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This paper processes a unification of Fuzzy TOPSIS and Data Envelopment Analysis (DEA) to
select the units with most efficiency. This research is a two-stage model designed to fully rank
the organizational alternatives, where each alternative has multiple inputs and outputs. First, the
alternative evaluation problem is formulated byData Envelopment Analysis (DEA) and separately
formulates each pair of units. In the second stage, we use the opinion of experts to be applied into a
model of group Decision-Making (DM) called the Intuitionistic Fuzzy TOPSIS (IFT) method. The
results of both methods are then multiplied to obtain the results. DEA and Intuitionistic Fuzzy
TOPSIS ranking do not replace the DEA classification model; rather, it furthers the analysis by
providing full ranking in the DEA context for all units by aggregate individual opinions of decision
makers for rating the importance of criteria and alternatives.

1. Introduction

Data Envelopment Analysis (DEA)measuring the relative efficiency of peer decision-making
units (DMUs) with multiple inputs and multiple outputs was introduced by Charnes et al.
[1]. This method is based on linear programming (LP), which gives it the ability to measure
the decision units in a relative manner, though it has difficulties in measuring different scales
and more than one scale, as well as in comparing entries or outputs that are in different units.
Multi-Criteria Decision-Making (MCDM) is a modeling and methodological tool for dealing
with complex engineering problem. However, the MCDM literature was entirely separate
from DEA research until 1988, when Golany combined interactive, multiple-objective linear
programming and DEA. Whilst the MCDM literature does not consider a complete ranking
as their ultimate aim, they do discuss the use of preference information to further refine the
discriminatory power of the DEA models. In this manner, the decision-makers could specify
which inputs and outputs should lend greater importance to the model solution.
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However, this could also be considered the weakness of this method, since additional
knowledge on the part of the decision-makers is required. Golany [2], Kornbluth [3], Golany
and Roll [4], and Halme et al. [5] each incorporated preferential information into the DEA
models through, for example, a selection of preferred input/output targets or hypothetical
DMUs. A separate set of papers reflected preferential information through limitations on the
values of the weights, which can almost guarantee a complete DMU ranking [6].

DEA has been applied to DMUs in various forms, such as hospitals, cities, universities,
business firms, and many others [7]. During the last decade, there have been attempts to
fully rank units in the context of DEA. Cook and Kress [8], Cook et al. [9], and Green et
al. [10] used subjective decision analysis. Norman and Stoker [11] asserted a step-by-step
approach that uses the selected simple ratios between input and output couples. Ganley
and Cubbin [12] improved the common weights, which maximizes the efficiency rates for
all units. Sinuany-Stern et al. [13] ordered all units by using linear discriminated analysis
that is based on the given DEA dichotomic classification. Friedman and Sinuany-Stern [14]
used canonical correlation analysis (CCA/DEA) to order the units that are fundamental in
common weights. Friedman and Sinuany-Stern [15] developed the discriminate analysis of
ratios instead of traditional linear discriminate analysis. Also (DR/DEA)Oral et al. [16] used
the cross-efficiencymatrix for choosing R and D projects. There are deficiencies in all methods
related to the nature of the methods themselves. Some of the deficiencies occur due to human
faults, and some occur due to the presence of a large number of options.

Data Envelopment Analysis (DEA) as a popular method has been extensively used
for ranking and classifying the decision-making units. DEA, a nonparametric technique, is
an alternative to multivariate statistical methods when it is used for the data with multiple
inputs and outputs. DEA provides researchers a wide usage opportunity since it does not
need any assumptions, unlike the multivariate statistical methods, and it has a flexibility to
add new restrictions to model according to researchers need.

The DEA is a method for mathematically comparing difference in DMUs’ productivity
based on multiple inputs and outputs. The ratio of weighted inputs and outputs produces a
single measure of productivity called relative efficiency. The DMUs that have a ratio of 1 are
referred to as “efficient”, given the required inputs and produced outputs. The units that have
a ratio less than 1 are “less efficient” relative to the most efficient units. Because the weights
for the input and the output variables of DMU’s are computed to maximize the ratio and then
compared to a similar ratio of the best-performing DMU’s, the measured productivity is also
referred to as “relative efficiency” [17].

