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Some new Gronwall-Bellman-type delay integral inequalities in two independent variables on
time scales are established, which provide a handy tool in the research of qualitative and
quantitative properties of solutions of delay dynamic equations on time scales. The established
inequalities generalize some of the results in the work of Zhang and Meng 2008, Pachpatte 2002,
and Ma 2010.

1. Introduction

During the past decades, with the development of the theory of differential and integral
equations, a lot of integral and difference inequalities have been discovered, which play
an important role in the research of boundedness, global existence, stability of solutions
of differential and integral equations as well as difference equations. In these established
inequalities, Gronwall-Bellman-type inequalities are of particular importance as these
inequalities provide explicit bounds for unknown functions, and much effort has been
done for developing such inequalities (e.g., see [1-13] and the references therein). On the
other hand, Hilger [14] initiated the theory of time scales as a theory capable containing
both difference and differential calculus in a consistent way. Since then many authors have
expounded on various aspects of the theory of dynamic equations on time scales (e.g., see
[15-17] and the references therein). In these investigations, integral inequalities on time
scales have been paid much attention by many authors, and a lot of integral inequalities
on time scales have been established (e.g., see [18-26]), which have been designed to unify
continuous and discrete analysis and play an important role in the research of qualitative
and quantitative properties of solutions of certain dynamic equations on time scales. But
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to our knowledge, Gronwall-Bellman-type delay integral inequalities on time scales have
been paid little attention in the literature so far. Recent results in this direction include the
works of Li [27] and Ma and Pecari¢ [28] to our best knowledge. Furthermore, nobody has
studied Gronwall-Bellman-type delay integral inequalities in two independent variables on
time scales.

Our aim in this paper is to establish some new Gronwall-Bellman-type delay integral
inequalities in two independent variables on time scales, which unify some known con-
tinuous and discrete analysis. New explicit bounds for unknown functions are obtained due
to the presented inequalities. We will also present some applications for our results.

First we will give some preliminaries on time scales and some universal symbols for
further use.

Throughout the paper, R denotes the set of real numbers and R, = [0, o), while Z
denotes the set of integers. For two given sets G, H, we denote the set of maps from G to H
by (G, H).

A time scale is an arbitrary nonempty closed subset of the real numbers. In this paper,
T denotes an arbitrary time scale. On T we define the forward and backward jump operators
o€ (T, T)and p € (T, T) by o(t) =inf{s € T,s > t} and p(t) =sup{s € T,s < t}.

Definition 1.1. The graininess u € (T,R,) is defined by pu(t) = o(t) - t.
Remark 1.2. Obviously, u(t) = 0if T = R while u(t) =1if T = Z.

Definition 1.3. A point t € T is said to be left-dense if p(t) = t and t# inf T, right-dense if
o(t) =tand t# sup T, left-scattered if p(t) < t, and right-scattered if o(t) > ¢.

Definition 1.4. The set T* is defined to be T if T does not have a left-scattered maximum,
otherwise it is T without the left-scattered maximum.

Definition 1.5. A function f € (T, R) is called rd-continuous if it is continuous at right-dense
points and if the left-sided limits exist at left-dense points, while f is called regressive if
1+ pu(t)f(t) #0. Cq denotes the set of rd-continuous functions, while f denotes the set of all
regressive and rd-continuous functions, and R* = {f | f € R, 1+ u(t) f(t) > 0,Vt € T}.

Definition 1.6. For some t € T* and a function f € (T, R), the delta derivative of f is denoted by
fA(t) and satisfies

|[F(e®) - f(s) - FAB)(0(t) - 5)| <elo(t) = s| for Ve >0, (1.1)

where s € i, and i is a neighborhood of t which can depend on ¢.
Similarly, for some y € T* and a function f € (T x T, R), the partial delta derivative of f
with respect to y is denoted by (f(x, y))ﬁ or fyA (x,y) and satisfies

[f(c o)) - fx,9) - f2(xy) (0(y) =5)| <elo(y) =s| forve>0,  (12)

where s € 4, and il is a neighborhood of y which can depend on €.

Remark 1.7. If T = R, then f2 (t) becomes the usual derivative f'(t), while f4(t) = f(t+1)-f(t)
if T = Z, which represents the forward difference.
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Definition 1.8. For a,b € T and a function f € (T,R), the Cauchy integral of f is defined by
b
[ s0ai-ro)-ra, (13)

where FA(t) = f(t), t € T*.
Similarly, for a, b € T and a function f € (T x T, R), the Cauchy partial integral of f with
respect to y is defined by

b
f f(x,y)Ay = F(x,b) - F(x,a), (1.4)

where FyA(X,]/) =f(x,y), y € T".

Definition 1.9. The cylinder transformation ¢ is defined by

M/ lf h—rl-o <f0r Z# — 1)/
¢n(z) = h h
z if h=0,

(1.5)

where Log is the principal logarithm function.

Definition 1.10. For p(x,y) € R with respect to y, the exponential function is defined by
y
ep(y,s) =exp (I ¢y (p(x, T))AT), for s,y € T. (1.6)
Remark 1.11. If T = R, then for y € R the following formula holds:

ep(y,s) = exp<J‘yp(x,T)dT>, for s e T. (1.7)

If T =7, then, fory € Z, e, (y, s) = z;;[l +p(x,7)], for se Zand s < y.

The following two theorems include some known properties on the exponential
function.

Theorem 1.12. If p(x, y) € R with respect to y, then the following conclusions hold:

(1) ep(y,y) =1landey(s,y) =1,
(ii) ep(s,0(y)) = 1+ u(y)p(x, y))ep(s, y),
(iii) if p € M* with respect to y, then ey(s,y) > 0 forall s, y €T,
(iv) if p € R* with respect to y, then cp € R¥,
(v) ep(5,) = 1/e,(y,5) = ecp(y, s), where (p) (x,y) = ~(p(x,y) /1 + p(y)p(x, ).



