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This paper deals with the stability of nonlinear fractional differential systems equipped with the
Caputo derivative. At first, a sufficient condition on asymptotical stability is established by using
a Lyapunov-like function. Then, the fractional differential inequalities and comparison method are
applied to the analysis of the stability of fractional differential systems. In addition, some other
sufficient conditions on stability are also presented.

1. Introduction

Fractional calculus is more than 300 years old, but it did not attract enough interest at the
early stage of development. In the last three decades, fractional calculus has become popular
among scientists in order to model various physical phenomena with anomalous decay,
such as dielectric polarization, electrode-electrolyte polarization, electromagnetic waves, and
viscoelastic systems [1]. Recent advances in fractional calculus have been reported in [2].

Recently, stability of fractional differential systems has attracted increasing interest. In
1996, Matignon [3] firstly studied the stability of linear fractional differential systemswith the
Caputo derivative. Since then, many researchers have done further studies on the stability of
linear fractional differential systems [4–11]. For the nonlinear fractional differential systems,
the stability analysis is much more difficult and only a few are available.

Some authors [12, 13] studied the following nonlinear fractional differential system:

CD
q

0,tx(t) = f(t, x(t)), (1.1)
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with initial values x(0) = x
(0)
0 , . . . , x(m−1)(0) = x

(m−1)
0 , wherem− 1 < q ≤ m. They discussed the

continuous dependence of solution on initial conditions and the corresponding structural
stability by applying Gronwall’s inequality. In [14] the authors dealt with the following
fractional differential system:

D
q

0,tx(t) = f(t, x(t)), (1.2)

where 0 < q ≤ 1, Dq

0,t denotes either the Caputo, or the Riemann-Liouville fractional deriva-
tive operator. They proposed fractional Lyapunov’s second method and firstly extended the
exponential stability of integer order differential systems to the Mittag-Leffler stability of
fractional differential systems. Moreover, the pioneering work on the generalized Mittag-
Leffler stability and the generalized fractional Lyapunov direct method was proposed in [15].

In this paper, we further study the stability of nonlinear fractional differential systems
with Caputo derivative by utilizing a Lyapunov-like function. Taking into account the re-
lation between asymptotical stability and generalized Mittag-Leffler stability, we are able
to weaken the conditions assumed for the Lyapunov-like function. In addition, based on
the comparison principle of fractional differential equations [16, 17], we also study the
stability of nonlinear fractional differential systems by utilizing the comparison method. Our
contribution in this paper is that we have relaxed the condition of the Lyapunov-like function
and that we have further studied the stability. The present paper is organized as follows.
In Section 2, some definitions and lemmas are introduced. In Section 3, sufficient conditions
on asymptotical stability and generalized Mittag-Leffler stability are given. The comparison
method is applied to the analysis of the stability of fractional differential systems in Section 4.
Conclusions are included in the last section.

2. Preliminaries and Notations

Let us denote by R+ the set of nonnegative real numbers, by R the set of real numbers,
and by Z+ the set of positive integer numbers. Let 0 < q < 1 and set Cq([t0, T],R) = {f ∈
C((t0, T],R), (t − t0)

qf(t) ∈ C([t0, T],R)}, and Cq([t0, T] × Ω,R) = {f(t, x(t)) ∈ C((t0, T] ×
Ω,R), (t − t0)

qf(t, x(t)) ∈ C([t0, T]×Ω,R)}, whereC((t0, t],R) denotes the space of continuous
functions on the interval (t0, t].

Let us first introduce several definitions, results, and citations needed here with
respect to fractional calculus which will be used later. As to fractional integrability and
differentiability, the reader may refer to [18].

Definition 2.1. The fractional integral with noninteger order q ≥ 0 of function x(t) is defined
as follows:

D
−q
t0,t
x(t) =

1
Γ
(
q
)
∫ t

t0

(t − τ)q−1x(τ)dτ, (2.1)

where Γ(·) is the Gamma function.
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Definition 2.2. The Riemann-Liouville derivative with order q of function x(t) is defined as
follows:

RLD
q
t0,t
x(t) =

1
Γ
(
m − q

)
dm

dtm

∫ t

t0

(t − τ)m−q−1x(τ)dτ, (2.2)

where m − 1 ≤ q < m and m ∈ Z+.

Definition 2.3. The Caputo derivative with noninteger order q of function x(t) is defined as
follows:

CD
q
t0,t
x(t) =

1
Γ
(
m − q

)
∫ t

t0

(t − τ)m−q−1x(m)(τ)dτ, (2.3)

where m − 1 < q < m and m ∈ Z+.