Intuitionistic fuzzy set (IFS) introduced by Atanassov [18] is an extension of the
classical fuzzy set (FS), which is a suitable way to deal with vagueness. Intuitionistic fuzzy
sets have been applied many areas such as medical diagnosis [19–21], decision-making
problems [22–31], pattern recognition [32–37], supplier selection [38], personel selection [39],
facility location selection [40], and evaluation of renewable energy [41].

The rest of the paper is organized as follows: Section 2 describes the literature review,
Section 3 explains the materials and methods, Section 4 Applying the methodology: an
Illustrative Problem, and finally Sections 4 and 5 contain discussion and conclusion.

2. Literature Review

DEA is a nonparametric approach that does not require any assumptions about the functional
form of the production function. About 1000 articles have been written on the subject,
providing numerous examples and further development of the model. In the simplest case
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of a unit having a single input and output, efficiency is defined as the ratio of output/input.
DEA deals with units having multiple inputs and outputs that can be incorporated into an
efficiency measure where the weighted sum of outputs is divided by the weighted sum of
inputs [14].

The application of DEA to universities has generally focused on the efficiencies
of university programs departments. The studies are by A. Bessent and W. Bessent [42],
Tomkines and Green [43], Beasley [44], J. Johnes and G. Johnes [45], Sinuany-Stern et al [46],
Leitner et al. [47], and Rayeni et al. [48].

A. Bessent and W. Bessent [42] used DEA in measuring the relative efficiency of
education programs in a community college. Educational programs (DMUs) were assessed
on such that outputs are revenue from state government, number of students completing
a program, and employer satisfaction with training of students. These outputs represented
significant planning objectives. Inputs included student contact hours, number of full-time
equivalent instructors, square feet of facilities for each program, and direct instructional
expenditures. The authors demonstrated how DEA can be used in improving program,
terminating programs, initiating new programs, or discontinuing inefficient program.

Tomkins and Green [43] studied the overall efficiency of university accounting
departments. They ran a series of six efficiency models of varying complexity where staff
numbers were an input and student numbers an output. Results indicated that different
configurations of multiple incommensurate inputs and outputs produced substantially stable
efficiency score. On the other hand, Beasley studied chemistry and physics departments on
productive efficiencywhere financial variables such as research income and expenditure were
treated as inputs. Outputs consisted of undergraduate and postgraduate student numbers as
well as research rating. İn a follow-up study, Beasley analyzed the same data set in an effort to
determine the research and teaching efficiencies jointly, where weight restrictions were used.

J. Johnes and G. Johnes [45] explored various models in measuring the technical
efficiency of economics department in terms of research outputs. They discuss the potential
problems in choosing inputs and outputs. The authors also provide a good guide to
interpreting efficiency scores. İt is interesting to note that both Beasley [44] and Johnes list
research income as an input.

Sinuany-Stern et al. [46] examined the relative efficiency of 21 academic departments
in Ben-Gurion University. Operating costs and salaries were entered as inputs, while
grants, publications, graduate students, and contact hours comprised the outputs. Analysis
suggested that the operating costs could be reduced in 10 departments. Furthermore, the
authors tested for the sensitivity of efficiency score to deleting or combining variables.
Their finding indicated that efficient departments may be rerated as inefficient as a result
of changing the variable mix.

Leitner et al. [47] examined the measure efficiency in the university sector, as well
as to apply DEA in the frame of Austrian university. DEA exceeds traditional methods
analyzing university activities using simple ratio calculations. On the one hand, it determines
the performance efficiency of university departments; on the other hand, it goes beyond this
task and shows the improvement potential for each evaluated unit separately.

Rayeni et al. [48] explored the evolution of productivity of the university departments
operating in the Islamic Azad University Zahedan Unit’s education departments for the
period between 2004 and 2009. Since the Islamic Azad University Zahedan Unit’s education
departments are part of the public sector where economic behavior is uncertain and there is
no price information on the services produced, the Malmquist index based on DEA approach
is well suited for productivity measurement where staff numbers (professors, assistant
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professor, lecture, and educational expert), number of registered student in the term of the
academic year, number of presented units in each department by gust lectures were an input
and number of graduates in the academic year, number of student passing to higher level,
and research (books, published article or presented in authentic conferences and report and
research projects) an output.

