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We study the following second-order neutral functional differential equation with mixed
nonlinearities (r(t)|(u(t) + p(t)u(t − σ))′|α−1(u(t) + p(t)u(t − σ))′)′ + q0(t)|u(τ0(t))|α−1u(τ0(t)) +
q1(t)|u(τ1(t))|β−1u(τ1(t)) + q2(t)|u(τ2(t))|γ−1u(τ2(t)) = 0, where γ > α > β > 0,

∫∞
t0
(1/r1/α(t))dt < ∞.

Oscillation results for the equation are established which improve the results obtained by Sun and
Meng (2006), Xu and Meng (2006), Sun and Meng (2009), and Han et al. (2010).

1. Introduction

This paper is concerned with the oscillatory behavior of the second-order neutral functional
differential equation with mixed nonlinearities

(
r(t)

∣
∣∣
(
u(t) + p(t)u(t − σ))′

∣
∣∣
α−1(

u(t) + p(t)u(t − σ))′
)′

+ q0(t)|u(τ0(t))|α−1u(τ0(t))

+q1(t)|u(τ1(t))|β−1u(τ1(t)) + q2(t)|u(τ2(t))|γ−1u(τ2(t)) = 0, t ≥ t0,
(1.1)

where γ > α > β > 0 are constants, r ∈ C1([t0,∞), (0,∞)), p ∈ C([t0,∞), [0, 1)), qi ∈
C([t0,∞),�), i = 0, 1, 2, are nonnegative, σ ≥ 0 is a constant. Here, we assume that there
exists τ ∈ C1([t0,∞),�) such that τ(t) ≤ τi(t), τ(t) ≤ t, limt→∞τ(t) = ∞, and τ ′(t) > 0 for
t ≥ t0.
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One of our motivations for studying (1.1) is the application of this type of equations in
realword life problems. For instance, neutral delay equations appear inmodeling of networks
containing lossless transmission lines, in the study of vibrating masses attached to an elastic
bar; see the Euler equation in some variational problems, in the theory of automatic control
and in neuromechanical systems in which inertia plays an important role. We refer the reader
to Hale [1] and Driver [2], and references cited therein.

Recently, there has been much research activity concerning the oscillation of second-
order differential equations [3–8] and neutral delay differential equations [9–20]. For the
particular case when p(t) = 0, (1.1) reduces to the following equation:

(
r(t)|u(t)|α−1u(t)

)′
+ q0(t)|u(τ0(t))|α−1u(τ0(t))

+ q1(t)|u(τ1(t))|β−1u(τ1(t)) + q2(t)|u(τ2(t))|γ−1u(τ2(t)) = 0, t ≥ t0.
(1.2)

Sun and Meng [6] established some oscillation criteria for (1.2), under the condition

∫∞

t0

1
r1/α(t)

dt <∞, (1.3)

they only obtained the sufficient condition [6, Theorem 5], which guarantees that every
solution u of (1.2) oscillates or tends to zero.

Sun and Meng [7] considered the oscillation of second-order nonlinear delay
differential equation

(
r(t)

∣∣u′(t)
∣∣α−1u′(t)

)′
+ q0(t)|u(τ0(t))|α−1u(τ0(t)) = 0, t ≥ t0 (1.4)

and obtained some results for oscillation of (1.4), for example, under the case (1.3), they
obtained some results which guarantee that every solution u of (1.4) oscillates or tends to
zero, see [7, Theorem 2.2].

Xu and Meng [10] discussed the oscillation of the second-order neutral delay
differential equation

(
r(t)

∣∣∣
(
u(t) + p(t)u(t − τ))′

∣∣∣
α−1(

u(t) + p(t)u(t − τ))′
)′

+ q(t)f(u(σ(t))) = 0, t ≥ t0 (1.5)

and established the sufficient condition [10, Theorem 2.3], which guarantees that every
solution u of (1.5) oscillates or tends to zero.