Definition 2.4. The Mittag-Leffler function is defined by

Eα(z) =
∞∑

k=0

zk

Γ(kα + 1)
, (2.4)

where α > 0, z ∈ R. The two-parameter Mittag-Leffler function is defined by

Eα,β(z) =
∞∑

k=0

zk

Γ
(
kα + β

) , (2.5)

where α > 0 and β ∈ R, z ∈ R.
Clearly Eα(z) = Eα,1(z). The following definitions are associated with the stability

problem in the paper.

Definition 2.5. The constant xeq is an equilibrium of fractional differential system D
q
t0,t
x(t) =

f(t, x) if and only if f(t, xeq) = D
q
t0,t
x(t)|

x(t)=xeq
for all t > t0, where D

q
t0,t

means either the

Caputo or the Riemann-Liouville fractional derivative operator.

Throughout the paper, we always assume that xeq = 0.

Definition 2.6 (see [15]). The zero solution of D
q
t0,t
x(t) = f(t, x(t)) with order q ∈ (0, 1) is said

to be stable if, for any initial value x0, there exists an ε > 0 such that ‖x(t)‖ ≤ ε for all t > t0.
The zero solution is said to be asymptotically stable if, in addition to being stable, ‖x(t)‖ → 0
as t → +∞.

Definition 2.7. Let B ⊂ R
n be a domain containing the origin. The zero solution of D

q
t0,t
x(t) =

f(t, x(t)) is said to be Mittag-Leffler stable if

‖x(t)‖ ≤ {m(x0)Eq

(−λ(t − t0)q
)}b

, (2.6)

where t0 is the initial time and x0 is the corresponding initial value, q ∈ (0, 1), λ ≥ 0, b > 0,
m(0) = 0, m(x) ≥ 0, and m(x) is locally Lipschitz on x ∈ B ⊂ R

n with the Lipschitz constant
L0.
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Definition 2.8. Let B ⊂ R
n be a domain containing the origin. The zero solution of D

q
t0,t
x(t) =

f(t, x(t)) is said to be generalized Mittag-Leffler stable if

‖x(t)‖ ≤ {m(x0)(t − t0)−γEq,1−γ
(−λ(t − t0)q

)}b
, (2.7)

where t0 is the initial time and x0 is the corresponding initial value, q ∈ (0, 1), −q < γ ≤ 1 − q,
λ ≥ 0, b > 0,m(0) = 0, m(x) ≥ 0, andm(x) is locally Lipschitz on x ∈ B ⊂ R

n with the Lipschitz
constant L0.

Remark 2.9. Mittag-Leffler stability and generalized Mittag-Leffler stability both belong to
algebraical stability, which also imply asymptotical stability (see [15]).

Definition 2.10. A function α(r) is said to belong to class-K if α : R+ → R+ is continuous
function such that α(0) = 0 and it is strictly increasing.

Definition 2.11 (see [19]). The class-K functions α(r) and β(r) are said to be with local growth
momentum at the same level if there exist r1 > 0, ki > 0 (i = 1, 2) such that k1α(r) ≥ β(r) ≥
k2α(r) for all r ∈ [0, r1]. The class-K functions α(r) and β(r) are said to be with global growth
momentum at the same level if there exist ki > 0 (i = 1, 2) such that k1α(r) ≥ β(r) ≥ k2α(r) for
all r ∈ R+.

It is useful to recall the following lemmas for our developments in the sequel.

Lemma 2.12 (see [20]). Let v,w ∈ C1−q([t0, T],R) be locally Hölder continuous for an exponent
0 < q < ν ≤ 1, h ∈ C([t0, T] × R,R) and

(i) RLD
q
t0,t
v(t) ≤ h(t, v(t)),

(ii) RLD
q
t0,t
w(t) ≥ h(t,w(t)), t0 < t ≤ T ,

with nonstrict inequalities (i) and (ii), where v0 = Γ(q)v(t)(t − t0)
1−q|t=t0 and w0 = Γ(q)w(t)

(t − t0)
1−q|t=t0 . Suppose further that h satisfies the standard Lipschitz condition

h(t, x) − h
(
t, y
) ≤ L(x − y

)
, x ≥ y, L > 0. (2.8)

Then, v0 ≤ w0 implies v(t) ≤ w(t), t0 < t ≤ T .

Remark 2.13. In Lemma 2.12, if we replace RLD
q
t0,t

by CD
q
t0,t
, but other conditions remain

unchanged, then the same result holds.

