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In batch culture of glycerol biodissimilation to 1,3-propanediol (1,3-PD), the aim of adding glycerol
is to obtain as much 1,3-PD as possible. Taking the yield intensity of 1,3-PD as the performance
index and the initial concentration of biomass, glycerol, and terminal time as the control vector,
we propose an optimal control model subject to a multistage nonlinear dynamical system and
constraints of continuous state. A computational approach is constructed to seek the solution
of the above model. Firstly, we transform the optimal control problem into the one with fixed
terminal time. Secondly, we transcribe the optimal control model into an unconstrained one based
on the penalty functions and an extension of the state space. Finally, by approximating the
control function with simple functions, we transform the unconstrained optimal control problem
into a sequence of nonlinear programming problems, which can be solved using gradient-based
optimization techniques. The convergence analysis and optimality function of the algorithm are
also investigated. Numerical results show that, by employing the optimal control, the concentra-
tion of 1,3-PD at the terminal time can be increased, compared with the previous results.

1. Introduction

The bioconversion of glycerol to 1,3-propanediol (1,3-PD) has recently received more and
more attention throughout the world due to its environmental safety, high region specificity,
cheaply available feedstock, and relatively high theoretical molar yield [1]. Many researchs
have been carried out including the quantitative description of the cell growth kinetics of
multiple inhibitions, the metabolic overflow kinetics of substrate consumption and product
formation [2—4], open-loop substrate input and pH logic control [5], enzyme-catalytic
reductive pathway and transport of glycerol and 1,3-propanediol across cell membrane [6],
parameter identification of biochemical systems [7] and feedback control and pulse feeding
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[8] for the models of the continuous cultures, feeding strategy of glycerol [9], and optimal
control [10] and optimality condition [11] in fed-batch culture.

Compared with continuous and feed-batch cultures, glycerol fermentation in batch
culture can obtain the highest production concentration and molar yield 1,3-PD to glycerol
[12]. So nonlinear dynamical systems in this culture have been extensively considered in
recent years [13-15]. In batch culture of glycerol biodissimilation to 1,3-propanediol (1,3-
PD), the aim of adding glycerol is to obtain as much 1,3-PD as possible. In this paper, based
on the previous model in [16], taking the yield intensity of 1,3-PD as the performance index
and the initial concentration of biomass, glycerol and terminal time as the control vector, we
propose an optimal control model subject to a multistage nonlinear dynamical system and
constraints of continuous state. A computational approach is constructed to seek the solution
of the above model in two aspects. On the one hand transform the optimal control problem
into the one with fixed terminal time and transcribe it into an unconstrained one based on the
penalty functions and an extension of the state space; on the other hand, by approximating
the control function with simple functions, we transform the unconstrained optimal control
problem into a sequence of nonlinear programming problems, which can be solved using
gradient-based optimization techniques. The convergence analysis and optimality function
of the algorithm are also investigated. Numerical results show that, by employing the optimal
control, the concentration of 1,3-PD at the terminal time can be increased, compared with the
previous results.

This paper is organized as follows. In Section 2, a nonlinear dynamical system of
batch culture is proposed. In Section 3, we propose an optimal control model, develop
a computational approach to solve the optimal control model, and prove the convergence
of algorithm. Section 4 illustrates the numerical results. Finally, conclusions are provided in
Section 5.

2. Nonlinear Dynamical System

On the basis of our previous literature(see [16]), mass balances of biomass, substrate, and
products in batch culture can be formulated as the following nonlinear dynamical system:

x(t) = f(t,x(t)), tel0tf], x(0)=¢, (2.1)

Ft,x(®) = (Fi(t,x(®), folt, x(1), f3(t,x (1), falt, x(1), fs(t, x (1)) 22)

= (,uxl(f),—Q2x1(f),%x1(t)/6]4x1(t)r115x1(t))T,

where x1(t), x2(t), x3(t), x4(t), and xs5(t) are biomass, glycerol, 1,3-PD, acetate, and ethanol
concentrations at time ¢ in the reactor, respectively. ¢ = (§1,§2,§3,§4,§5)T denotes the initial
state, and ¢ is the terminal time of the fermentation process. x £ (x1,x, X3,X4,X5)T € R is
as state vector. The specific growth rate of cells y, specific consumption rate of substrate, g»
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and specific formation rate of products g;, i = 3,4, 5, are expressed by the following equations

on the basis of [13, 16]:
_(t_tm)2 2 Xi
= umexp( ———"1 1-2),
p=p Xp< 2 ]_2[ -

Q2=m2+%,

(2.3)
qi=m;+uY;, i=3,4,5.