4 Journal of Applied Mathematics

Theorem 1.13. If p(x,y) € R with respect to y, yo € T is a fixed number, then the exponential
function e,(y, yo) is the unique solution of the following initial value problem:

zy (%, y) =p(xy)z(x,y),
(1.8)

z(x,y0) = 1.

Theorems 1.12-1.13 are similar to [24, Theorems 5.1-5.2]. For more details about the
calculus of time scales, we advise to refer to [29].

In the rest of this paper, for the convenience of notation, we always assume that Ty =
[x0,0) T, 'ﬁ‘o = [yo, ) N T, where xq, yo € T*, and furthermore assume that Ty C T*, ’f‘o C
T*.

2. Main Results
We will give some lemmas for further use.

Lemma 2.1. Suppose that X € Ty is a fixed number and u(X,y), b(X,y) € Cq, m(X,y) € R,
with respect to y, m(X,y) > 0; then

u(X,y) <a(X,y) +b(X,y) ’ m(X, hu(X,)At,  yeT, (2.1)
Yo
implies
u(X,y) <a(X,y) +b(X,y) ! em(y,ot))a(X, hym(X,t)At, y €Ty, (2.2)
Yo

where m(X,y) = m(X,y)b(X,y), and ez (y, yo) is the unique solution of the following IVP
Zﬁ(X,y) =m(X,y)z(X,y), z(X y) =1 (2.3)

The proof of Lemma 2.1 is similar to that of [24, Theorem 5.6], and we omit it here.

Lemma 2.2. Under the conditions of Lemma 2.1 and furthermore assuming that a(x,y) is non-
decreasing in y for every fixed x, b(x,y) =1, then one has

u(X,y) <a(X,y)em(y, o). (2.4)

Proof. Since a(x,y) is nondecreasing in y for every fixed x, then from Lemma 2.1 we have

u(X,y) <a(X,y)+ Ly em(y,0(t))a(X, Hym(X, t) At
(2.5)

<a(X,y) [1 + ’[y em(y,0(t))m(X, t)At].
Yo
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On the other hand, from [29, Theorems 2.39 and 2.36 (i)] we have 1+fyy0 en(y,o(t))m(X, t)At =

em(Y, Yo)-
Then collecting the above information we can obtain the desired inequality. O

Lemma 2.3 (see [30]). Assume thata>0, p>q>0,and p#0, then for any K >0

al’P < gK(""’)/”a ¥ F%Kq/;{ (2.6)

Theorem 2.4. Suppose that u, f,g,h,a,b € Crgq(Tpy x TTO,IRQ) and a, b are nondecreasing. p,q,r, m
are constants, andp > g 20, p2r 20, p2m 20, p#0. 71 € (T, T), 71(x) < x, —o0 <
a = inf{7(x),x € To} < x0. 72 € (To, T), n(y) <y, —o0 < p = inf{n(y),y € To} < yo.
¢ € Cra(([ar, x0] % [B, y0]) N T2, R,). Iffor (x,y) € ToxTo, u(x, y) satisfies the following inequality:

uP (x,y) <a(x,y) +b(x,y) ! fx [f (s, yud(Ti(s), T2 (t)) + g(s, t)u' (s, t)]| AsAt
Yo ¥ Xo

2.7)
vy px ot s
+b(x, h(¢,n)u™(m1(¢), T A¢AnAsAt,
S I CORCIORI RS
with the initial condition
u(x,y) =d(x,y), ifxelax](\T, orye[fyo] (T, 08
P(ri(x),12(y)) <a'P(x,y), if Ti(x) < x 0r 2(y) <yo, ¥(x,y) € To x To, '
then
y 1/p 5
u(x,y) < [31 (x,v) +b(x,y) es, (y,0(t))Ba(x,t)Bi(x, t)At] , (x,y) € Tyx T,
Yo
(2.9)
where
= [ " P=Terip
Bi(x,y) =a(x,y) +b(x,y) LU Lo [f(s,t) ’ K9P + ¢(s,t) ” K ]AsAt
Vo (2.10)
p-m m/p
+b(x,y) Lg LU LD J;O WG m ==K AL A AsAL, VK >0,
Ba(ey) = [ [rs ) Lk gls yoxen
2.11)

o M nep)/
+I I h(¢,n)—K"™P/PAEAR|As, VK >0,
Yo ¥ Xo P

B, (x,v) =b(x,y)B:(x,v). (2.12)
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Proof. Let the right side of (2.7) be v(x, y). Then

u(x’y) = Ul/P(x/y)/ (xry) € Tp x TO-

(2.13)

If 71 (x) > x0 and 7 (y) > yo, then 71(x) € Ty, T(y) € ’f‘o, and since a, b are nondecreasing we

have
u(n(x),72(y)) <07 (11(x), 72(y)) <07 (x,y).
If 71 (x) < x0 or T2(y) < o, then from (2.8) we have
u(n(x),2(y)) = ¢(11(x), 22(y)) < a'’?(x,y) <07 (x,y).
From (2.14) and (2.15) we have
u(ri(x),m2(y)) <0 (x,y), (xy)€ToxTo.

Fix X € Ty, and let x € [xo, X]NT, y € T,; then

v X
v(X,y) =a(X,y) +b(X y) f f [f(s, Hul(Ti(s), Ta(t)) + g(s, )1 (s,t)] AsAt
Yo ¥ Xo
y X pt s
+b(X,y) j j f h(¢ n)u™(m1(¢), 2(n)) AéAnAsAt
Yo ¥ X0 ¥ Yo ¥ Xo
v X
<a(X,y)+b(X,y) I I [f(s, Hv/P (s, t) + g(s,)v"P (s, 1)
Yo ¥ Xo

of sh(érﬂ)vm/”(én)AéAn]AsAt.

Yo ¥ Xo
From Lemma 2.3, we have

V1P (x,y) < ﬂK(q—p)/Pv(x, y) + qu/p,
p p

0"/P(x,y) < ;K("”)/”v(x,y) + r%Kr/p,

v"'P(x,y) < %K(m’p)/’”v(x, y) + ’%K"’/”, VK > 0.