Han et al. [11] examined the oscillation of second-order neutral delay differential
equation

(
r(t)ψ(u(t))

∣∣
∣
(
u(t) + p(t)u(t − τ))′

∣∣
∣
α−1(

u(t) + p(t)u(t − τ))′
)′

+ q(t)f(u(σ(t))) = 0, t ≥ t0
(1.6)
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and established some sufficient conditions for oscillation of (1.6) under the conditions (1.3)
and

σ(t) ≤ t − τ. (1.7)

The condition (1.7) can be restrictive condition, since the results cannot be applied on the
equation

(
e2t

(
u(t) +

1
2
u(t − 2)

)′)′
+ λ

(
e2t +

1
2
e2t+2

)
u(t − 1) = 0, t ≥ t0. (1.8)

The aim of this paper is to derive some sufficient conditions for the oscillation
of solutions of (1.1). The paper is organized as follows. In Section 2, we establish some
oscillation criteria for (1.1) under the assumption (1.3). In Section 3, we will give three
examples to illustrate the main results. In Section 4, we give some conclusions for this paper.

2. Main Results

In this section, we give some new oscillation criteria for (1.1).
Below, for the sake of convenience, we denote

z(t) := u(t) + p(t)u(t − σ), R(t) :=
∫ t

t0

1
r1/α(s)

ds,

ξ(t) := r1/α(τ(t))
∫ t

t1

(
1

r(τ(s))

)1/α

τ ′(s)ds,

Q0(t) :=
(
1 − p(τ0(t))

)α
q0(t), Q1(t) :=

(
1 − p(τ1(t))

)β
q1(t),

Q2(t) :=
(
1 − p(τ2(t))

)γ
q2(t),

ζ0(t) := q0(t)

(
1

1 + p
(
ρ(t)

)

)α

, ζ1(t) := q1(t)

(
1

1 + p
(
ρ(t)

)

)β

,

ζ2(t) := q2(t)

(
1

1 + p
(
ρ(t)

)

)γ

,

h0(t) := q0(t)
(

1
1 + p(t)

)α

, h1(t) := q1(t)
(

1
1 + p(t)

)β

,

h2(t) := q2(t)
(

1
1 + p(t)

)γ

,
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δ(t) :=
∫∞

ρ(t)

1
r1/α(s)

ds, π(t) :=
∫∞

t

1
r1/α(s)

ds, k1 :=
γ − β
γ − α, k2 :=

γ − β
α − β ,

ϕ(t) := q0(t)

(
δ(t)

1 + p
(
ρ(t)

)

)α

+ q1(t)

(
δ(t)

1 + p
(
ρ(t)

)

)β

+ q2(t)

(
δ(t)

1 + p
(
ρ(t)

)

)γ

.

(2.1)

Theorem 2.1. Assume that (1.3) holds, p′(t) ≥ 0, and there exists ρ ∈ C1([t0,∞),�), such that
ρ(t) ≥ t, ρ′(t) > 0, τi(t) ≤ ρ(t) − σ,i = 0, 1, 2. If for all sufficiently large t1,

∫∞{

Rα(τ(t))
[
Q0(t) + [k1Q1(t)]1/k1[k2Q2(t)]1/k2

]
− ατ ′(t)Rα−1(τ(t))r1−1/α(τ(t))

ξα(t)

}

dt = ∞,

(2.2)

∫∞{[
ζ0(t) + [k1ζ1(t)]1/k1[k2ζ2(t)]1/k2

]
δα(t) −

( α

α + 1

)α+1 ρ′(t)
δ(t)r1/α

(
ρ(t)

)

}

dt = ∞,

(2.3)

then (1.1) is oscillatory.