In batch culture, the initial concentrations of biomass, glycerol, and the terminal time
can be chosen as control variables. Let u = (ul,uz,ug)T L (4,8, tf)T € R3 be the control
vector. The solution of system (2.1) with respect to control vector is defined by x (-, u).

Based on the factual fermentation, there exist critical concentrations, outside which
cells cease to grow, of biomass, glycerol, 1,3-PD, acetate and ethanol. Hence, it is biologically
meaningful to restrict the concentrations of biomass, glycerol, products, and the volume
of culture fluid in a set W and the control vector in a admissible control set U defined
respectively, as follows:

5
x(t,u) eW & [ [[xu,xf] CR}, Vtel=[0,t].
i=1
1 (2.4)
3
ueld 2 H[u*i,u;*] CR3.
i=1

Let Cp([0,T], R°) denote the space of continuous bounded functions on [0,T] with
values in R, equipped with the sup-norm topology, that is, for z € Cp([0,T], R°), ||z =
sup{||z(t)||, t € [0,T]}, where || - || is the Euclidean norm.

3. Optimal Control Problem

The optimal control problem using the yield intensity of 1,3-PD at the terminal time as
cost functional, based on the controlled multistage nonlinear dynamical system (2.1), can be
formulated as follows:

inf J(u) £ ——XS(Z? e

sit. x(t) = f(t, x(t,u))
x(0) =¢, e
x(t)eW, te[0,us]
uel.

From the theory on continuous dependence of solutions on parameters and our
previous literature (see [16]), we know that x(-,u) is continuous relative to u, so J(u) is
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continuous on u € U. Moreover, U is a closed bounded convex subset of R?. Hence we know
the optimal control must exist, namely, Ju* € U such that J(u*) < J(u), for all u € U.

3.1. Differentiability with respect to the Control Vector

In this subsection, our aim is to show the differentiability and the gradient information of
solutions of the system (2.1) with respect to the control vector. To begin with, we discuss
some properties of the function f (¢, x(t, u)).

Proposition 3.1. For the system (2.1), f(t,x(t,u)) and (Of/0x;)(t, x(t,u)) (i = 1,2,...,5) are
continuous in (t,x) on an open set A in R, x W.

Proof. It follows by inspection that the function f € C(R,xW, R%) by definition and (2.3). [

Using Theorems I-1-4 and II-1-2 in [17], we can show that the system (2.1) has a unique
solution x = x(t,u), and the solution satisfies the integral equation

x(t,u)=¢+ f;f(s,x(s, u))ds, tel. (3.1)

u; = & and up = ¢ are the initial value of the system (2.1), due to the differentiability of
x(t, u) with respect to the initial vector, and we have

o 0
abexe i =g [ Lx i

ox

5%, (s,x(t,¢,u))ds, (3.2)

where ¢; is the vector in R° with entries 0 except for 1 at the jth entry, and 0f/0x is the 5 x 5
matrix whose ith column is 0f/0x;, i,j = 1,2,...,5. From this speculation, we obtain the
following result.

Proposition 3.2. Partial derivatives 0x/0u; and O0x/0uy exist and are continuous in (t,u).
Furthermore, 0x/0§; is the unique solution of the initial-value problem

2= %(t,x(t, u))z, z(0) = —e;. (3.3)

By virtue of the result of Proposition 3.2, we can obtain the value of 0x/0u; and
0x/0uy. The following Proposition gives a formula to compute the value of 0x/0us.