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)



Journal of Applied Mathematics 7
So combining (2.17) and (2.18), it follows that

v(X,y) <a(Xy)+b(X, y) f(s t)< KPPy (s, t) + p;qKq/”>AsAt

Yo 7 Xo

+b(X, y) g(s t)( K=P/Py(s, t) +P ; K””)AsAt

Yo 7 Xo

+b(X, y)f f f h(¢, ;1)( Km/py () + F Km/”>A§A11AsAt
X
Sa(X,y)+b(X,y)fyf [f(s,t)P; K77 + (s, nP—Tgriv
Yo ¥ Xo
t s P—m "y
+Iyofxoh(§,q)—p K pAgAq]AsAt

v X
+b(X,y) {f [f(s, t)ﬂK(q—p)/P +g(s, t)fK(r—p)/P
Yo p P

X0

+f h(em M ctm- PWAgAq]As}U(X b At

Yo ¥ Xo

=Bi1(X,y) +b(X,y) BZ(X, tHo(X,t)At,
" (2.19)

where By (x,y), Bo(x,y) are defined in (2.10) and (2.11), respectively. Considering Ez(X, y) =
b(X,y)B>(X, y), by application of Lemma 2.1, we have

v(X,y) <Bi(X,y) +b(X,y) ’ ez, (v,0())Ba(X, ))B1 (X, )AL,y €Ty, (2.20)
Yo

Since X € T is arbitrary, then in fact (2.20) holds for all x € Ty, that is,

y ~
v(x,y) <Bi(xy) +b(x,y) | e5,(y,00)Balx, HBi(x, )AL (x,y) € (Tox o).
Yo
(2.21)

Combining (2.13) and (2.21), we obtain

1/p
yeBZ(y,o(t))Bz(x,t)Bl(x,t)At] , (xy) e (ToxT),

u(x,y) < [Bl (x,y) +b(x,y) ,

(2.22)

which is the desired inequality. O
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If we apply Lemma 2.2 instead of Lemma 2.1 at the end of the proof of Theorem 2.4,
we obtain the following theorem.

Theorem 2.5. Sufpose thatu, f,g,h,a,p,q, r,m, 71,72, a, B, ¢ are defined as in Theorem 2.4. If that
for (x,y) € Ty x To, u(x,y) satisfies the following inequality:

u? (x,y) <a(x,y) + J‘y J‘x [f(s, tul(t1(s), 2 (t)) + g(s, H)u’ (s, t)
Yo ¥ Xo

(2.23)
t s
+f h(é’,q)um(Tl(g),Tz(q))AgAq] AsAt
Yo 7 Xo
with the initial condition (2.8), then
u(x,y) < [Bi(x,y)es, (v, y0)]""",  (x,y) € Tox T, (2.24)

where
y (X _ _
Bi(x,y) = a(x,y) +f f [f(s, t)qu/p + g(s,t)uKr/P] AsAt
Yo ¥ Xo p p
vy px ot s p-m
+f f I f h(g,q)TKm/PAgAquAt, VK >0,
Yo ¥ Xo ¥ Yo ¥ Xo

x Yy s
Bz(x,y)=f [f(s/y)gK(‘*"’””+g(s,y)£l<‘r"”/"+f f h(érn)%K(’”‘P)/pAéAn]Asf
X0 Yo ¥ Xo

VK > 0.
(2.25)

From Theorems 2.4 and 2.5 we can obtain two direct corollaries.

Corollary 2.6. Under the conditions of Theorem 2.4, if, for (x,y) € To x To, u(x,y) satisfies the
following inequality:

u(x,y) <a(x,y)+ fy J‘x [f (s, Hu(ri(s), T2 (t)) + g(s, t)u(s, t)| AsAt
v X ty0 s 0 (226)
+ f f J h(¢ n)u(mi(é), 72(n)) A AnAsAt,
Yo ¥ X0 ¥ Yo ¥ xo

with the initial condition (2.8) (p=1), then

u(x,y) <a(x,y) + ’ es, (y,0())Ba(x, t)a(x, t)At, (x,y) € To x Ty, (2.27)
Yo
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where

o) <[ [ s «f [

Yo ¥ Xo

h(¢ ) AgAn] As. (2.28)

Corollary 2.7. Under the conditions of Theorem 2.5, if, for (x,y) € To x To, u(x, y) satisfies the
following inequality:

Y X
u(x,y) <a(x,y) +J f [f (s, yu(Ti(s), T2 (t)) + g(s, t)u(s, t)] AsAt
Yo ¥ Xo

y x ot ps (2.29)
+ f f J h(¢ n)u(mi(¢), 2(n)) AéAnAsAt,
Yo ¥ X0 ¥ Yo ¥ Xo
with the initial condition (2.8) (p = 1), then
u(x,y) <a(x,y)es (v, %), (x,y)€ToxT, (2.30)
where
X y S
By(x,y) = f [f(s,y) +g(s,y) +I h(¢,n) AgAq] As. (2.31)
X0 Yo ¥ Xo

Theorem 2.8. Suppose that u € Cq(Ty x ’?O,RJ,), f,8,h, 11, T2 are defined as in Theorem 2.4, and
T1(x) > x0, 2(y) > yo. If, for (x,y) € To x Ty, u(x,y) satisfies the following inequality:

u(x,y)

Yy X t s
< ’[ ’[ [f(s, Hu(ri(s), 2 (b)) + (s, t)u(s, t) + f h(¢n)u(rmi (@), (q))A@Aq:I AsAt,
Yo 7 X0 Yo ¥ Xo
(2.32)

then u(x,y) = 0.

The proof of Theorem 2.8 is similar to Theorem 2.4, and we omit it here.
Based on Theorem 2.4, we will establish a class of Volterra-Fredholm-type integral
inequality on time scales.