Proof. Suppose to the contrary that u is a nonoscillatory solution of (1.1). Without loss of
generality, we may assume that u(t) > 0 for all large t. The case of u(t) < 0 can be considered
by the same method. From (1.1) and (1.3), we can easily obtain that there exists a t1 ≥ t0 such
that

z(t) > 0, z′(t) > 0,
[
r(t)

∣∣z′(t)
∣∣α−1z′(t)

]′ ≤ 0, (2.4)

or

z(t) > 0, z′(t) < 0,
[
r(t)

∣∣z′(t)
∣∣α−1z′(t)

]′
≤ 0. (2.5)

If (2.4) holds, we have

r(t)
(
z′(t)

)α ≤ r(τ(t))(z′(τ(t)))α, t ≥ t1. (2.6)

From the definition of z, we obtain

u(t) = z(t) − p(t)u(t − σ) ≥ z(t) − p(t)z(t − σ) ≥ (
1 − p(t))z(t). (2.7)

Define

ω(t) = Rα(τ(t))
r(t)(z′(t))α

(z(τ(t)))α
, t ≥ t1. (2.8)
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Then, ω(t) > 0 for t ≥ t1. Noting that z′(t) > 0, we get z(τi(t)) ≥ z(τ(t)) for i = 0, 1, 2. Thus,
from (1.1), (2.7), and (2.8), it follows that

ω′(t) ≤ ατ ′(t)Rα−1(τ(t))
r1/α(τ(t))

r(t)(z′(t))α

(z(τ(t)))α
− Rα(τ(t))(1 − p(τ0(t))

)α
q0(t)

− Rα(τ(t))
[(
1 − p(τ1(t))

)β
q1(t)zβ−α(τ(t)) +

(
1 − p(τ2(t))

)γ
q2(t)zγ−α(τ(t))

]

− αRα(τ(t)) r(t)(z
′(t))α

(z(τ(t)))α+1
z′(τ(t))τ ′(t).

(2.9)

By (2.4), (2.9), and τ ′(t) > 0, we get

ω′(t) ≤ ατ ′(t)Rα−1(τ(t))
r1/α(τ(t))

r(t)(z′(t))α

(z(τ(t)))α
− Rα(τ(t))(1 − p(τ0(t))

)α
q0(t)

− Rα(τ(t))
[(
1 − p(τ1(t))

)β
q1(t)zβ−α(τ(t)) +

(
1 − p(τ2(t))

)γ
q2(t)zγ−α(τ(t))

]
.

(2.10)

In view of (2.4), (2.6), and (2.10), we have

ω′(t) ≤ ατ ′(t)Rα−1(τ(t))
r1/α(τ(t))

r(τ(t))(z′(τ(t)))α

(z(τ(t)))α
− Rα(τ(t))(1 − p(τ0(t))

)α
q0(t)

− Rα(τ(t))
[(
1 − p(τ1(t))

)β
q1(t)zβ−α(τ(t)) +

(
1 − p(τ2(t))

)γ
q2(t)zγ−α(τ(t))

]
.

(2.11)

By (2.4), we obtain

z(τ(t)) = z(τ(t1)) +
∫ t

t1

z′(τ(s))τ ′(s)ds

= z(τ(t1)) +
∫ t

t1

(
1

r(τ(s))

)1/α[
r(τ(s))

(
z′(τ(s))

)α]1/α
τ ′(s)ds

≥ r1/α(τ(t))z′(τ(t))
∫ t

t1

(
1

r(τ(s))

)1/α

τ ′(s)ds,

(2.12)

that is,

z(τ(t)) ≥ ξ(t)z′(τ(t)). (2.13)

Set

a :=
[
k1Q1(t)zβ−α(τ(t))

]1/k1
, b :=

[
k2Q2(t)zγ−α(τ(t))

]1/k2 , p := k1, q := k2. (2.14)
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Using Young’s inequality

|ab| ≤ 1
p
|a|p + 1

q
|b|q, a, b ∈ �, p > 1, q > 1,

1
p
+
1
q
= 1, (2.15)

we have

Q1(t)zβ−α(τ(t)) +Q2(t)zγ−α(τ(t)) ≥ [k1Q1(t)]1/k1[k2Q2(t)]1/k2 . (2.16)

Hence, by (2.11), (2.13), and (2.16), we obtain

ω′(t) ≤ ατ ′(t)Rα−1(τ(t))r1−1/α(τ(t))
ξα(t)

− Rα(τ(t))
[
Q0(t) + [k1Q1(t)]1/k1[k2Q2(t)]1/k2

]
. (2.17)

Integrating (2.17) from t1 to t, we get

0 < ω(t) ≤ ω(t1), (2.18)

−
∫ t

t1

{

Rα(τ(s))
[
Q0(s) + [k1Q1(s)]1/k1[k2Q2(s)]1/k2

]
− ατ ′(s)Rα−1(τ(s))r1−1/α(τ(s))

ξα(s)

}

ds.

