃m(k | k), Rz̃h(kd | k)}, k ≤ d,

(3.37)

Qvz,a(k) is given by (3.23). It follows that RỹzN and Qvz,aN have the same inertia if and only if
Rỹ(k | k − 1) > 0 (0 ≤ k ≤ N), Rz̃m(k | k) < 0 (0 ≤ k ≤ N) and Rz̃h(kd | k) < 0 (d ≤ k ≤ N).

Therefore, JN subject to system (2.1)with Lipschitz conditions (2.2) has the minimum
if and only if Rỹ(k | k − 1) > 0 (0 ≤ k ≤ N), Rz̃m(k | k) < 0 (0 ≤ k ≤ N) and Rz̃h(kd | k) <
0 (d ≤ k ≤ N). Moreover, the minimum value of JN can be rewritten as

min JN = yT
zNR−1

yzN
yzN = ỹT

zNR−1
ỹzN

ỹzN

=
N∑

k=0

ỹT (k | k − 1)R−1
ỹ (k | k − 1)ỹ(k | k − 1) +

N∑

k=0

z̃Tm(k | k)R−1
z̃m
(k | k)z̃m(k | k)

+
N∑

k=d

z̃Th(kd | k)R−1
z̃h
(kd | k)z̃h(kd | k).

(3.38)

The proof is completed.

Remark 3.4. Due to the built innovation sequence {{ỹz(i)}ki=0} in Lemma 3.2, the form of the
minimum on indefinite quadratic form JN is different from the one given in [26–28]. It is
shown from (3.15) that the estimation errors ỹ(k | k−1), z̃m(k | k) and z̃h(kd | k) are mutually
uncorrelated, which will make the design ofH∞ estimator much easier than the one given in
[26–28].

3.2. Solution of the H∞ Estimation Problem

In this subsection, the Kalman-like recursive H∞ estimator is presented by using orthogonal
projection in the Krein space.

Denote

y0(i) = y(i),

y1(i) =
[
yT (i) z̆Tm(i | i)

]T
,

y2(i) =
[
yT (i) z̆Tm(i | i) z̆T

h(i | i + d)
]T
.

(3.39)
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Observe from (3.8), we have

L
{
{yz(i)}ji=0

}
= L
{
{y1(i)}ji=0

}
, 0 ≤ j < d,

L
{
{yz(i)}ji=0

}
= L
{
{y2(i)}jdi=0

}
;
{
{y1(i)}ji=jd+1

}
, j ≥ d.

(3.40)

Definition 3.5. Given k ≥ d, the estimator ξ̂(i | j, 2) for 0 ≤ j < kd denotes the optimal estimate
of ξ(i) given the observation L{{y2(s)}js=0}, and the estimator ξ̂(i | j, 1) for kd ≤ j ≤ k denotes
the optimal estimate of ξ(i) given the observation L{{y2(s)}kd−1s=0 ; {y1(τ)}jτ=kd}. For simplicity,

we use ξ̂(i, 2) to denote ξ̂(i | i − 1, 2), and use ξ̂(i, 1) to denote ξ̂(i | i − 1, 1) throughout the
paper.

Based on the above definition, we introduce the following stochastic sequence and the
corresponding covariance matrices

ỹ2(i, 2) = y2(i) − ŷ2(i, 2), Rỹ2(i, 2) = 〈ỹ2(i, 2), ỹ2(i, 2)〉,
ỹ1(i, 1) = y1(i) − ŷ1(i, 1), Rỹ1(i, 1) = 〈ỹ1(i, 1), ỹ1(i, 1)〉,
ỹ0(i, 0) = y0(i) − ŷ0(i, 1), Rỹ0(i, 0) = 〈ỹ0(i, 0), ỹ0(i, 0)〉.

(3.41)

Similar to the proof of Lemma 2.2.1 in [27], we can obtain that {ỹ2(0, 2), . . . , ỹ2(kd −
1, 2); ỹ1(kd, 1),. . . , ỹ1(k − 1, 1)} is the innovation sequence which is a mutually uncor-
related white noise sequence and spans the same linear space as L{y2(0), . . . ,y2(kd −
1);y1(kl), . . . ,y1(k − 1)} or equivalently L{yz(0), . . . ,yz(k − 1)}.