Theorem 2.9. Suppose that u, fi,gi,hi € Cra(To x ’TQ,I&), i =12apgqrme¢r,nalf
are the same as in Theorem 2.4, and M € Ty, N € Ty are two fixed numbers. If, for (x,y) €
([xo, MINT) x ([yo, NINT), u(x,y) satisfies the following inequality:

uP(x,y) <a(x,y)+ fy fx [f1(s, yul(T1(s), 72 (1)) + g1(s, Hu' (11(5), 72 (£))] AsAt
Yo ¥ Xo

X t s
’ Ly J . Lo n@mu (n@),m(n)AtanAsar
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N M
+f f [fa(s, Dut (1o (5), 7a(8)) + g2 (s, i (1 (5), 7a(1))] AsAt
Yo 0

X

N M at s
+I f ’[ hy (¢, n)u™(71(8), 72 (1)) ASAnAsAt,
Yo Y X0 ¥ Yo ¥ Xo

with the initial condition (2.8), then one has

u(x,y)

- 1/p
- {[u%]%(x,y) +é4<x,y>} , Goy) e (o MINT) < ([0, NI T),

1-Bs
provided that §5 < 1, where

N M _ —
A= j f [fz(slt)u](q/lﬂ + (s, t)uKr/P
Yo ¥ Xo P P

t s _
+J‘ ha (¢, 1) p—m mem/r’AgAq] AsAt,
Yo ¥ Xo

~ Yy rx — _
By =ay)+ | | [ﬁ(at)%ﬂp+g1<s,t>%1<”*’]AsAt
Yo ¥ Xo

Yy x ot s _
+f f f f (&)= Km/P AZAAsAL, VK >0,
Yo ¥ Xo ¥ Yo ¥ Xo p
]"3'2 (x,y) - j fi (s,y)ﬂK(q—P)/p + g1 (S,y)fK(r—P)/P
X0 p p
v s m
+I f hi (¢, 1) =K™P/PALAR|As, VK >0,
Yo ¥ Xo P
~ Y ~
Bs(x,y) =1 +f e, (y,0(t))Ba(x,t)At,

Yo

Bi(x,y) = Bi(x,y) + Iy e, (y,0(t))Ba(x, t) By (x, t) At,
Yo

~ N M q ~ r ~
Bs=f f [fz(s,t)}—gK("‘W”Ba(s,t)+82(S,t);;K(r_p)/pB3(S,t) AsAt
Yo ¥ Xo

N M st s m ~
+f f f hz(g,n);K(”“p)/”Bg(g,q)AgAquAt,
Yo ¥ X0 7Yy 7 X0

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)



Journal of Applied Mathematics 11

N M q _ r -
Bs = j f [fz(s, t)];K(q"’)/sz;(s, t) + &(s, t)EK(T_p)/PBMS, t)[AsAt
Yo ¥ Xxo

(2.41)
N oM at s
ha (&, 1) 2K P/P By (2,17) AL AR ASAL.
NN R CE (&) AbAnAS
Proof. Let the right side of (2.33) be v(x, y) and
N M
p= J‘ f [f2(s, )ul(T1(s), Ta(t)) + g2(s, )t (T1(8), T2 (1)) | AsAt
e (2.42)
N M at s
+ ha (2, )™ (1(2), AéAnAsAL.
LD LO LO Lﬂ 2(&,mu™ (11(8), 72()) A§AnAs
Then
u(x,y) <o'?(x,y), (xy)e€ <[x0, M] ﬂ’]I‘) x ([yo, N] ﬂ’]l‘) (2.43)
Similar to the process of (2.14)—(2.16) one has
u(m(x),2(y)) <0V (x,y), (xy)e€ <[x0, M] ﬂT) x <[y0, N] ﬂT) (2.44)

Fix X € [xo, M]NT, and let x € [x9, X]NT, v € [yo, N]NT. Then

X
v(X,y) =a(X,y) +/¢+Iy I [f1(s, ul (71.(s), T2 (8)) + g1(, (" (71(5), Ta ()] As At
Yo ¥ xo
X s
" Ly f J; LO hi (¢ n)u™ (11 (&), 72 (1)) AgAnAsAt
X
< a(X,y) tu+ Iy I [fl(slt)UQ/P(S’t) +81(S,t)vr/”(s,t)]AsAt

Yo ¥ xo

’ Ly IX E L h(&,m)0™'P (¢,m) AgAnAsAL.
(2.45)
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Considering the structure of (2.45) is similar to (2.17), then following in a same manner as
the process of (2.17)—(2.20) we can deduce

v(X,y)<pu+ B X, y)+ fy eg, (y,o(t))Ez(X, t) <‘u +Bi(X, t)> At
Yo

- ”[1 + fy e, (v,0(t)Ba(X, t)At] +Bi(X,y) (2.46)
Yo

+ fy ez, (v, 0())B(X, HBI(X, )AL, v € [yo, N](T,
Yo

where El(x, Y), B (x, y) are defined in (2.36) and (2.37), respectively.
Since X is selected from [xo, M] (T arbitrarily, then in fact (2.46) holds for all x € Ty,
that is,

v(x,y) < /4[1 + fy e, (y,o(t))gz(x, t)At] + B (x,y) + '[y e, (y,o(t))éz(x, £)Bi (x, ) At
Yo Yo

= uBs(x,y) + B(x,y), (%) € (o, MINT) x ([0, NI T),
(2.47)

where B; (x,v), B, (x,y) are defined in (2.38) and (2.39), respectively.
On the other hand, from (2.18), (2.42), and (2.44) we obtain

N M .
Iz SI j [fz(S,t)zﬂ/P(S,t) + (s, )07 P(s,t) + It j hz(éfﬂ)vm/p(é,n)AéAq] AsA
Yo ! Yo ¥ X0

N M _
SI f [fZ(S,t)<ﬂK(q—P)/Pv(s,t)+u1<q/n>
Yo 7 Xo p p
+0(s, t)(rK("”)/”v(s, ) + EK””)] AsAt
p 4
N M at s _
+J f f f hz(g,q)<ﬂl<<m-ﬂ>/r’v(§,q)+uKm/P>AgAquAt
vo Y xo Yo/ xo p p