(2.19)

Letting t → ∞ in (2.19), we get a contradiction to (2.2). If (2.5) holds, we define the function
υ by

υ(t) =
r(t)(−z′(t))α−1z′(t)

zα
(
ρ(t)

) , t ≥ t1. (2.20)

Then, υ(t) < 0 for t ≥ t1. It follows from [r(t)|z′(t)|α−1z′(t)]′ ≤ 0 that r(t)|z′(t)|α−1z′(t) is
nonincreasing. Thus, we have

r1/α(s)z′(s) ≤ r1/α(t)z′(t), s ≥ t. (2.21)

Dividing (2.21) by r1/α(s) and integrating it from ρ(t) to l, we obtain

z(l) ≤ z(ρ(t)) + r1/α(t)z′(t)
∫ l

ρ(t)

ds
r1/α(s)

, l ≥ ρ(t). (2.22)

Letting l → ∞ in the above inequality, we obtain

0 ≤ z(ρ(t)) + r1/α(t)z′(t)δ(t), t ≥ t1, (2.23)
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that is,

r1/α(t)δ(t)
z′(t)

z
(
ρ(t)

) ≥ −1, t ≥ t1. (2.24)

Hence, by (2.20), we have

−1 ≤ υ(t)δα(t) ≤ 0, t ≥ t1. (2.25)

Differentiating (2.20), we get

υ′(t) =

(
r(t)(−z′(t))α−1z′(t)

)′
zα
(
ρ(t)

) − αr(t)(−z′(t))α−1z′(t)zα−1(ρ(t))z′(ρ(t))ρ′(t)
z2α

(
ρ(t)

) , (2.26)

by the above equality and (1.1), we obtain

υ′(t) = −q0(t)u
α(τ0(t))
zα
(
ρ(t)

) − q1(t)u
β(τ1(t))
zα
(
ρ(t)

) − q2(t)u
γ (τ2(t))
zα

(
ρ(t)

)

−αr(t)(−z
′(t))α−1z′(t)zα−1

(
ρ(t)

)
z′
(
ρ(t)

)
ρ′(t)

z2α
(
ρ(t)

) .

(2.27)

Noticing that p′(t) ≥ 0, from [10, Theorem 2.3], we see that u′(t) ≤ 0 for t ≥ t1, so by τi(t) ≤
ρ(t) − σ, i = 0, 1, 2, we have

uα(τ0(t))
zα
(
ρ(t)

) =

(
u(τ0(t))

u
(
ρ(t)

)
+ p

(
ρ(t)

)
u
(
ρ(t) − σ)

)α

=

(
1

(
u
(
ρ(t)

)
/u(τ0(t))

)
+ p

(
ρ(t)

)(
u(ρ(t) − σ)/u(τ0(t))

)

)α

≥
(

1
1 + p

(
ρ(t)

)

)α

,

uβ(τ1(t))
zα
(
ρ(t)

) =

(
u(τ1(t))

u
(
ρ(t)

)
+ p

(
ρ(t)

)
u
(
ρ(t) − σ)

)β

zβ−α
(
ρ(t)

)

=

(
1

(
u
(
ρ(t)

)
/u(τ1(t))

)
+ p

(
ρ(t)

)(
u
(
ρ(t) − σ)/u(τ1(t))

)

)β

zβ−α
(
ρ(t)

)

≥
(

1
1 + p

(
ρ(t)

)

)β

zβ−α
(
ρ(t)

)
,
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(
uγ(τ2(t))/zα

(
ρ(t)

))
=

(
u(τ2(t))

u
(
ρ(t)

)
+ p

(
ρ(t)

)
u
(
ρ(t) − σ)

)γ

zγ−α
(
ρ(t)

)

=

(
1

(
u
(
ρ(t)

)
/u(τ2(t))

)
+ p

(
ρ(t)

)(
u
(
ρ(t) − σ)/u(τ2(t))

)

)γ

zγ−α
(
ρ(t)

)

≥
(

1
1 + p

(
ρ(t)

)

)γ

zγ−α
(
ρ(t)

)
.