3. Materials and Methods

DEA deals with classifying the units into two categories, efficient and inefficient, based
on two sets of multiple outputs contributing positively to the overall evaluation [12, 19].
The original DEA does not perform full ranking; it merely provides classification into two
dichotomic groups: efficient and inefficient. It does not rank them; all efficient units are
equally good in the pareto sense.

In this study, our model integrates two well-known models, DEA and Intuitionistic
Fuzzy TOPSIS. The priorities obtained from DEA and Intuitionistic Fuzzy TOPSIS method
are defined as a ten-step approach. The procedure for DEA and Intuitionistic Fuzzy TOPSIS
ranking model has been given as follows.

Step 1. In the first step, determine the result of ek from DEA method.
Measurement of the efficiency for a particular DMU is defined as the ratio of weighted

sum of its output to weighted sum of its input. It is also defined as efficiency score of the
DMU. For instance, the DMUs are used for the production of xij inputs and yrj of outputs.
X(t × n) and Y (m × n) are the amounts of the inputs and outputs, respectively.

3.1. Mathematical (Weighted Linear) Representation of the Problem

ek = max
t∑

r=1

uryrj (3.1)

subject to

m∑

i=1

vixik = 1,

t∑

r=1

uryrj −
m∑

i=1

vixij ≤ 0,

ur ≥ 0, r = 1, . . . , t,

vi ≥ 0, i = 1, . . . , m,

(3.2)

where ek = efficiency score for DMU, yrj = amount of input r for DMU j, xıj = amount of
input i for DMU j, ur = weight attached to output r and vi = weight attached to input i, n =
number of DMUs, t = number of outputs, and m = number of inputs.

Step 2. Determine the weights of decision makers.
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The IFT method, proposed by Boran et al. [38], is a suitable way to deal with MCDM
problem in intuitionistic fuzzy environment. Assume that decision group contains l decision
makers. The importance of the decision makers is considered as linguistic terms expressed
in intuitionistic fuzzy numbers. Let Dk = [μk, νk, πk] be an intuitionistic fuzzy number for
rating of kth decision maker. Then the weight of kth decision maker can be obtained as

λk =

(
μk + πk

(
μk/

(
μk + vk

)))

∑l
k=1

(
μk + πk

(
μk/

(
μk + vk

))) ,
l∑

k=1

λk = 1. (3.3)

Step 3. Construct aggregated intuitionistic fuzzy decision matrix based on the opinions of
decision makers.

Let R(k) = (r(k)ij )m×n be an intuitionistic fuzzy decision matrix of each decision
maker. λ = {λ1, λ2, λ3, . . . , λl} is the weight of decision maker and λk ∈ [0, 1]. In group
decision-making process, all the individual decision opinions need to be fused into a group
opinion to construct aggregated intuitionistic fuzzy decisionmatrix. In order to do that, IFWA
operator proposed by Xu [49] is used. R = (rij)m×n, where

rij = IFWAλ

(
rij

(1), rij
(2), . . . , rij

(l))

= λ1rij
(1) ⊕ λ2rij

(2) ⊕ λ3rij
(3) ⊕ · · · ⊕ λlrij

(l)

=

[
1 −

l∏

k=1

(
1 − μij

(k)
)λk

,
l∏

k=1

(
vij

(k)
)λk

,
l∏

k=1

(
1 − μij

(k)
)λk −

l∏

k=1

(
vij

(k)
)λk

]
.

(3.4)

The aggregated intuitionistic fuzzy decision matrix is defined as follows:

R =

⎡
⎢⎢⎢⎢⎢⎢⎣

r11 r12 · · · r1n

r21 r22 · · · r2n

...
...

. . .
...

rm1 rm1 rm1 rmn

⎤
⎥⎥⎥⎥⎥⎥⎦
. (3.5)

Here rij = (μij , vij , πij) (i = 1, 2, . . . , m; j = 1, 2, . . . , n) is an element of an aggregated
intuitionistic fuzzy decision matrix.