Lemma 2.14 (see [16]). Let v,w ∈ C1−q([t0, T],R), h ∈ C([t0, T] × R,R) and

(i) v(t) ≤ (v0/Γ(q))(t − t0)
q−1 + (1/Γ(q))

∫ t
t0
(t − s)q−1h(s, v(s))ds,

(ii) w(t) ≥ (w0/Γ(q))(t − t0)
q−1 + (1/Γ(q))

∫ t
t0
(t − s)q−1h(s,w(s))ds,

where t0 < t ≤ T , v0 = Γ(q)v(t)(t − t0)
1−q|t=t0 , w0 = Γ(q)w(t)(t − t0)

1−q|t=t0 , and 0 < q < 1. Assume
that both inequalities are nonstrict and h(t, x) is nondecreasing in x for each t. Further, suppose that
h satisfies the standard Lipschitz condition

h(t, x) − h
(
t, y
) ≤ L(x − y

)
, x ≥ y, L > 0. (2.9)

Then, v0 ≤ w0 implies v(t) ≤ w(t), t0 < t ≤ T .
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Remark 2.15. In Lemmas 2.12 and 2.14, T can be +∞.

3. Stability of Nonlinear Fractional Differential Systems

Let us consider the following nonlinear fractional differential system [14, 15]:

CD
q
t0,t
x(t) = f(t, x(t)), (3.1)

with the initial condition x0 = x(t0), where f : [t0,∞) × Ω → R
n is piecewise continuous in

t and Ω ⊂ R
n is a domain that contains the equilibrium point xeq = 0, 0 < q < 1. Here and

throughout the paper, we always assume there exists a unique solution x(t) ∈ C1[t0,∞) to
system (3.1)with the initial condition x(t0).

Recently, Li et al. [14, 15] investigated the Mittag-Leffler stability and the generalized
Mittag-Leffler stability (the asymptotic stability) of system (3.1) by using the fractional
Lyapunov’s second method, where the following theorem has been presented.

Theorem 3.1. Let xeq = 0 be an equilibrium point of system (3.1) with t0 = 0, and let D ⊂ R
n be

a domain containing the origin. Let V (t, x(t)) : [0,∞) × D → R+ be a continuously differentiable
function and locally Lipschitz with respect to x such that

α1‖x‖a ≤ V (t, x(t)) ≤ α2‖x‖ab, (3.2)

CD
p

0,tV (t, x(t)) ≤ −α3‖x‖ab, (3.3)

where t ≥ 0, x ∈ D, p ∈ (0, 1), and α1, α2, α3, a, and b are arbitrary positive constants. Then xeq = 0
is Mittag-Leffler stable (locally asymptotically stable). If the assumptions hold globally on R

n, then
xeq = 0 is globally Mittag-Leffler stable (globally asymptotically stable).

In the following, we give a new proof for Theorem 3.1.

Proof of Theorem 3.1. From (3.2) and (3.3), we can get

CD
p

0,tV (t, x(t)) ≤ −α3

α2
V (t, x(t)). (3.4)

Obviously, for the initial value V (0, x(0)), the linear fractional differential equation

CD
p

0,tV (t, x(t)) = −α3

α2
V (t, x(t)) (3.5)

has a unique solution V (t, x(t)) = V (0, x(0))Ep((−α3/α2)tp).
Taking into account Remark 2.13 and the relationship between (3.4) and (3.5), we

obtain

V (t, x(t)) ≤ V (0, x(0))Ep

(
−α3

α2
tp
)
, (3.6)
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where Ep((−α3/α2)tp) is a nonnegative function [21]. Substituting (3.6) in (3.2) yields

‖x(t)‖ ≤
[
V (0, x(0))

α1
Ep

(
−α3

α2
tp
)]1/a

, (3.7)

where Ep((−α3/α2)tp) → 0 (t → +∞) from the asymptotic expansion of Mittag-Leffler
function [22]. Hence the proof is completed.

According to the above results, we have the following theorem.

Theorem 3.2. Let xeq = 0 be an equilibrium point of system (3.1), and let D ⊂ R
n be a domain

containing the origin. Assume that there exist a continuously differentiable function V (t, x(t)) :
[t0,∞) × D → R+ and class-K function α satisfying

V (t, x(t)) ≥ α(‖x‖), (3.8)

CD
p
t0,t
V (t, x(t)) ≤ 0, (3.9)

where x ∈ D, p ∈ (0, 1). Then xeq = 0 is locally stable. If the assumptions hold globally on R
n, then

xeq = 0 is globally stable.