Applying projection formula in the Krein space, x̂(i, 2) (i = 0, 1, . . . , kd) is computed
recursively as

(3.42)

x̂(i + 1, 2) =
i∑

j=0

〈
x(i + 1), ỹ2

(
j, 2
)〉
R−1

ỹ2

(
j, 2
)
ỹ2
(
j, 2
)

= Ax̂(i | i, 2) +Adx̂(id | i, 2) + f
(
i, z̆f(i | i),u(i)

)

+ h(i, z̆h(id | i),u(i)), i = 0, 1, . . . , kd − 1,

x̂(τ, 2) = 0, (τ = −d,−d + 1, . . . , 0).

(3.43)

Note that

x̂(i | i, 2) = x̂(i, 2) + P2(i, i)CT
2R

−1
ỹ2
(i, 2)ỹ2(i, 2),

x̂(id | i, 2) = x̂(id, 2) +
i∑

j=id

P2
(
id, j
)
CT

2R
−1
ỹ2

(
j, 2
)
ỹ2
(
j, 2
)
,

(3.44)
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where

C2 =
[
CT FT LT HT

]T
,

P2
(
i, j
)
=
〈
e(i, 2), e

(
j, 2
)〉
,

e(i, 2) = x(i) − x̂(i, 2),

Rỹ2(i, 2) = C2P2(i, i)CT
2 +Qv2(i),

Qv2(i) = diag
{
I,−α−2I,−γ2I,−β−2I

}
.

(3.45)

Substituting (3.44) into (3.43), we have

x̂(i + 1, 2) = Ax̂(i, 2) +Adx̂(id, 2) + f
(
i, z̆f(i | i),u(i)

)
+ h(i, z̆h(id | i),u(i))

+Ad

i−1∑

j=id

P2
(
id, j
)
CT

2R
−1
ỹ2

(
j, 2
)
ỹ2
(
j, 2
)
+K2(i)ỹ2(i, 2),

K2(i) = AdP2(id, i)CT
2R

−1
ỹ2
(i, 2) +AP2(i, i)CT

2R
−1
ỹ2
(i, 2).

(3.46)

Moreover, taking into account (3.7) and (3.46), we obtain

e(i + 1, 2) = Ae(i, 2) +Ade(id, 2) + Bw(i) −K2(i)ỹ2(i, 2)

−Ad

i−1∑

j=id

P2
(
id, j
)
CT

2R
−1
ỹ2

(
j, 2
)
ỹ2
(
j, 2
)
, i = 0, 1, . . . , kd − 1. (3.47)

Consequently,

P2
(
i − j, i + 1

)
=
〈
e
(
i − j, 2

)
, e(i + 1, 2)

〉

= P2
(
i − j, i

)
AT + PT

2
(
id, i − j

)
AT

d − P2
(
i − j, i

)
CT

2K
T
2 (i)

−
i−1∑

t=i−j
P2
(
i − j, t

)
CT

2R
−1
ỹ2
(t, 2)C2P

T
2 (id, t)A

T
d, j = 0, 1, . . . , d,

P2(i + 1, i + 1) = 〈e(i + 1, 2), e(i + 1, 2)〉

= AP2(i, i + 1) +AdP2(id, i + 1) + BQw(i)B
T
,

(3.48)
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where Qw(i) = I. Thus, P2(i, i) (i = 0, 1, . . . , kd) can be computed recursively as

P2
(
i − j, i + 1

)
= P2
(
i − j, i

)
AT + PT

2
(
id, i − j

)
AT

d − P2
(
i − j, i

)
CT

2K
T
2 (i)

−
i−1∑

t=i−j
P2
(
i − j, t

)
CT

2R
−1
ỹ2
(t, 2)C2P

T
2 (id, t)A

T
d,

P2(i + 1, i + 1) = AP2(i, i + 1) +AdP2(id, i + 1) + BQw(i)B
T
, j = 0, 1, . . . , d.