Step 4. Determine the weights of criteria.
All criteria may not be assumed to be of equal importance. W represents a set of

grades of importance. In order to obtainW, all the individual decision maker opinions for the
importance of each criteria need to be fused. Letwj

(k) = (μj
(k), vj

(k), πj
(k)) be an intuitionistic
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fuzzy number assigned to criterion Xj by the kth decision maker. Then the weights of the
criteria are calculated by using IFWA operator:

wj = IFWAλ

(
wj

(1), wj
(2), . . . , wj

(l)
)

= λ1wj
(1) ⊕ λ2wj

(2) ⊕ λ3wj
(3) ⊕ · · · ⊕ λlwj

(l)

=

[
1 −

l∏

k=1

(
1 − μj

(k)
)λk

,
l∏

k=1

(
vj

(k)
)λk

,
l∏

k=1

(
1 − μj

(k)
)λk −

l∏

k=1

(
vj

(k)
)λk

]
,

W =
[
w1, w2, w3, . . . , wj

]
Here wj =

(
μj, vj , πj

) (
j = 1, 2, . . . , n

)
.

(3.6)

Step 5. Construct aggregated weighted intuitionistic fuzzy decision matrix.
After the weights of criteria (W) and the aggregated intuitionistic fuzzy decision

matrix are determined, the aggregated weighted intuitionistic fuzzy decision matrix is
constructed according to the following definition [18]:

R′ = R ⊗W =
(
μ′
ij , v

′
ij

)
=
{〈
x, μij · μj, vij + vj − vij · vj

〉}
,

π ′
ij = 1 − vij − vj − μij · μj + vij · vj .

(3.7)

Then the aggregated weighted intuitionistic fuzzy decision matrix can be defined as follows:

R′ =

⎡
⎢⎢⎢⎢⎢⎢⎣

r ′11 r ′12 · · · r ′1n
r ′21 r ′22 · · · r ′2n
...

...
. . .

...

r ′m1 r ′m1 r ′m1 r ′mn

⎤
⎥⎥⎥⎥⎥⎥⎦
. (3.8)

Here r ′ıj = (μ′
ij , v

′
ij , π

′
ij) (i = 1, 2, . . . , m; j = 1, 2, . . . , n) is an element of the aggregated

weighted intuitionistic fuzzy decision matrix.

Step 6. Obtain the intuitionistic fuzzy positive-ideal solution and intuitionistic fuzzy
negative-ideal solution.

Let J1 and J2 be benefit criteria and cost criteria, respectively. A∗ is intuitionistic fuzzy
positive-ideal solution andA− is intuitionistic fuzzy negative-ideal solution. ThenA∗ andA−

are obtained as

A∗ =
(
r ′∗1 , r

′∗
2 , . . . , r

′∗
n

)
, r ′∗j =

(
μ′∗
j , v

′∗
j , π

′∗
j

)
, j = 1, 2, . . . , n,

A− =
(
r
′−
1 , r

′−
2 , . . . , r

′−
n

)
, r

′−
j =

(
μ

′−
j , v

′−
j , π

′−
j

)
, j = 1, 2, . . . , n,

(3.9)
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where

μ′
j
∗ =

{(
max

i

{
μ′
ij

}
j ∈ J1

)
,

(
min

i

{
μ′
ij

}
j ∈ J2

)}
,

v′∗
j =

{(
min

i

{
v′
ij

}
j ∈ J1

)
,

(
max

i

{
v′
ij

}
j ∈ J2

)}
,

π ′∗
j =

{(
1 −max

i

{
μ′
ij

}
−min

{
v′
ij

}
j ∈ J1

)
,

(
1 −min

i

{
μ′
ij

}
−max

i

{
v′
ij

}
j ∈ J2

)}
,

μ′
j
− =

{(
min

i

{
μ′
ij

}
j ∈ J1

)
,

(
max

i

{
μ′
ij

}
j ∈ J2

)}
,

v
′−
j =

{(
max

i

{
v′
ij

}
j ∈ J1

)
,

(
min

i

{
v′
ij

}
j ∈ J2

)}
,

π ′
j
− =

{(
1 −min

i

{
μ′
ij

}
−max

{
v′
ij

}
j ∈ J1

)
,

(
1 −max

i

{
μ′
ij

}
−min

i

{
v′
ij

}
j ∈ J2

)}
.