N M q r
=+ I f [f2(s, t)EK(‘H’)/Pv(s,t) +g(s, t)EK(”P)/Pv(s, t)] AsAt
Yo ¥ Xo

N M at s m
+I J j j hz(g,rl)—K(m‘p)/’”v(g, 1) A{AnAsAt,
Yo ¥ X0 ¥ Yo ¥ Xo P
(2.48)



Journal of Applied Mathematics 13

where A is defined in (2.35). Then using (2.47) in (2.48) yields
N M
p< e f f { fals O LK [, ) + Bt 1)
Yo ¥ Xo
+95(s, t)’gK("”)/P [‘uﬁg(s, t) + Ba(s, t)] }AsAt
N M at s
+ f f f ha (&, n)%K(’""”’/’” [1Bs(&,m) + Ba(¢,m)| Aganasat
Yo ¥ X0 Y Yo ¥ Xo

N M q - r ~
=A+ #{f f [fz<s, 0 KPP Ba(s, 1) + gals, ) KD B, t)] AsAt
Yo ¥ Xo

(2.49)
N M at s
m e m-p)/pg
+’[ f j j hy(¢,m)—K"P ’”Bg(g,q)AgArlAsAt}
Yo ¥ X0 Y Yo 7 Xo p
N M q B , B
+f J [fz(s,t)—K“’"’)/ PBy(s,t) + ga(s,H) =K P/PBy(s, t)] AsAt
Yo X0 p p
N M gt s
m e m-p/pg
+f f f ha(§,1m) — K" PIPBy(§,m) AdAnAsAt
Yo ¥ X0 Y Yo 7 Xo p
=1+ y§5 + B,
which implies
p<itBe (2.50)
1-Bs
Combining (2.43), (2.47), and (2.50) we can obtain the desired inequality (2.34). O

In the proof of Theorem 2.9, if we let the right side of (2.33) be a(x,y) + v(x,y) in the
first statement, then following in a same process as in Theorem 2.9 we obtain another bound
on the function u(x, y), which is shown in the following theorem.

Theorem 2.10. Under the conditions of Theorem 2.9, if, for (x,y) € ([xo, M]NT) x ([yo, N]NT),
u(x,y) satisfies (2.33) with the initial condition (2.8), then the following inequality holds:

ft+i(xy) w
u(x,y) < qa(x,y)+ = ey . ()€ (Ixo, MINT) x ([vo, N] () T),

1-
(2.51)
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provided that 1< 1, where
B N M q .
A= f f [fz(s, t)—K(""’)/”e]2 (t, yo) + (s, t)—I(“‘p)/’"e]2 (t,yg)] AsAt
Yo ¥ Xo P p
N M at s m
+I f f ha (1) —K" P Pey, (1, y0) AdAnAsAt,
Yo Yo ¥ xo p
N M _
= f f [fz(s, t) <EK(5I—P)/PQ(S’ t) + qu/P>
Yo ¥ Xo p P
+ (s, t)< KU=P/Pg(s,t) + . K”’”)

of [ men (B a@n +oen)

+%KW”>A§A11] AsAt,

Ji(xy) = le fx [fl(s, t)<gK<‘7"’>/Pa(s, £+ F%K‘W’)
Yo ¥ Xo

+g1(s, t)( KPP g(s, t)+ ; K”P)]Asm

Lo f f aC ’“( KP/ra(g, )+ E

R = [ [penterrrsn@n s [ nea e as

Km/r’> AéAnAsAt,

(2.52)

Finally, we will establish a more general inequality than that in Theorems 2.9-2.10.
Consider the following inequality:

uP(x,y) < a(x,y)
J‘ J‘ [L(s,t u(t(s), 7 (t))) +f ) hi(¢,n)ul (T (g),Tz(q))A(qu] AsAt
Yo ¥ Xo Yo ¥ Xo
N M t s
N [L(s, (o) + [ hz@,n)u"(n@),rz(n))AéAn]AsAt,
Yo 7 xo Yo ¥ X0 (25%)

with the initial condition (2.8), where u,a,p,q,¢,a,p5,7i,hi, i = 1,2 are the same as in
Theorem 24, M € Ty, N € T, are two fixed numbers. L € (Ty x Ty x R;,R;), and
0< L(s,t,x) = L(s,t,y) < A(s,t,y)(x —y) for x > y > 0, where A € (T, x Ty x R, R,).
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Theorem 2.11. If, for (x,y) € ([xo, M]NT) x ([yo, NINT), u(x,y) satisfies (2.53), then the
following inequality holds:

1+ B 1y
u<x,y>s{[ ]Bs<x,y>+B4<x,y>} - ey e (nMINT) * (o N T,

1-Bs
(2.54)
provided that §5 < 1, where

f f [ < Kl/p> ft hz(§ n)P qKq/PAgAq]AsAt (2.55)
Yo %o o/ xo

Bi(x,y) = a(x,y)

t
J' J' [ <s,, K”P) J‘ (&)= qK‘WAgAq]AsAt, VK >0,
Yo ¥ Xo

Yo ¥ Xo
(2.56)
Ba(x,y) = j [A(s v, Kl/’”>;1<(1"’)/”
) (2.57)
+J J hl(g,q)gK("‘p)/”AgAn]As, VK >0,
Yo ¥ Xo
- Y ~
Bs(x,v) =1+I ep, (v, 0(t))Ba(x, 1) At, (2.58)
Yo
- ~ Y ~ ~
Bi(x,y) = B1(x,y) +’[ e, (y,0(t))Ba(x,t) By (x, t) At, (2.59)
Yo
B5_f f [ ( , I<“P>1I<<1-P>/P§3(s,t)
Yo ¥ X0 p
(2.60)
t s
+J J hz(g,q)gK(q‘p)/pﬁg,(g,q)AgAq:IAsAt,
Yo ¥ Xo
B6_f f [A(st Kl/”>;K(1"’)/”B4(s,t)
g (2.61)

t B
+J J hy(8,1) ﬂK<q-P>/P1§4(g,q)AgAq] AsAt.
Yo ¥ Xo p
Proof. Let the right side of (2.53) be v(x, y) and