(2.28)

On the other hand, from (r(t)(−z′(t))α−1z′(t))′ ≤ 0, ρ(t) ≥ t, we obtain

z′
(
ρ(t)

) ≤ r1/α(t)
r1/α

(
ρ(t)

)z′(t). (2.29)

Thus, by (2.20) and (2.27), we get

υ′(t) ≤ −
[
ζ0(t) + ζ1(t)zβ−α

(
ρ(t)

)
+ ζ2(t)zγ−α

(
ρ(t)

)] − αρ′(t)
r1/α

(
ρ(t)

)(−υ(t))(α+1)/α. (2.30)

Set

a :=
[
k1ζ1(t)zβ−α

(
ρ(t)

)]1/k1
, b :=

[
k2ζ2(t)zγ−α

(
ρ(t)

)]1/k2 , p := k1, q := k2. (2.31)

Using Young’s inequality (2.15), we obtain

ζ1(t)zβ−α
(
ρ(t)

)
+ ζ2(t)zγ−α

(
ρ(t)

) ≥ [k1ζ1(t)]1/k1[k2ζ2(t)]1/k2 . (2.32)

Hence, from (2.30), we have

υ′(t) ≤ −
[
ζ0(t) + [k1ζ1(t)]1/k1[k2ζ2(t)]1/k2

]
− αρ′(t)
r1/α

(
ρ(t)

)(−υ(t))(α+1)/α, (2.33)

that is,

υ′(t) +
[
ζ0(t) + [k1ζ1(t)]1/k1[k2ζ2(t)]1/k2

]
+

αρ′(t)
r1/α

(
ρ(t)

) (−υ(t))(α+1)/α ≤ 0, t ≥ t1. (2.34)
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Multiplying (2.34) by δα(t) and integrating it from t1 to t implies that

δα(t)υ(t) − δα(t1)υ(t1) + α
∫ t

t1

r−1/α
(
ρ(s)

)
ρ′(s)δα−1(s)υ(s)ds

+
∫ t

t1

[
ζ0(s) + [k1ζ1(s)]1/k1[k2ζ2(s)]1/k2

]
δα(s)ds

+ α
∫ t

t1

δα(s)ρ′(s)
r1/α

(
ρ(s)

) (−υ(s))(α+1)/αds ≤ 0.

(2.35)

Set p := (α + 1)/α, q := α + 1, and

a := (α + 1)α/(α+1)δα
2/(α+1)(t)υ(t), b :=

α

(α + 1)α/(α+1)
δ−1/(α+1)(t). (2.36)

Using Young’s inequality (2.15), we get

−αδα−1(t)υ(t) ≤ αδα(t)(−υ(t))(α+1)/α +
( α

α + 1

)α+1 1
δ(t)

. (2.37)

Thus,

−αρ
′(t)δα−1(t)υ(t)
r1/α

(
ρ(t)

) ≤ αρ′(t)δ
α(t)(−υ(t))(α+1)/α
r1/α

(
ρ(t)

) + ρ′(t)
( α

α + 1

)α+1 1
δ(t)r1/α

(
ρ(t)

) . (2.38)

Therefore, (2.35) yields

δα(t)υ(t) ≤ δα(t1)υ(t1),

−
∫ t

t1

{[
ζ0(s) + [k1ζ1(s)]1/k1[k2ζ2(s)]1/k2

]
δα(s) −

( α

α + 1

)α+1 ρ′(s)
δ(s)r1/α

(
ρ(s)

)

}

ds.

(2.39)

Letting t → ∞ in the above inequality, by (2.3), we get a contradiction with (2.25). This
completes the proof of Theorem 2.1.

From Theorem 2.1, when ρ(t) = t, we have the following result.