(3.10)

Step 7. Calculate the separation measures.
Separation between alternatives on intuitionistic fuzzy set, distance measures

proposed by Atanassov [50], Szmidt and Kacprzyk [51], and, Grzegorzewski [52] including
the generalizations of Hamming distance, Euclidean distance, and their normalized distance
measures can be used. After selecting the distance measure, the separation measures, S∗

i and
S−
i , of each alternative from intuitionistic fuzzy positive-ideal and negative-ideal solutions,

are calculated. In this paper, we use normalized Euclidean distance

S∗
i =

1
2

n∑

j=1

[∣∣∣μ′
ij − μ′∗

j

∣∣∣ +
∣∣∣v′

ij − v′∗
j

∣∣∣ +
∣∣∣π ′

ij − π ′∗
j

∣∣∣
]
,

S−
i =

1
2

n∑

j=1

[∣∣∣μ′
ij − μ

′−
j

∣∣∣ +
∣∣∣v′

ij − v
′−
j

∣∣∣ +
∣∣∣π ′

ij − π
′−
j

∣∣∣
]
.

(3.11)

Step 8. Calculate the relative closeness coefficient to the intuitionistic ideal solution.
The relative closeness coefficient of an alternative Ai with respect to the intuitionistic

fuzzy positive-ideal solution A∗ is defined as follows:

C∗
i =

S−
i

S∗
i + S−

i

, (3.12)

where 0 ≤ C∗
i ≤ 1.

Step 9. Calculate the result of ek from DEA and solution of C∗
i .

e′k = ek ⊗ C∗
i . (3.13)
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Table 1: The DEA score.

DMU Score
1 1
2 0.951
3 1
4 1
5 1
6 0.869
7 1
8 1
9 0.9200
10 0.904
11 0.834
12 0.950
13 1

Table 2: linguistic term for rating decision makers.

Linguistic terms IFNs
Very important (0.85, 0.10)
Important (0.50, 0.20)
Medium (0.50, 0.50)
Bad (0.35, 0.60)
Very bad (0.10, 0.85)

Step 10. Rank the alternatives.
After calculating the result of e′

k
, alternatives are ranked.

4. Applying the Methodology: An Illustrative Problem

The suggested model demonstrated via an example of a selected department, supported by
a university. Thirteen departments have been considered in our evaluation. In our study, we
employ a six-input evaluation criteria and four-output evaluation criteria.

Inputs:Number of Professor Doctors, Associated Professors, Assistant Professors, and
Instructors; Budget of departments; and Number of credits.

Outputs: Number of alumni (undergraduates and graduate students), Evaluation of
instructors, Number of academic congeries, and Number of academic papers (SCI-SSCI-
AHCI).

Step 1. Determine the result of ek from DEA in Table 1. In Table 1, seven units are efficient.

Step 2. Determine the weights of the decision makers: the degree of the decision makers on
group decision, shown in Table 2, and Linguistic terms used for the ratings of the decision
makers and criteria, as Table 3, respectively.

Step 3. Construct the aggregated intuitionistic fuzzy decision matrix based on the opinions
of decision makers, the linguistic terms shown in Table 4.
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Table 3: The importance of decision makers and their weights.

DM1 DM2 DM3
Linguistic terms Very important Medium Important
Weight 0.385 0.307 0.307

Table 4: Linguistic terms for rating the alternatives.

Linguistic terms IFNs
Extremely good (EG) [1.00; 0.00;0.00]
Very good (VG) [0.85;0,05; 0.10]
Good (G) [0.70; 0.20;0.10]
Medium bad (MB) [0.50; 0.50;0.00]
Bad (B) [0.40; 0.50;0.10]
Very bad (VB) [0.25; 0.60;0.15]
Extremely bad (EB) [0.00, 0.90,0.10]

The ratings given by the decision makers to 13 departments were shown in Table 5.
The aggregated intuitionistic fuzzy decision matrix based on the aggregation of

decison makers’ opinion was constructed in Table 6.

Step 4. Determine the weights of criteria, the linguistic terms shown in Table 7, and the
importance of the criteria which was rated by three decision makers shown in Table 8.

Step 5. Construct the aggregated weighted Intuitionistic Fuzzy Decision Matrix shown in
Table 9.

Finally calculate the relative closeness coefficient to the intuitionistic ideal solution
shown in Table 10. Result of e′k = ek ⊗ C∗

i and rank the alternatives shown in Table 11.