N M f s
Azf f [L(s,t,u(T1(S),Tz(t)))+f f hz(é,n)uq(Tl(g),Tz(q))AgAq]AsAt. (2.62)
Yo Y Xo o ¥ x0
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Then
u(x,y) 0% (xy), (xy) € ([xMINT) x ([yo N]OT). (2.63)
Similar to the process of (2.14)—(2.16) we have
u(ri(x),12(y) <o (xy), (xy) € (o MINT) x ([ NIOT).  (@264)
Fix X € [xo, M| T, and let x € [xo, X]NT, v € [yo, N]T. Then

v(X,y) = a(X,y) +

X t s
+ fy f [L(s, t,u(ri(s), o2 (t))) + f f hi (¢, n)ud(11(8), 7 (n))AgAq:I AsAt
Yo ¥ Xo Yo ¥ Xo

<a(Xy)+u+ Ly Jj [L(s, t,o'/P(s, t)) + I; E hy (g,q)vq/” (g,q)AgAq:I AsAt.
(2.65)

From Lemma 2.3, we have
01/P (x,y) < gK(H)/pU(x,y) + p"%qKq/P,

. , (2.66)
vl/p(x,y) < ;K(l"’)/"’v(x,y) + %Kl/”’, VK > 0.

Combining (2.65) and (2.66), it follows that

y X -1
o(X,y) <a(X,y) + i+ j j L(s, t,%Kﬂ-va(s, b+ PTKW)ASN
Yo ¥ Xo

v X gt s —
+ I I f hi(¢,n) <ﬂK(‘H’)/PU & m) + uK‘”’“) AéAnAsAt
Yo ¥ X0 7 yo 7/ xo P p

=a(X,y)+h

v X
Yo ¥ Xo

1 1
L<s, £ P ey (s 1) + p—KW) - L<s, t, LK”P)
p p p

_1
+L<s, t %K“P)] AsAt
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y X ot s —
+f f J J hl(g,q)@K(q-P)/Pv(g,q)+qu/P>AgAquAt
Yo ¥ Xo ¥ Yo ¥ Xo p p

<a(X,y)+h

-1
f f [A(s, Kl/p> 1K(l"’)/"’v(s,t) +L<s,t,p—K1/p>]AsAt
Yo ¥ Xo P P

y X t s
+f f U f h1(g,q)gK(q"’)/”AgAq:Iv(X,t)AsAt
Yo ¥ Xo Yo ¥ Xo

y X s _
+f f I I hi(8,1) E=T K9P AgAnAsAL
0 Y x0 Y yo ¥ xo p

v [ X -1
<a(X,y)+p+ f U A(s, t, PTKW> %K“P)/PAS]U(X, t) At
Yo X0

f f (st K”P)A At

v X pt s
+ I U f I (;,;1)ﬂKw-r')/PAgAqu]v(x, B At
Yo Xo ¥ Yo ¥ Xo P

vy X gt s _
+I f j h (2, ) E=I K9P AzARAsAL
Yo ¥ X0 ¥ Yo ¥ Xo p

- v o
=ju+B (X, y) +J By(X, tHv(X, t)At,
Yo

(2.67)

where B; (x,v), B, (x,y) are defined in (2.56) and (2.57), respectively.
We notice the structure of (2.67) is similar to (2.19), so following in a same manner as
in (2.19)-(2.21) we obtain

o(x,y)

< ﬁ[l + r ez, (yra(t))éz(x,t)At] +Bi(x,y) + fy es, (v,0(0)Bo(x, )B1(x, )AL 5 o)
Yo Yo
= iBy(xy) + Bi(xy),  (xy) € (lxo MINT) x ([0, NIOT),

where Bs(x, Y), Bi(x, y) are defined in (2.58) and (2.59), respectively.
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On the other hand, from (2.62), (2.64), and (2.66) we have

B< J‘:: f: [L(s, t,v””) + J; :0 hy (&,1)0P (§,11)A§A11:| AsAt

-1
f f [ <s t, —K(1 PPoy(s,t) L P Kl/’”>
yo J xo p

t s —
+f f hz(é,fz)<gl<(q"’”"v(§,n)+%Kq/”>A§AU]AsAt
Yo ¥ Xo

N M -1 -1
=f f [L<s,t,11<1 P/Po(s,t) + P I<“P> L<s,t,p—1<1/P>
vo J x0 p 4 P

+L (s, t, p—_lK“P>] AsAt
p
N M at s q pP-q
+f f f hz(g,n)<—K(‘7*P)/’”v(§,rl) + —Kq/P>A§A71AsAt
Yo Y X0 Y Yo ¥ Xo P P

-1
< [T [T[a(se P ) o o (s, P k) asa
Yo 7 xo P P

+I f f hz(g,q)<gf<<qW%(g,q)+PP%‘7KW)AgAquAt
Yo ¥ Xo Yo ¥ Xo

_)L+f f [ < KUP)lK(l—P)/PU(S/t)
o J xo P

t s
+j f hy (g,q)gK(q‘p)/”v(g,n)AgAn] AsAt,
Yo ¥ Xo

(2.69)
where 1 is defined in (2.55). Then using (2.68) in (2.69) yields
A<i+ f f < , KUP) ;KO-WP [ﬁé3(s,t) + Ba(s, t)] AsAt
Yo