Corollary 2.2. Assume that (1.3) holds, p′(t) ≥ 0, and τi(t) ≤ t − σ, i = 0, 1, 2. If for all sufficiently
large t1 such that (2.2) holds and

∫∞{[
h0(t) + [k1h1(t)]1/k1[k2h2(t)]1/k2

]
πα(t) −

( α

α + 1

)α+1 1
π(t)r1/α(t)

}
dt = ∞, (2.40)

then (1.1) is oscillatory.
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Theorem 2.3. Assume that (1.3) holds, p′(t) ≥ 0, and there exists ρ ∈ C1([t0,∞),�), such that
ρ(t) ≥ t, ρ′(t) > 0, τi(t) ≤ ρ(t) − σ, i = 0, 1, 2. If for all sufficiently large t1 such that (2.2) holds and

∫∞[
ζ0(t) + [k1ζ1(t)]1/k1[k2ζ2(t)]1/k2

]
δα+1(t)dt = ∞, (2.41)

then (1.1) is oscillatory.

Proof. Suppose to the contrary that u is a nonoscillatory solution of (1.1). Without loss of
generality, we may assume that u(t) > 0 for all large t. The case of u(t) < 0 can be considered
by the same method. From (1.1) and (1.3), we can easily obtain that there exists a t1 ≥ t0 such
that (2.4) or (2.5) holds.

If (2.4) holds, proceeding as in the proof of Theorem 2.1, we obtain a contradiction
with (2.2).

If (2.5) holds, we proceed as in the proof of Theorem 2.1, then we get (2.25) and (2.34).
Multiplying (2.34) by δα+1(t) and integrating it from t1 to t implies that

δα+1(t)υ(t) − δα+1(t1)υ(t1) + (α + 1)
∫ t

t1

r−1/α
(
ρ(s)

)
ρ′(s)δα(s)υ(s)ds

+
∫ t

t1

[
ζ0(s) + [k1ζ1(s)]1/k1[k2ζ2(s)]1/k2

]
δα+1(s)ds

+ α
∫ t

t1

δα+1(s)ρ′(s)
r1/α

(
ρ(s)

) (−υ(s))(α+1)/αds ≤ 0.

(2.42)

In view of (2.25), we have −υ(t)δα+1(t) ≤ δ(t) <∞, t → ∞. From (1.3), we get

∫ t

t1

−r−1/α(ρ(s))ρ′(s)δα(s)υ(s)ds ≤
∫ t

t1

r−1/α
(
ρ(s)

)
ρ′(s)ds =

∫ρ(t)

ρ(t1)
r−1/α(u)du < ∞, t −→ ∞,

∫ t

t1

δα+1(s)ρ′(s)
r1/α

(
ρ(s)

) (−υ(s))(α+1)/αds ≤
∫ρ(t)

ρ(t1)
r−1/α(u)du <∞, t −→ ∞.

(2.43)

Letting t → ∞ in (2.42) and using the last inequalities, we obtain

∫∞[
ζ0(t) + [k1ζ1(t)]1/k1[k2ζ2(t)]1/k2

]
δα+1(t)dt <∞, (2.44)

which contradicts (2.41). This completes the proof of Theorem 2.3.

From Theorem 2.3, when ρ(t) = t, we have the following result.
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Corollary 2.4. Assume that (1.3) holds, p′(t) ≥ 0, τi(t) ≤ t − σ, i = 0, 1, 2. If for all sufficiently large
t1 such that (2.2) holds and

∫∞[
h0(t) + [k1h1(t)]1/k1[k2h2(t)]1/k2

]
πα+1(t)dt = ∞, (2.45)

then (1.1) is oscillatory.

Theorem 2.5. Assume that (1.3) holds, p′(t) ≥ 0, and there exists ρ ∈ C1([t0,∞),�), such that
ρ(t) ≥ t, ρ′(t) > 0, τi(t) ≤ ρ(t) − σ, i = 0, 1, 2. If for all sufficiently large t1 such that (2.2) holds and

∫∞

t1

r−1/α(v)

[∫v

t1

ϕ(u)du

]1/α

dv = ∞, (2.46)

then (1.1) is oscillatory.