Proposition 3.3. Partial derivatives 0x /Ous exist and are continuous in (t, u). Furthermore,

ox

Fy e f(us, x(uz, u)). (3.4)
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Proof. The existence and continuity of 0x/0u3 can be directly obtained by the function f €
C?(R, x W, R®) and implicit function theorem. Next, we derive the formula (3.4), for Vt € I,
and we have:

x(us,u) =&+ ,[:3 f(s,x(s,u))ds,
(3.5)

u3+At

x(uz+ At,u) =¢+ f f(s,x(s,u))ds,
0

then, by the integral mean value theorem, there exists a constant 6 € [0, 1], such that

u3+At

x(us + At,u) — x(us, u) = f f(s,x(s,u))ds = f(us + OAt, x(uz + OAt, u))At. (3.6)

us

Let At — 0, then

ox .. x(uz+At,u)-x(uz,u) . :
o AT, At = lim f(us + OAL x(u3 + 0AL, 1)) = f (s, x(u3, 1)), (3.7)
We obtain the desired result. O

3.2. Model Transformation

The optimal control problem (3.5) is not a standard case because the terminal time ¢y is free.
Using the method in Section 6.8.1 of [18], the (3.5) can be transformed into the one with fixed
terminal time. Treating ¢ as an unknown parameter and using the transformation ¢t = 7, the
(3.5) is converted to (3.8) as follows:

_x3(1,u)
Uus

inf J(u) £

st x(7) =t f (tr7, x(tpT, 1))
x(0) = ¢, (OCP)
x(t)eW, Te€][0,1]
u e U.
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3.3. Semi-Infinite Optimization with Inequality Constrained

For the optimal control problem [(u), it is difficult to cope with the continuous state
inequality constraints, that is, this is a semi-infinite optimization problem. To overcome the
difficulty, let

gi(x(T,u)) == x;(T,u) - X},

(3.8)
g5+i(x(T/u)) = X —x,'(T,u), i= 1/2/-~-/5-
The condition, x(7,u) € W, for all T € [0, 1], is equivalently transcribed into
G(u) =0, (3.9)

where G(u) = 21131 ;max{O, gi(x(T,u))}dt.

However, G(u) is nonsmooth in g;(x(7, u)) = 0. By the standard optimization routines
[19, 20], the following smoothing technique is to replace g; . (x(7, u)) with max{0, g;(x(7,u))},
where

0 if gi(x(T,u)) < —e,
2
Gie(x(ru) = { (& (X(T;;)) ) i es gi(x(r,u) <e, (310)
gi(x(T,u)) if gi(x(T,u)) > e.
Note that
10 4T
Gew) = 3, | guetx(r, (3.11)
=170
is a smooth function in u. Let
I/Veé {u€u|Ge(u):0}
(3.12)

={uel|g(x(r,u)<-e 1=1,2,...,10, T € [0,1]}.

Clearly, W, C W N U for each € > 0.
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We now define an approximate problem denoted by (3.13), where the smoothed state
constraint is treated as the penalty function:

inf ]e,y(u) = —x3(1,u) +yGe(u)
st x(t) =t f(ter, x(tpT 1)),
x(0) =¢,

uewWwe..

(OCP¢y)

By similar arguments as those given in [21], (3.13) is coincident with (3.5) as ¢ — 0.
On this basis, (3.5) can be explored by solving a sequence of approximate (3.13). Each of these
(3.13) is viewed as a smooth nonlinear mathematical programming problem.

3.4. Optimization Algorithm

In this subsection, similar with the approach based on gradient in [22, 23], we proposed an
algorithm based on gradient of J (1) to solve the (3.13). 0]y (u)/0u = J,(u) can be derived
by solving the ordinary differential equation (3.3) and computing (3.4). The admissible
control set U can be called a “box” because of its rectangular shape, we use the classic gradient
projection method to cope with “box.”

The projection of an arbitrary u onto the feasible set U is defined as follows. The ith
component is given by

win  if w; <ug,
p(u,u.,u); = qu;  if u; € [up, ul], (3.13)
w; if up > ul.

Thus, the control variable u(t) obtained by projecting the steepest descent direction at
u onto the feasible set U is given by

u(\) =p(u—- Ay, u,,u*), (3.14)

where \ is optional step size.
On the basis of the above analysis, we can obtain an optimal control for (3.13) as shown
in the following algorithm.

Algorithm 3.4.

Step 1. Set constants a, 6 € (0,1), and 7max is positive constant. Set r = 0, compute J¢(u,) by
equations (3.3) and (3.4), if J,(u,) < 6, stop. Else, then go to Step 2.
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Step 2. Compute the step-size A(r) = p* with Armijo line search rules, where k, is any integer
such that

Jea (u(r) + B Tg(ur) ) = Jey () < =p5afg (ur) Jo(ur), (3.15)

]e,y (u(r) + ﬂkr]g(ur)> - ]e,y(u(r)) > _ﬂkH “]g:(ur)]g(”r)r (3.16)

go to Step 3.