+f J’ J‘J‘S hz(éﬂl)gK(q—p)/p[ﬁﬁg(é,n)+I§4(§,ﬂ)]A§A,1ASAt
Yo ¥ X0 ¥ Yo ¥ Xo

1+ ﬁ{f j < Kl/P>1K(1—p)/P§3(S’t)
Yo ¥ X0 p

+I ho (¢, ;1) Ig- PIPB, (¢, q)AgAquAt}
Yo ¥ Xo
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N M _ 1 R
+ J' f [A <s, t, LK”P) lK(l’P)/PB4(s,t)
Yo ¥ Xo p p

t s
+f hz(é,rz)gK(q_”)/”1§4(§,11)A§A11:| AsAt

Yo ¥ Xo
= .X + ﬁB5 + B6,
(2.70)
which implies

. X + E6
< —. (2.71)

# 1- Bs
Combining (2.63), (2.68), and (2.71), we obtain the desired inequality (2.54). O

Remark 2.12. The established above inequalities generalize many known results including
both integral inequalities for continuous functions and discrete inequalities. For example, if
wetakeT =R, p=g=1, g(x,y) = h(x,y) =0, then Theorem 2.4 reduces to [1, Theorem 2.2],
which is one case of integral inequality for continuous function. If we take T = R, h(x,y) =
0, a(x,y) = C, then Corollary 2.7 reduces to [2, Theorem 3 (c1)], which is another case of
inequality for continuous function. lf wetake T =R, p=gq=1,g1(x,v) = (x,y) = fo(x,y) =
hi(x,y) = ha(x,y) =0, then Theorem 2.10 reduces to [1, Theorem 2.2] with slight difference.
Ifwetake T = Z, g1(x,y) = hi(x,y) = fo(x,y) = ha(x,y) =0, Ti(x) = x, (y) = y, then
Theorem 2.10 reduces to [3, Theorem 2.1], which is a discrete inequality.

Remark 2.13. Since T is an arbitrary time scale, then if we take T for some peculiar cases, such
as T = R or T = Z, we can deduce a series of corollaries according to Theorem 2.4-2.11. Due
to the limited space, we omit them here.

3. Some Applications

In this section, we will present some applications for the results we have established
previously. New explicit bounds for solutions of certain dynamic equations are derived in
the first two examples, while the quantitative property of solutions is focused on in the final
example.

Example 3.1. Consider the following delay dynamic differential equation:

(" (%,)) y
(3.1)

t s

= F<s, t,u(ti(s), (b)), W (¢ n,u(mi(¢),m (q)))A@Aq), (x,y) € Tp x To,

Yo ¥ Xo
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with the initial condition

W (x0,y)), =b*(v),  w(xy0)=alx),
u(x,y) =¢(x,y), if x € [a, x] ﬂT, or y € [B,yo] ﬂ']I‘, (3.2)

|p(71(x), 72 (y))]| < Ik(x,y)ll/’”, if 71(x) < x0, or 72 (y) < yo, V(x,y) € Ty x Ty,

where u € Cyq(To x To,R), a € Cra(To,R), b € Cra(To, R), b is delta differential, and b(y,) =
0,k € Cra(To x To,Ry), p > 0 is a constant, ¢ € Cra(([a, x0] x [B,10]) NT?, R), F € (To x Tp x
R?,R), W € (Ty x T x R, R). a, B, 71, T2 are the same as in Theorem 2.4.

Theorem 3.2. Suppose that u(x,y) is a solution of (3.1)-(3.2), |a(x) + b(y)| < k(x,vy), and

|F(s,t,x,y)| < f(s,Dx|7 + |yl, W&, n,x)| < h(g n)|x|™, where f,h,q,m are defined as in
Theorem 2.4; then

1/p
|u(x,v)| < [Bl (x,y)+ J‘y es, (y,0(t))Ba(x,t)Bi(x, t)At] , (x,y) €Tox To, (3.3)
Yo

where

y rx _ t s —
Bi(ry) =k y)+ [ | [f(s,t)’%w/“f [ h(m)%KW"A(;An]AsAt,
Yo ¥ Xo Yo ¥ Xo
VK >0,
(3.4)

and B (x,y) is defined as in Theorem 2.4 (with g(x,y) = 0).

Proof. The equivalent integral equation of (3.1) can be denoted by
W (x,y) = a(x) +b(y)

X t s
+fy f F<s, L u(mi(s), (1)), W(é,n,u(n(é),Tz(ﬂ)))AéAn>AsAt-
Yo ¥ Xo

Yo ¥ Xo
(3.5)
Then
| (x, )|
Yy X t s
Sk(x,y)+J‘ J- F<s,t,u(7‘1(s),7‘2(t)), W(g,q,u(ﬁ(é),Tﬂq)))A@Aq) AsAt
Yo ¥ Xxo Yo ¥ X0
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<k(x,y)

Yo ¥ Xo

’ Lyo J:O [f(s’t)|”(T1(S),Tz(t))|q .

f W(@zﬂ/”(ﬁ(é)/Tz(ﬂ)))AéArzHAsAt
Yy X

<k(x,y) + f I [f(s, Hlu(ri(s), 72(t)|?
Yo 7 Xo

t s
+J‘ h(g n)|u(n (§)rT2(71))|mA§A71:| AsAt,

Yo 7 Xo
(3.6)
and a suitable application of Theorem 2.4 to (3.6) yields the desired inequality (3.3). O
Theorem 3.3. Under the conditions of Theorem 3.2, one has
|u(x,y)| < [Bi(xy)en (y,y0)] 7, (xy) € ToxTo, (37)

where By, B, are defined as in Theorem 3.2.
Proof. The desired inequality can be obtained by an application of Theorem 2.5 to (3.6).  [J
Example 3.4. Consider the following delay dynamic integral equation:

t
Y

u(x,y) =C+ J’y fx F (S, f,u(Tl(S)/Tz(t))IJ r Wi (§/71/u(T1(§),T2(71)))AéAﬂ> AsAt
Yo X0 0 X0