(3.49)

Similarly, employing the projection formula in the Krein space, the optimal estimator
x̂(i, 1) (i = kd + 1, . . . , k) can be computed by

x̂(i + 1, 1) = Ax̂(i, 1) +Adx̂(id, 2) + f
(
i, z̆f(i | i),u(i)

)
+ h(i, z̆h(id | i),u(i))

+K1(i)ỹ1(i, 1) +Ad

kd−1∑

j=id

P2
(
id, j
)
CT

2R
−1
ỹ2

(
j, 2
)
ỹ2
(
j, 2
)

+Ad

i−1∑

j=kd

P1
(
id, j
)
CT

1R
−1
ỹ1

(
j, 1
)
ỹ1
(
j, 1
)
,

x̂(kd, 1) = x̂(kd, 2),

(3.50)

where

C1 =
[
CT FT LT

]T
,

P1
(
i, j
)
=

⎧
⎨

⎩

〈
e(i, 2), e

(
j, 1
)〉
, i < kd,

〈
e(i, 1), e

(
j, 1
)〉
, i ≥ kd,

e(i, 1) = x(i) − x̂(i, 1),

Rỹ1(i, 1) = C1P1(i, i)CT
1 +Qv1(i),

Qv1(i) = diag
{
I,−α−2I,−γ2I

}
,

K1(i) = AP1(i, i)CT
1R

−1
ỹ1
(i, 1) +AdP1(id, i)CT

1R
−1
ỹ1
(i, 1).

(3.51)

Then, from (3.7) and (3.50), we can yield

e(i + 1, 1) = Ae(i, 1) +Ade(id, 2) + Bw(i) −K1(i)ỹ1(i, 1)

−Ad

kd−1∑

j=id

P2
(
id, j
)
CT

2R
−1
ỹ2

(
j, 2
)
ỹ2
(
j, 2
)

−Ad

i−1∑

j=kd

P1
(
id, j
)
CT

1R
−1
ỹ1

(
j, 1
)
ỹ1
(
j, 1
)
.

(3.52)
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Thus, we obtain that

(1) if i − j ≥ kd, we have

P1
(
i − j, i + 1

)
=
〈
e
(
i − j, 1

)
, e(i + 1, 1)

〉

= P1
(
i − j, i

)
AT + PT

1

(
id, i − j

)
AT

d − P1
(
i − j, i

)
CT

1K
T
1 (i)

−
i−1∑

t=i−j
P1
(
i − j, t

)
CT

1R
−1
ỹ1
(t, 1)C1P

T
1 (id, t)A

T
d,

(3.53)

(2) if i − j < kd, we have

P1
(
i − j, i + 1

)
=
〈
e
(
i − j, 2

)
, e(i + 1, 1)

〉

= P1
(
i − j, i

)
AT + PT

2
(
id, i − j

)
AT

d − P1
(
i − j, i

)
CT

1K
T
1 (i)

−
kd−1∑

t=i−j
P2
(
i − j, t

)
CT

2R
−1
ỹ2
(t, 2)C2P

T
2 (id, t)A

T
d

−
i−1∑

t=kd

P1
(
i − j, t

)
CT

1R
−1
ỹ1
(t, 1)C1P

T
1 (id, t)A

T
d,

(3.54)

P1(i + 1, i + 1) =
〈
e
(
i − j, 2

)
, e(i + 1, 1)

〉

= AP1(i, i + 1) +AdP1(id, i + 1) + BQw(i)B
T
.

(3.55)

It follows from (3.53), (3.54), and (3.55) that P1(i, i) (i = kd + 1, . . . , k) can be computed by

P1
(
i − j, i + 1

)
= P1
(
i − j, i

)
AT + PT

2
(
id, i − j

)
AT

d − P1
(
i − j, i

)
CT

1K
T
1 (i)

−
kd−1∑

t=i−j
P2
(
i − j, t

)
CT

2R
−1
ỹ2
(t, 2)C2P

T
2 (id, t)A

T
d

−
i−1∑

t=kd

P1
(
i − j, t

)
CT

1R
−1
ỹ1
(t, 1)C1P

T
1 (id, t)A

T
d, i − j < kd,

P1
(
i − j, i + 1

)
= P1
(
i − j, i

)
AT + PT

1

(
id, i − j

)
AT

d − P1
(
i − j, i

)
CT

1K
T
1 (i)

−
i−1∑

t=i−j
P1
(
i − j, t

)
CT

1R
−1
ỹ1
(t, 1)C1P

T
1 (id, t)A

T
d, i − j ≥ kd,

P1(i + 1, i + 1) = AP1(i, i + 1) +AdP1(id, i + 1) + BQw(i)B
T
, j = 0, 1, . . . , d.