Step 3. If r > rmax, stop. Otherwise, compute u(r + 1) = p(u(r) — AM(r) J¢(u,), u., u*) using the
equation defined by (3.14), replace r by r + 1, and go to Step 1.

Note that, due to the boundedness of the function J.,(-), it is very easy to find a k;,
satisfying (3.15) and (3.16), using the following subprocedure, which uses the last used step
length A,_; = p*1, as the starting point for the computation of the next one.

Subprocedure of Algorithm 3.4
Step 1. If r =0, set k' = 0. Else, set k' = k,_;.
Step 2. If k, = k' satisfies (3.15) and (3.16). Else, set k' = k,_1, stop.

Step 3. If k, = k' satisfies (3.15) and not (3.16), replace k' by k' — 1, and go to Step 2. If k, = k'’
satisfies (3.16) and not (3.15), replace k' by k' + 1, and go to Step 2.

For Algorithm 3.4, we see that — ]gT J¢(+) is continuous, that — ]gT Jo(u) <Oforallu e U,
and that —J. ;(u) = 0if and only if J,(u) = 0, that is, that - ;(-) is an optimality function for
the problem (3.13). So, we have the following theorem to guarantee the convergence of the
algorithm.

Theorem 3.5. If u, is such that J, #0, then A, is computed by Algorithm 3.4 using a finite number
of function evaluations and any accumulation point u of this sequence satisfies (i) = 0.

Proof. We apply Theorem 1.2.24a in [24] with 6(:) = -] gT J(+), then the desired result can be
obtained immediately. O

Remark 3.6. Although the approach we are using here to deal with the constraints of contin-
uous state is similar with the one mentioned in [19], There are still three main difference
between them. First of all, our approach is applied for the batch culture, while the one in
[19] is used for the fed-batch culture. Secondly, the control variables in the two approaches
are different. Our variable controls the initial and terminal points, and their variable controls
the switching time. Finally, we use the gradient-based algorithm to numerically solve the
problem. Their algorithm is an improved Particle Swarm Optimization (PSO) algorithm, not
gradient based.
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Table 1: Parameters values in dynamical system (2.1).

Substrate /products t [ Hm mi Y;

i =1 (Biomass) 1.7924 2.4508 0.9192 — —

i =2 (Glycerol) — — — 1.358 0.01558
i=3(1,3-PD) — — — —-8.9346 64.69
Acetic acid — — — 2.1098 4.541
Ethanol — — — -0.183 3.046

4. Numerical Results

According to the model and algorithm mentioned above, we have programmed the software
and applied it to the optimal control problem of microbial fermentation in batch culture. The
system parameters are listed in Table 1 (see [9, 16]).

The basic data are listed, respectively, as follows.

Boundary Value of Control Vector

u,; = 0.0lmmol/L, u] = 1mmol/L, ., = 200mmol/L, u} = 939.5mmol/L, u.3 = 2h, and
uy =10h.

Boundary Value of State Vector

x,1 = 0.001mmol/L, x] = 2039 mmol/L, x,, = 0.00lmmol/L, x; = 939.5mmol/L, x,3 =
0.01 mmol/L, x; = 10mmol/L. #,4 = 0.0l mmol/L, u; = 1026 mmol/L, and u,s = 200, uz =
360.9 mmol/L.

We adopt &« = 04,6 = 0.00001, and #max = 1000 in the procedure. Then,
by Algorithm 3.4, the optimal control vector u and objective function J.,(u) are
(0.973186, 547.04,5.17509)T and 54.5911, respectively. Numerical results show that, by
employing the optimal control, the concentration of 1,3-PD at the terminal time can be
increased, compared with the previous results.

5. Conclusions

In this paper, based on the previous model in [16], taking the yield intensity of 1,3-PD as the
performance index and the initial concentration of biomass, glycerol, and terminal time as
the control vector, we propose an optimal control model subject to a multistage nonlinear
dynamical system and constraints of continuous state. A computational approach is
constructed to seek the solution of the above model in two aspects. The convergence analysis
and optimality function of the algorithm are also investigated. Numerical results show that,
by employing the optimal control, yield intensity of 1,3-PD at the terminal time can be
increased, compared with the previous results.

Our current tasks accommodate the modeling and simulation of the fermentation
process. Moreover, the stability and reachability of the improved model need to be discussed.
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