5. Result and Discussion

As presented in Table 10, the third column shows the scores of the thirteen departments. The
result score is always the bigger the better. As visible in Table 10, department 3 has the largest
score due to its highest efficiency and performance. Department 7 has the smallest score of
the thirteen departments and is ranked in the last place. The relevant results can be seen
in Table 10. Obviously, the best selection is department 3. Table 10 lists the results of both
models, ordered according to DEA and IFS ranks. It is several units is there no compatibility
between the two models: for example, departments 7 and 8, which are efficient in DEA but
are ranked by DEA and IFS worse than the inefficient department 9. Because it contains a
vague perception of decision makers’ opinions.

Although there is no perfect compatibility between DEA and DEA and IFS in the
general case, empirically, we found many examples of complete match units. Applying the
Mann-Whitney test to the above example, we found that the two methods are compatible
with a P value.
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Table 5: Ratings of the departments provided by three decision makers (DMs).

DMU Criteria DM1 DM2 DM3 DMU Criteria DM1 DM2 DM3

D1

C1 VG G G

D8

C1 VG VG VG
C2 VG VG G C2 VG VG G
C3 G MG G C3 MG MG MG
C4 G MG VG C4 MG MG MG
C5 MG MG MG C5 G MG G
C6 VG VG VG C6 VG VG VG

D2

C1 VG VG VG

D9

C1 VG G VG
C2 G MG G C2 MG G MG
C3 MG G VG C3 G G G
C4 G G G C4 MG MG MG
C5 MG VG G C5 VG G G
C6 VG VG VG C6 VG VG VG

D3

C1 VG VG VG

D10

C1 VG VG VG
C2 VG VG VG C2 G VG G
C3 B MG MG C3 G G G
C4 VG VG VG C4 G MG MG
C5 G VG G C5 G G G
C6 G VG G C6 VG VG VG

D4

C1 VG MG G

D11

C1 G VG VG
C2 G G VG C2 VG VG VG
C3 B MG MG C3 VG G G
C4 G G G C4 G G G
C5 B B MG C5 MG MG MG
C6 VG VG VG C6 VG VG VG

D5

C1 VG VG VG

D12

C1 G VG VG
C2 VG G G C2 G G G
C3 G G G C3 MG MG G
C4 G G G C4 G G G
C5 G MG MG C5 MG MG MG
C6 VG VG VG C6 VG G VG

D6

C1 VG VG VG

D13

C1 VG VG G
C2 VG VG VG C2 VG VG VG
C3 B MG MG C3 VG G G
C4 G G VG C4 G G G
C5 B B MG C5 MG MG MG
C6 G G MG C6 G G G

D7

C1 VG VG VG
C2 MG MG MG
C3 MG MG MG
C4 G G MG
C5 G G G
C6 VG VG VG
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Table 6: Aggregate intuitionistic fuzzy decision matrix.

DMU Criteria DMU Criteria

D1

C1
C2
C3
C4
C5
C6

(0.770,0.118,0.112)
(0.814,0.077,0.109)
(0.649,0.265,0.086)
(0.716,0.173,0.111)
(0.500,0.285,0.215)
(0.850,0.050,0.100)

D8

C1
C2
C3
C4
C5
C6

(0.770,0.118,0.112)
(0.831,0.077,0.093)
(0.500,0.500,0.000)
(0.500,0.500,0.000)
(0.649,0.265,0.086)
(0.770,0.118,0.112)

D2

C1
C2
C3
C4
C5
C6

(0.850,0.050,0.100)
(0.649,0.265,0.086)
(0.704,0.186,0.109)
(0.700,0.200,0.100)
(0.704,0.186,0.109)
(0.850,0.050,0.100)

D9

C1
C2
C3
C4
C5
C6

(0.814,0.068,0.118)
(0.572,0.378,0.050)
(0.700,0.200,0.100)
(0.500,0.500,0.000)
(0.770,0.118,0.112)
(0.850,0.051,0.100)

D3

C1
C2
C3
C4
C5
C6

(0.850,0.050,0.100)
(0.850,0.050,0.100)
(0.463,0.500,0.036)
(0.850,0.500,0.100)
(0.757,0.131,0.112)
(0.850,0.050,0.100)