(3.56)
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Next, according to the above analysis, ẑm(k | k) as the Krein space projections of z̆m(k |
k) onto L{{yz(j)}k−1j=0 ;y0(k)} can be computed by the following formula

ẑm(k | k) = Cmx̂(k, 1) + CmP1(k, k)CTR−1
ỹ0
(k, 0)ỹ0(k, 0), (3.57)

where

Cm =
[
FT LT

]T
,

Rỹ0(k, 0) = CP1(k, k)CT +Qv(k).
(3.58)

And, ẑh(kd | k) as the Krein space projections of z̆h(kd | k) onto L{{yz(j)}k−1j=0 ;y1(k)} can be
computed by the following formula

ẑ(kd | k) = Hx̂(kd, 1) +
k∑

j=kd

HP1
(
kd, j
)
CT

1R
−1
ỹ1

(
j, 1
)
ỹ1
(
j, 1
)
. (3.59)

Based on Theorem 3.3 and the above discussion, we propose the following results.

Theorem 3.6. Consider system (2.1) with Lipschitz conditions (2.2), given a scalar γ > 0 and matrix
Π(k) (k = −d, . . . , 0), then the H∞ estimator that achieves (2.3) if

Rỹ(k | k − 1) > 0, 0 ≤ k ≤ N,

Rz̃m(k | k) < 0, 0 ≤ k ≤ N,

Rz̃h(kd | k) < 0, d ≤ k ≤ N,

(3.60)

where

Rỹ(k | k − 1) = Rỹ0(k, 0),

Rz̃m(k | k) = CmP1(k, k)CT
m − CmP1(k, k)CTR−1

ỹ0
(k, 0)CP1(k, k)CT

m +Qvm(k),

Rz̃h(kd | k) = HP1(kd, kd)HT −
k∑

j=kd

HP1
(
kd, j
)
CT

1R
−1
ỹ1

(
j, 1
)
C1P

T
1

(
kd, j
)
HT − β−2I,

Qvm(k) = diag
{
−α−2I,−γ2I

}
,

(3.61)

Rỹ0(k, 0), P1(i, j), and Rỹ1(j, 1) are calculated by (3.58), (3.56), and (3.51), respectively.
Moreover, one possible level-γ H∞ estimator is given by

z̆(k | k) = Eẑm(k | k), (3.62)

where E = [0 I], and ẑm(k | k) is computed by (3.57).
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Proof. In view of Definitions 3.1 and 3.5, it follows from (3.9) and (3.41) that Rỹ(k | k − 1) =
Rỹ0(k, 0). In addition, according to (3.7), (3.9), and (3.57), the covariance matrix Rz̃m(k | k)
can be given by the second equality in (3.61). Similarly, based on (3.7), (3.9), and (3.59), the
covariance matrix Rz̃h(kd | k) can be obtained by the third equality in (3.61). Thus, from
Theorem 3.3, it follows that JN has a minimum if (3.60) holds.

On the other hand, note that the minimum value of JN is given by (3.15) in
Theorem 3.3 and any choice of estimator satisfyingmin JN > 0 is an acceptable one. Therefore,
Taking into account (3.60), one possible estimator can be obtained by setting z̆m(k | k) =
ẑm(k | k) and z̆h(kd | k) = ẑh(kd | k). This completes the proof.

Remark 3.7. It is shown from (3.57) and (3.59) that ẑm(k | k) and ẑ(kd | k) are, respectively,
the filtering estimate and fixed-lag smoothing of z̆m(k | k) and z̆(kd | k) in the Krein space.
Additionally, it follows from Theorem 3.6 that z̆m(k | k) and z̆h(kd | k) achieving the H∞
estimation problem (2.3) can be, respectively, computed by the right side of (3.57) and (3.59).
Thus, it can be concluded that the proposed results in this paper are related with both theH2

filtering and H2 fixed-lag smoothing in the Krein space.