Proof. Proceeding the same way as that in the proof of Theorem 3.1, it follows from (3.9) that
V (t, x(t)) ≤ V (t0, x(t0)). Again taking into account (3.8), one can get

‖x(t)‖ ≤ α−1(V (t0, x(t0))), (3.10)

where t ≥ t0. Therefore, the equilibrium point xeq = 0 is stable. So the proof is finished.

In the above two theorems, the stronger requirements on function V have been
assumed to ensure the existence of CD

p
t0,t
V (t, x(t)). This undoubtedly increases the difficulty

in choosing the function V (t, x(t)). In fact, we can weaken the continuously differential
function V (t, x(t)) as V (t, x(t)) ∈ C1−p([t0,∞) × D,R+). Here we give the corresponding
results.

Theorem 3.3. Let xeq = 0 be an equilibrium point of system (3.1), and let D ⊂ R
n be a domain

containing the origin, V (t, x(t)) ∈ C1−p([t0,∞) × D,R+). Assume there exists a class-K function α
such that

V (t, x(t)) ≥ α(‖x‖), (3.11)

RLD
p
t0,t
V (t, x(t)) ≤ 0, (3.12)
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where t > t0 ≥ 0, x ∈ D, and p ∈ (0, 1). Then xeq = 0 is locally asymptotically stable. If the
assumptions hold globally on R

n, then xeq = 0 is globally asymptotically stable.

Proof. Note that the linear fractional differential equation

RLD
p
t0,t
V (t, x(t)) = 0 (3.13)

has a unique solution V (t, x(t)) = (V0/Γ(p))(t − t0)
p−1 for initial value V0 = Γ(p)V (t, x(t))

(t − t0)
1−p|t=t0 .
Taking into account Lemma 2.12 and the relationship between (3.12) and (3.13), we

obtain

V (t, x(t)) ≤ V0

Γ
(
p
) (t − t0)p−1. (3.14)

Substituting (3.14) into (3.11) gives

‖x(t)‖ ≤ α−1
(

V0

Γ
(
p
) (t − t0)p−1

)

−→ 0 (t −→ +∞), (3.15)

from the definition of class-K. This completes the proof.

Corollary 3.4. Let xeq = 0 be an equilibrium point of system (3.1), let D ⊂ R
n be a domain containing

the origin, and let V (t, x(t)) ∈ C1−p([t0,∞) × D,R+) be locally Lipschitz with respect to x. Assume
V (t, 0) = 0,

V (t, x(t)) ≥ a‖x‖b, RLD
p
t0,t
V (t, x(t)) ≤ 0, (3.16)

where t > t0 ≥ 0, x ∈ D, p ∈ (0, 1), and a, b are arbitrary positive constants. Then xeq = 0 is
generalized Mittag-Leffler stable. If the assumptions hold globally on R

n, then xeq = 0 is globally
generalized Mittag-Leffler stable.

Proof. In Theorem 3.3, by replacing α(‖x‖) by a‖x‖b, we can get

‖x(t)‖ ≤
{
V0

a
(t − t0)p−1Ep,p

(
0 · (t − t0)p

)
}1/b

, (3.17)

so the conclusion holds.

Theorem 3.5. Let xeq = 0 be an equilibrium point of system (3.1), let D ⊂ R
n be a domain containing

the origin, and let V (t, x(t)) ∈ C1−p([t0,∞) × D,R+) be locally Lipschitz with respect to x. Assume



8 International Journal of Differential Equations

(i) there exist class-K functions αi (i = 1, 2, 3) having global growth momentum at the same
level and satisfying

α1(‖x‖) ≤ V (t, x(t)) ≤ α2(‖x‖),

RLD
p
t0,t
V (t, x(t)) ≤ −α3(‖x‖),

(3.18)

(ii) there exists a > 0 such that α1(r) and ra have global growth momentum at the same level,

where t > t0 ≥ 0, x ∈ D, and p ∈ (0, 1). Then xeq = 0 is locally generalized Mittag-Leffler stable. If the
assumptions hold globally on R

n, then xeq = 0 is globally generalized Mittag-Leffler stable.

Proof. It follows from condition (i) that there exists k1 > 0 such that

RLD
p
t0,t
V (t, x(t)) ≤ −α3(‖x‖)

≤ −k1α2(‖x‖)
≤ −k1V (t, x(t)).