D10

C1
C2
C3
C4
C5
C6

(0.850,0.050,0.100)
(0.757,0.131,0.112)
(0.700,0.200,0.100)
(0.589,0.352,0.060)
(0.700,0.200,0.100)
(0.850,0.050,0.100)

D4

C1
C2
C3
C4
C5
C6

(0.731,0.156,0.114)
(0.757,0.139,0.112)
(0.463,0.500,0.037)
(0.700,0.200,0.100)
(0.432,0.500,0.067)
(0.850,0.050,0.100)

D11

C1
C2
C3
C4
C5
C6

(0.804,0.086,0.111)
(0.850,0.051,0.100)
(0.770,0.118,0.112)
(0.700,0.200,0.100)
(0.500,0.500,0.000)
(0.850,0.050,0.100)

D5

C1
C2
C3
C4
C5
C6

(0.850,0.050,0.100)
(0.770,0.118,0.112)
(0.700,0.200,0.100)
(0.700,0.200,0.100)
(0.589,0.352,0.060)
(0.850,0.050,0.100)

D12

C1
C2
C3
C4
C5
C6

(0.804,0.086,0.111)
(0.700,0.200,0.100)
(0.572,0.378,0.050)
(0.700,0.200,0.100)
(0.500,0.500,0.000)
(0.814,0.068,0.118)

D6

C1
C2
C3
C4
C5
C6

(0.850,0.050,0.100)
(0.850,0.050,0.100)
(0.463,0.500,0.036)
(0.716,0.131,0.153)
(0.432,0.500,0.067)
(0.649,0.265,0.086)

D13

C1
C2
C3
C4
C5
C6

(0.814,0.078,0.109)
(0.850,0.051,0.100)
(0.770,0.118,0.112)
(0.700,0.200,0.100)
(0.500,0.500,0.000)
(0.700,0.200,0.100)

D7

C1
C2
C3
C4
C5
C6

(0.770,0.118,0.112)
(0.500,0.500,0.000)
(0.500,0.500,0.000)
(0.649,0.265,0.086)
(0.700,0.200,0.100)
(0.770,0.118,0.112)

Table 7: Linguistic terms for rating the importance of criteria.

Linguistic terms IFNs
Very good (VG) [0.90;0,00]
Good (G) [0.80; 0.10]
Medium bad (MB) [0.70; 0.20]
Bad (B) [0.50; 0.50]
Very bad (VB) [0.30; 0.50]
Extremely bad (EB) [0.20; 0.70]
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Table 8: Importance weight of the criteria.

Criteria DM1 DM2 DM3 Criteria DM1 DM2 DM3
C1 G MB MB C4 G G MB
C2 VG VG VG D5 G MB B
C3 B G MB C6 VG VG VG

Table 9: Aggregated weighted intuitionistic fuzzy decision matrix.

Alternative Criteria Alternative Criteria

D1

C1
C2
C3
C4
C5
C6

(0.572,0.253,0.175)
(0.732,0.077,0.191)
(0.439,0.439,0.122)
(0.553,0.276,0.171)
(0.349,0.430,0.221)
(0.764,0.050,0.186)

D8

C1
C2
C3
C4
C5
C6

(0.572,0.341,0.087)
(0.744,0.077,0.176)
(0.338,0.618,0.044)
(0.386,0.562,0.052)
(0.454,0.415,0.131)
(0.692,0.118,0.190)

D2

C1
C2
C3
C4
C5
C6

(0.631,0.195,0.174)
(0.583,0.265,0.152)
(0.477,0.378,0.145)
(0.541,0.299,0.160)
(0.492,0.351,0.157)
(0.764,0.050,0.186)

D9

C1
C2
C3
C4
C5
C6

(0.605,0.210,0.185)
(0.514,0.378,0.108)
(0.474,0.389,0.137)
(0.386,0.562,0.052)
(0.538,0.297,0.165)
(0.764,0.051,0.185)

D3

C1
C2
C3
C4
C5
C6

(0.631,0.195,0.174)
(0.764,0.050,0.186)
(0.314,0.618,0.068)
(0.657,0.168,0.175)
(0.529,0.307,0.164)
(0.764,0.050,0.186)

D10

C1
C2
C3
C4
C5
C6

(0.631,0.197,0.172)
(0.681,0.131,0.188)
(0.474,0.389,0.137)
(0.455,0.432,0.113)
(0.489,0.363,0.148)
(0.764,0.050,0.186)