Proof. Suppose to the contrary that u is a nonoscillatory solution of (1.1). Without loss of
generality, we may assume that u(t) > 0 for all large t. The case of u(t) < 0 can be considered
by the same method. From (1.1) and (1.3), we can easily obtain that there exists a t1 ≥ t0 such
that (2.4) or (2.5) holds.

If (2.4) holds, proceeding as in the proof of Theorem 2.1, we obtain a contradiction
with (2.2).

If (2.5) holds, we proceed as in the proof of Theorem 2.1, and we get (2.21). Dividing
(2.21) by r1/α(s) and integrating it from ρ(t) to l, letting l → ∞, yields

z
(
ρ(t)

) ≥ −r1/α(t)z′(t)
∫∞

ρ(t)
r−1/α(s)ds = −r1/α(t)z′(t)δ(t) ≥ −r1/α(t1)z′(t1)δ(t) := aδ(t).

(2.47)

By (1.1), we have

(
r(t)

(−z′(t))α)′ = q0(t)uα(τ0(t)) + q1(t)uβ(τ1(t)) + q2(t)uγ(τ2(t)). (2.48)

Noticing that p′(t) ≥ 0, from [10, Theorem 2.3], we see that u′(t) ≤ 0 for t ≥ t1, so by τi(t) ≤
ρ(t) − σ, i = 0, 1, 2, we get

u(τi(t))
z
(
ρ(t)

) =
u(τi(t))

u
(
ρ(t)

)
+ p

(
ρ(t)

)
u
(
ρ(t) − σ)

=
1

(
u
(
ρ(t)

)
/u(τi(t))

)
+ p

(
ρ(t)

)(
u
(
ρ(t) − σ)/u(τi(t))

) ≥ 1
1 + p

(
ρ(t)

) .

(2.49)

Hence, we obtain

(
r(t)

(−z′(t))α)′ ≥ bϕ(t), (2.50)
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where b = min{aα, aβ, aγ}. Integrating the above inequality from t1 to t, we have

r(t)
(−z′(t))α ≥ r(t1)

(−z′(t1)
)α + b

∫ t

t1

ϕ(u)du ≥ b
∫ t

t1

ϕ(u)du. (2.51)

Integrating the above inequality from t1 to t, we obtain

z(t1) − z(t) ≥ b1/α
∫ t

t1

r−1/α(v)

[∫v

t1

ϕ(u)du

]1/α

dv, (2.52)

which contradicts (2.46). This completes the proof of Theorem 2.5.

3. Examples

In this section, three examples are worked out to illustrate the main results.

Example 3.1. Consider the second-order neutral delay differential equation (1.8), where λ > 0
is a constant.

Let r(t) = e2t, p(t) = 1/2, σ = 2, q0(t) = λ(2e2t + e2t+2)/2, α = 1, τ0(t) = t − 1, q1(t) =
q2(t) = 0, and τ(t) = τ0(t), then

R(t) =
∫ t

t0

1
r1/α(s)

ds =

(
e−2t0 − e−2t

)

2
,

ξ(t) = r1/α(τ(t))
∫ t

t1

(
1

r(τ(s))

)1/α

τ ′(s)ds =

(
e2(t−t1) − 1

)

2
,

Q0(t) =
q0(t)
2

=
λ
(
2e2t + e2t+2

)

4
, ζ0(t) =

2q0(t)
3

=
λ
(
2e2t + e2t+2

)

3
.