N M t s
. f f Fz<s,t,u(Tl(S),Tz(t)), Wz(é,n,u(ﬁ(é),Tz(n)))AéAn>AsAt,
Yo 0

X Yo 7 Xo

(x,y) € (Ixo MINT) x ([0, N]NT),

(3.8)

with the initial condition

u(x,y) =¢(x,y), if x € [a,x] ﬂ’]I‘, or y € [B,yo] ﬂ’]I‘,

. (3.9)
|p(m1(x), 72(y))| < ICIYP, if 71 (x) < x0, or 2(y) < yo, Y(x,y) € Ty x Ty,

where u € Cq(Ty x TO,R), p > 0is a constant, C = uP(fo, o), M €Ty, N e ’ﬁ‘ONare two fixed
numbers. ¢ € Ca(([a, x0] % [B,y0]) N T2, R), F; € (T x To xR, R), W; € (ToxToxR,R), i=
1,2. a, B, 71, T» are the same as in Theorem 2.4.
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Theorem 3.5. Suppose u(x,y) is a solution of (3.8)-(3.9) and |F;(s,t,x,y)| < L(s,t|x]|) +
lyl, IWi(¢,n,x)| < hi(¢,n)|x|7, i = 1,2, where L, h;, i = 1,2, q are defined the same as in
Theorem 2.11; then the following inequality holds:

-~ 1/p
U )] < {[“?"]Bxx,y) Ben)] L @) (M) < (o N NE),

1-B;
(3.10)

provided that 35 < 1, where X, Ez(x,y), l%(x,y), E;(x,y), 1§5, 1§6 are defined the same as in
Theorem 2.11, and

_ v (x -1 b _
Bi(x,y) = |C|+I I L<s,t,p—1<1/P> +I h (2, ) E=T K9P Azan | Asat,
Yo ¥ Xo p Y 14

0 ¥ Xo

VK > 0.
(3.11)

Proof. From (3.8) we have

[u? (x, )]
<|C|

v X

S
Yo ¥ Xo
N M

J, ]
Yo ¥ Xo

<|Cl

AsAt

t s
. ( Lutm@mo, [ w, «:mu(n@»n(n)))AéAn)
Yo ¥ Xo

t s

Fz<s,t,u(71(5),fz(t)), Wz(§,Tl,u(Tl(é)/Tz(ﬂ)))AéA’l> AsAt

Yo ¥ Xo

t s
f Wi (¢, n,u(t1(¢), 72(1))) A¢An| | AsAt

Yo ¥ Xo

—_

Yy x
v LO j [us, b (T (s), T2(1) ) +

t s
j Wa (s, ﬂ/”(Tl(é),Tz(n)))AéAqHAsAt

Yo ¥ Xo

N M
: J‘ f [L(s, tu(Ti(s), m(t))]) +
Yo ¥ %o

<IC]

Yy X t s
+j f [L<s,t,|u(n<s>,fz(t>>|>+f hl(«;,n)|u<n<§>,n<n)>|M§An]AsAt
Yo ¥ Xo

Yo ¥ Xo

Yo ¥ Xo

N M t s
+ f f [L(s, t, [u(ti(s), ()| + f ho (&, 1) |u(Ti(8), m2(7)) |qA§A11:| AsAt.
Yo ¥ Xo

(3.12)
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So by use of Theorem 2.11 we obtain the desired inequality (3.10). O

Example 3.6. Consider the following delay dynamic integral equation:

u(x,y)

[ L (3.13)
=C+ f j F<s, t,u(T1(S),Tz(t))/’[ W (¢, n,u(n (§),T2(11)))A§Arl> AsAt,

Yo ¥ Xo Yo ¥ Xo

where u € C,q(Ty x T‘O,R), C =uP(x0,10), F € (T x Ty x R2,R), W € (T, x Ty x R,R). 71, 1>
are the same as in Theorem 2.4.

Theorem 3.7. Assume that |F(s,t,u1,v1)—F(s,t,up, v2)| < f(s,t)|u1—ua|+|v1—0v2|, |W(s,t,u1)-
W (s, t,up)| < h(s,t)|uq — uz|, where f, h are defined as in Theorem 2.4, and; furthermore, assume

that T (x) > xo, T2(y) > yo, then (3.13) has at most one solution.

Proof. Suppose that u;(x,y), ux(x,y) are two solutions of (3.13); then we have

|1 (%, y) —w2(x, y)|

<

Yy X t s
f f [F<s,t,u1(71(5),Tz(t)) W(é,n,ul(T1(§),Tz(11)))A§A71>
Yo ¥ Xo

Yo ¥ Xo

t s

-F <s, t,ux(t1(s), 72 (1)) W (¢, n,u(71(8),72(1))) AgAq>:| AsAt

Yo ¥ Xo

Yy X
Yo 7 Xo

t S
F<s,t,ul<n<s>,fz<t>> [ w<a,mm(n(é»n(n)))AéAn)
Yo ¥ Xo

t s
-F <S, t, uz(T1(s), 72(t)) j W (¢, n,u(T1(8), 7 (U)))AéATI> AsAt

Yo ¥ Xo

< jy T f(s, Bl (71(5), 7a(8)) — ua(m1(5), Ta1)) | A5 AL
Yo ¥ Xo

vy px et s
+f f f f (W (&1 (112), 72(1))) = W& 12 (71(2), 72(17)) ) | Ae AnAsAt
Yo ¥ X0 ¥ Yo ¥ Xo
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< f’ T f(s, Bl (71(5), 7a(8)) — ua(m1(5), 1)) AS AL
Yo ¥ Xo

vy px et s
+J f f h(g,n)|ui(11€), 72(n)) — w2 (11(2), 72(1) ) | A AnAsAt, .
Yo ¥ X0 ¥ Yo ¥ Xo
(3.14)

Then a suitable application of Theorem 2.8 yields |u1(x, y) — ux(x,y)| < 0, thatis, u1(x, y) =
uy(x,y), and the proof is complete. O

4. Conclusions

In this paper, we established some new Gronwall-Bellman type integral inequalities on time
scales. As one can see, the presented results provide a handy tool in the quantitative as well
as qualitative analysis of solutions of certain delay dynamic equations on time scales. The
established inequalities unify some known continuous and discrete inequalities.
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