(3.19)

On the other hand, the linear fractional differential equation

RLD
p
t0,t
V (t, x(t)) = −k1V (t, x(t)) (3.20)

has a unique solution

V (t, x(t)) =
V0

Γ
(
p
) (t − t0)p−1 · Ep,p

(−k1(t − t0)p
)
, (3.21)

for the initial value V0 = Γ(p)V (t, x(t))(t − t0)
1−p|t=t0 .

Using (3.19), (3.20), and Lemma 2.12, we obtain

α1(‖x‖) ≤ V (t, x(t)) ≤ V0

Γ
(
p
) (t − t0)p−1 · Ep,p

(−k1(t − t0)p
)
, (3.22)

where Ep,p(−k1(t − t0)
p) is a nonnegative function [23, 24].

In addition, using condition (ii), one gets

(k2‖x‖)a ≤ α1(‖x‖), (3.23)

for all x ∈ D, where k2 > 0.
Substituting (3.23) into (3.22), we finally obtain

‖x(t)‖ ≤
{

V0

ka
2Γ
(
p
) (t − t0)p−1Ep,p

(−k1(t − t0)p
)
}1/a

. (3.24)
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Hence, the zero solution of system (3.1) is locally generalized Mittag-Leffler stable.
If the assumptions hold globally on R

n, then xeq = 0 is globally generalized Mittag-Leffler
stable. The proof is completed.

Remark 3.6. The nonnegative function Ep,p(−k1(t − t0)
p) tends to zero as t approaches infinity

from the asymptotic expansion of two-parameter Mittag-Leffler function [22], so the zero
solution of system (3.1) satisfying the conditions of Theorem 3.5 is also asymptotically stable.

4. The Comparison Results on the Stability

It is well known that the comparison method is an effective way in judging the stability of
ordinary differential systems. In this section, we will discuss similar results on the stability of
fractional differential systems by using the comparison method.

In what follows, we consider system (3.1) with f(t, 0) = 0 and the scalar fractional
differential equation

RLD
q
t0,t
u(t) = g(t, u), u0 = Γ

(
q
)
u(t)(t − t0)1−q

∣∣∣
t=t0

, (4.1)

where the initial value u0 ∈ R+, u(t) ∈ C1−q([t0,∞),R), g ∈ C([t0,∞) × R,R) is Lipschitz in
u and g(t, 0) = 0, 0 < q < 1. Also, we assume there exists a unique solution u(t) (t ≥ t0) for
system (4.1)with the initial value u0.

Theorem 4.1. For system (3.1), let xeq = 0 be an equilibrium point of system (3.1), and letΩ ⊂ R
n be

a domain containing the origin. Assume that there exist a Lyapunov-like function V ∈ C1−q([t0,∞)×
Ω,R+) and a class-K function α such that V (t, 0) = 0, V (t, x) ≥ α(‖x‖), and V (t, x) satisfies the
inequality

RLD
q
t0,t
V (t, x) ≤ g(t, V (t, x)), (t, x) ∈ [t0,∞) ×Ω. (4.2)

Suppose further that g(t, x) is nondecreasing in x for each t.

(i) If the zero solution of (4.1) is stable, then the zero solution of system (3.1) is stable;

(ii) if the zero solution of (4.1) is asymptotically stable, then the zero solution of system (3.1)
is asymptotically stable, too.

Proof. Let x(t) = x(t, t0, x0) denote the solution of system (3.1)with initial value x0 ∈ Ω. Along
the solution curve x(t), V (t, x(t) can be written as V (t) and

V (t) ≤ V0

Γ
(
q
)(t − t0)q−1 +

1
Γ
(
q
)
∫ t

t0

(t − s)q−1g(s, V (s))ds, (4.3)

where V0 = Γ(q)V (t)(t − t0)
1−q|t=t0 . Applying the fractional integral operatorD−q

t0,t
to both sides

of (4.1) leads to

u(t) =
u0

Γ
(
q
)(t − t0)q−1 +

1
Γ
(
q
)
∫ t

t0

(t − s)q−1g(s, u(s))ds. (4.4)
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Now, taking u0 = V0 and applying Lemma 2.14 to inequalities (4.3) and (4.4), one has V (t) ≤
u(t), t > t0.

(i) If the zero solution of (4.1) is stable, then for any initial value u0 ≥ 0, there exists ε >
0 such that |u(t)| < ε for all t > t0. Therefore, taking into account V (t, x(t)) ≥ α(‖x‖),
one gets

α(‖x(t)‖) ≤ V (t, x) ≤ u(t) < ε, (4.5)

that is, ‖x(t)‖ < α−1(ε), and the zero solution of system (3.1) is stable.