(3.1)

Setting ρ(t) = t + 1, we have τ0(t) = t − 1 ≤ ρ(t) − σ, δ(t) = e−2t−2/2. Therefore, for all
sufficiently large t1,

∫∞{

Rα(τ(t))
[
Q0(t) + [k1Q1(t)]1/k1[k2Q2(t)]1/k2

]
− ατ ′(t)Rα−1(τ(t))r1−1/α(τ(t))

ξα(t)

}

dt = ∞,

∫∞{[
ζ0(t) + [k1ζ1(t)]1/k1[k2ζ2(t)]1/k2

]
δα(t) −

( α

α + 1

)α+1 ρ′(t)
δ(t)r1/α

(
ρ(t)

)

}

dt

=
∫∞ λ

(
2e−2 + 1

) − 3
6

dt = ∞
(3.2)

if λ > 3/(2e−2 + 1). Hence, by Theorem 2.1, (1.8) is oscillatory when λ > 3/(2e−2 + 1).
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Note that [11, Theorem 2.1] and [11, Theorem 2.2] cannot be applied in (1.8), since
τ0(t) > t − 2. On the other hand, applying [11, Theorem 3.2] to that (1.8), we obtain that (1.8)
is oscillatory if λ > 3/(e−2 + 2e−4). So our results improve the results in [11].

Example 3.2. Consider the second-order neutral delay differential equation

(
et
(
u(t) +

1
2
u
(
t − π

4

))′)′
+ 12

√
65etu

(

t − 1
8
arcsin

√
65
65

)

= 0, t ≥ t0. (3.3)

Let r(t) = et, p(t) = 1/2, σ = π/4, q0(t) = 12
√
65et, q1(t) = q2(t) = 0, α = 1, τ0(t) =

t − (arcsin
√
65/65)/8, ρ(t) = t + π/4, and τ(t) = t − π/4, then

R(t) =
∫ t

t0

1
r1/α(s)

ds = e−t0 − e−t, ξ(t) = r1/α(τ(t))
∫ t

t1

(
1

r(τ(s))

)1/α

τ ′(s)ds = et−t1 − 1,

Q0(t) =
q0(t)
2

= 6
√
65et, ζ0(t) =

2q0(t)
3

= 8
√
65et, δ(t) = e−t−π/4.

(3.4)

Therefore, for all sufficiently large t1,

∫∞{

Rα(τ(t))
[
Q0(t) + [k1Q1(t)]1/k1[k2Q2(t)]1/k2

]
− ατ ′(t)Rα−1(τ(t))r1−1/α(τ(t))

ξα(t)

}

dt = ∞,

∫∞{[
ζ0(t) + [k1ζ1(t)]1/k1[k2ζ2(t)]1/k2

]
δα(t) −

( α

α + 1

)α+1 ρ′(t)
δ(t)r1/α

(
ρ(t)

)

}

dt

=
∫∞(

8
√
65e−π/4 − 1

4

)
dt = ∞.

(3.5)

Hence, by Theorem 2.1, (3.3) oscillates. For example, u(t) = sin 8t is a solution of (3.3).

Example 3.3. Consider the second-order neutral differential equation

(
etz′(t)

)′ + e2λ∗tu(λ0t) + q1(t)u1/3(λ1t) + q2(t)u5/3(λ2t) = 0, t ≥ t0, (3.6)

where z(t) = u(t) + u(t − 1)/2, λi > 0 for i = 0, 1, 2, are constants, q1(t) > 0, q2(t) > 0 for t ≥ t0.
Let r(t) = et, σ = 1, q0(t) = e2λ∗t, λ∗ = max{λ0, λ1, λ2}, τi(t) = λit, τ(t) = λt, 0 < λ <

min{λ0, λ1, λ2, 1}, ρ(t) = λ∗t + 1, α = 1, β = 1/3, and γ = 5/3, then k1 = k2 = 2,

R(t) =
∫ t

t0

1
r1/α(s)

ds = e−t0 − e−t,

ξ(t) = r1/α(τ(t))
∫ t

t1

(
1

r(τ(s))

)1/α

τ ′(s)ds = eλ(t−t1) − 1, δ(t) = e−λ∗t−1.

(3.7)
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It is easy to see that (2.2) and (2.41) hold for all sufficiently large t1. Hence, by Theorem 2.3,
(3.6) is oscillatory.

4. Conclusions

In this paper, we consider the oscillatory behavior of second-order neutral functional
differential equation (1.1). Our results can be applied to the case when τi(t) > t, i = 0, 1, 2;
these results improve the results given in [6, 7, 10, 11].
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