D4

C1
C2
C3
C4
C5
C6

(0.543,0.285,0.172)
(0.681,0.139,0.180)
(0.314,0.618,0.068)
(0.541,0.299,0.160)
(0.302,0.602,0.096)
(0.764,0.050,0.186)

D11

C1
C2
C3
C4
C5
C6

(0.597,0.255,0.178)
(0.764,0.051,0.185)
(0.521,0.326,0.153)
(0.541,0.299,0.160)
(0.349,0.602,0.049)
(0.764,0.050,0.186)

D5

C1
C2
C3
C4
C5
C6

(0.631,0.367,0.002)
(0.692,0.118,0.190)
(0.474,0.389,0.137)
(0.541,0.299,0.160)
(0.412,0.483,0.105)
(0.764,0.050,0.186)

D12

C1
C2
C3
C4
C5
C6

(0.597,0.225,0.178)
(0.629,0.200,0.171)
(0.387,0.524,0.089)
(0.541,0.299,0.160)
(0.349,0.602,0.049)
(0.732,0.068,0.200)

D6

C1
C2
C3
C4
C5
C6

(0.631,0.195,0.174)
(0.764,0.050,0.186)
(0.314,0.618,0.068)
(0.553,0.239,0.208)
(0.302,0.602,0.096)
(0.583,0.265,0.152)

D13

C1
C2
C3
C4
C5
C6

(0.605,0.218,0.177)
(0.764,0.051,0.186)
(0.521,0.326,0.153)
(0.541,0.299,0.160)
(0.349,0.602,0.049)
(0.629,0.200,0.171)

D7

C1
C2
C3
C4
C5
C6

(0.572,0.253,0.175)
(0.449,0.500,0.051)
(0.338,0.618,0.044)
(0.501,0.356,0.143)
(0.489,0.363,0.148)
(0.692,0.118,0.190)
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Table 10: Separation measurement and the relative closeness coefficient of each department.

DMU S∗ S− C∗
i

D1 0.562 1.518 0.730
D2 0.513 1.350 0.750
D3 0.363 1.500 0.805
D4 0.968 0.895 0.480
D5 0.685 1.322 0.659
D6 0.976 0.919 0.485
D7 1.563 0.654 0.295
D8 1.110 0.810 0.422
D9 0.849 1.003 0.542
D10 0.539 1.326 0.711
D11 0.531 1.383 0.723
D12 0.911 1.017 0.527
D13 0.674 1.240 0.648

Table 11: The DEA and intuitionistic fuzzy TOPSIS ranking score.

DMU DEA DEA-IFS
D1 1 0.730
D2 0.951 0.689
D3 1 0.805
D4 1 0.480
D5 1 0.659
D6 0.869 0.421
D7 1 0.295
D8 1 0.422
D9 0.9200 0.499
D10 0.904 0.642
D11 0.834 0.603
D12 0.950 0.500
D13 1 0.648

6. Conclusion

In this paper, we have demonstrated a simple and easy-to-use method for department
comparison via DEA. Furthermore, we integrated IFS in DEA to generate a more feasible
DEA result. Various types of data were adopted in DEAwithout any modification of the DEA
formula. We have presented an effective model for rank scaling of the units with multiple
inputs and multiple outputs using both DEA and IFS.

The DEA and IFS method combines the best of both models by avoiding the pitfalls of
each. IFS are designed for subjective evaluation of a set of alternatives based on multiple
criteria organized in a hierarchical structure. The IFS is a suitable way to deal with
uncertainty. In the evaluation process, the ratings of each alternative, which were given with
Intuitionistic fuzzy information, were represented as IFNs. The IFWA operator was used to
aggregate the rating of decision makers. The intuitionistic fuzzy TOPSIS method is a suitable
method for MCDM because it contains a vague perception of decision makers’ opinions. It
is important to note that DEA and IFS do not replace DEA, but rather, it provides further
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analysis of DEA to full ranking the units, within utilized to aggregated individual opinions of
decisionmakers for rating the importance of criteria and alternatives. Therefore, in the future,
DEA and IFS models can be used to problems such as health systems, project selection, and
many other areas.
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