(ii) One can directly derive

α(‖x(t)‖) ≤ V (t, x) ≤ u(t) < ε (4.6)

from the same argument in (i). Then, taking the limit to both sides of (4.6) and
combining with the definition of class-K function, one can obtain limt→+∞‖x(t)‖ =
0.

The proof is thus finished.

Remark 4.2. In Theorem 4.1 and system (4.1), if we replace order q by p ∈ (0, 1), but other
conditions remain unchanged, then the result in Theorem 4.1 still holds.

Especially, if the class-K function α(‖x‖) in Theorem 4.1 and ‖x‖a have global growth
momentum at the same level, then we can have similar comparison result on the generalized
Mittag-Leffler stability as follows.

Theorem 4.3. For system (3.1), let xeq = 0 be an equilibrium of system (3.1), and let Ω ⊂ R
n be a

domain containing the origin. Assume that there exists a Lyapunov-like function V ∈ C1−q([t0,∞) ×
Ω,R+) such that V (t, 0) = 0, V (t, x) ≥ k‖x‖a, and V (t, x) is locally Lipschitz in x and satisfies the
inequality

RLD
q
t0,t
V (t, x) ≤ g(t, V (t, x)), (t, x) ∈ [t0,∞) ×Ω, (4.7)

where k > 0, a > 0. Suppose further that g(t, x) is nondecreasing in x for each t. Then the zero
solution of system (3.1) is also locally generalized Mittag-Leffler stable if the zero solution of (4.1) is
locally generalized Mittag-Leffler stable. In addition, if the assumptions hold globally on R

n, then the
globally generalized Mittag-Leffler stability of zero solution of (4.1) implies the globally generalized
Mittag-Leffler stability of zero solution of system (3.1).

Proof. First, from Definition 2.8, if the zero solution of (4.1) is generalized Mittag-Leffler
stable, then there exist λ ≥ 0, b > 0, −q < γ ≤ 1 − q such that

|u(t)| ≤ {m(u0)(t − t0)−γEq,1−γ
(−λ(t − t0)q

)}b
, (4.8)

where m(0) = 0, m(x) ≥ 0 and m(x) is locally Lipschitz in x with Lipschitz constant L0.
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Taking u0 = V0 = Γ(q)V (t, x)(t − t0)
1−q|t=t0 and noting that V (t, x) ≤ u(t) holds from

Theorem 4.1, then taking into account (4.8) and V (t, x) ≥ k‖x‖a, we obtain

k‖x(t)‖a ≤ V (t, x) ≤ {m(u0)(t − t0)−γEq,1−γ
(−λ(t − t0)q

)}b
. (4.9)

Furthermore,

‖x(t)‖ ≤

⎧
⎪⎪⎨

⎪⎪⎩

m

(
Γ
(
q
)
V (t, x(t0))(t − t0)1−q

∣
∣
∣
t=t0

)

k1/b
· (t − t0)−γEq,1−γ

(−λ(t − t0)q
)

⎫
⎪⎪⎬

⎪⎪⎭

b/a

. (4.10)

Let M(x) = m(Γ(q)V (t, x)(t − t0)
1−q|t=t0)/k1/b. Then it follows that

‖x(t)‖ ≤ {M(x(t0))(t − t0)−γEq,1−γ
(−λ(t − t0)q

)}b/a
, (4.11)

where M(0) = m(Γ(q)V (t, 0)(t − t0)
1−q|t=t0)/k1/b = 0 due to V (t, 0) = 0. It is obvious that

M(x) is a nonnegative function fromm(x), V (t, x) ≥ 0 and k > 0. In addition,M(x) is locally
Lipschitz in x sincem(x) and V (t, x) are locally Lipschitz in x. So, the zero solution of system
(3.1) is generalized Mittag-Leffler stable. The proof is completed.

5. Conclusion

In this paper, we have studied the stability of the zero solution of nonlinear fractional
differential systems with the Caputo derivative and the commensurate order 0 < q < 1 by
using a Lyapunov-like function. Compared to [15], we weaken the continuously differential
function V (t, x) as V (t, x) ∈ C1−p([t0,∞)×D,R+). Sufficient conditions on generalizedMittag-
Leffler stability and asymptotical stability are derived. Meanwhile, comparison method
is applied to the analysis of the stability of fractional differential systems by fractional
differential inequalities.
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