Remark 3.8. Recently, the robustH∞ observers for Lipschitz nonlinear delay-free systemswith
Lipschitz nonlinear additive uncertainties and time-varying parametric uncertainties have
been studied in [10, 11], where the optimization of the admissible Lipschitz constant and
the disturbance attenuation level are discussed simultaneously by using the multiobjective
optimization technique. In addition, the sliding mode observers with H∞ performance have
been designed for Lipschitz nonlinear delay-free systems with faults (matched uncertainties)
and disturbances in [8]. Although the Krein space-based robust H∞ filter has been proposed
for discrete-time uncertain linear systems in [28], it cannot be applied to solving the H∞
estimation problem given in [10] since the considered system contains Lipschitz nonlinearity
and Lipschitz nonlinear additive uncertainty. However, it is meaningful and promising in the
future, by combining the algorithm given in [28] with our proposed method in this paper, to
construct a Krein space-based robust H∞ filter for discrete-time Lipschitz nonlinear systems
with nonlinear additive uncertainties and time-varying parametric uncertainties.

4. A Numerical Example

Consider the system (2.1) with time delay d = 3 and the parameters

A =

[
0.7 0

0 −0.4

]

, Ad =

[−0.5 0

0 0.3

]

, F =

[
0.02 0

0 0.01

]

,

H =

[
0.03 0

0 0.02

]

, B =

[
1.2

0.7

]

, C =
[
1.7 0.9

]
, L =

[
0.5 0.6

]
,

f(k, Fx(k), u(k)) = sin(Fx(k)), h(k,Hx(kd), u(k)) = cos(Hx(kd)).

(4.1)

Then we have α = β = 1. Set x(k) = [−0.2k 0.1k]T (k = −3,−2,−1, 0), and
Π(k) = I (k = −3,−2,−1, 0). Both the system noise w(k) and the measurement noise v(k)
are supposed to be band-limited white noise with power 0.01. By applying Theorem 3.1 in
[20], we obtain the minimum disturbance attenuation level γmin = 1.6164 and the observer
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Figure 1: Signal z(k) (solid), its estimate using our algorithm (star), and its estimate using algorithm in
[20] (dashed).
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Figure 2: Estimation error of our algorithm (solid) and estimation error of algorithm in [20] (dashed).

parameter L = [−0.3243 0.0945]T of (5) in [20]. In this numerical example, we compare our
algorithm with the one given in [20] in case of γ = 1.6164. Figure 1 shows the true value
of signal z(k), the estimate using our algorithm, and the estimate using the algorithm given
in [20]. Figure 2 shows the estimation error of our approach and the estimation error of the
approach in [20]. It is shown in Figures 1 and 2 that the proposed algorithm is better than the
one given in [20]. Figure 3 shows the ratios between the energy of the estimation error and
input noises for the proposedH∞ estimation algorithm. It is shown that the maximum energy
ratio from the input noises to the estimation error is less than γ2 by using our approach.
Figure 4 shows the value of indefinite quadratic form JN for the given estimation algorithm. It
is shown that the value of indefinite quadratic form JN is positive by employing the proposed
algorithm in Theorem 3.6.

5. Conclusions

A recursive H∞ filtering estimate algorithm for discrete-time Lipschitz nonlinear systems
with time-delay and disturbance input is proposed. By combining the H∞-norm estimation
condition with the Lipschitz conditions on nonlinearity, the H∞ estimation problem is
converted to the positive minimum problem of indefinite quadratic form. Motivated by the
observation that the minimum problem of indefinite quadratic form coincides with Kalman
filtering in the Krein space, a novel Krein space-based H∞ filtering estimate algorithm is



Abstract and Applied Analysis 21

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

Time k
E
ne

rg
y
ra
ti
o

Figure 3: The energy ratio between estimation error and all input noises for the proposed H∞ estimation
algorithm.
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Figure 4: The value of indefinite quadratic form JN for the given estimation algorithm.

developed. Employing projection formula and innovation analysis technology in the Krein
space, theH∞ estimator and its sufficient existence condition are presented based on Riccati-
like difference equations. A numerical example is provided in order to demonstrate the
performances of the proposed approach.

Future research work will extend the proposed method to investigate more general
nonlinear system models with nonlinearity in observation equations. Another interesting
research topic is theH∞ multistep prediction and fixed-lag smoothing problem for time-delay
Lipschitz nonlinear systems.
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