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Thermomagnetic convection in a differentially heated square cavity with an infinitely long third
dimension is numerically simulated using the single relaxation time lattice Boltzmann method
(LBM). This problem is of considerable interest when dealing with cooling of microelectronic
devices, in situations where natural convection does not meet the cooling requirements, and forced
convection is not viable due to the difficulties associated with pumping a ferrofluid. Therefore,
circulation is achieved by imposing a magnetic field, which is created and controlled by placing
a dipole at the bottom of the enclosure. The magnitude of the magnetic force is controlled by
changing the electrical current through the dipole. In this study, the effects of combined natural
convection andmagnetic convection, which is commonly known as “thermomagnetic convection,”
are analysed in terms of the flow modes and heat transfer characteristics of a magnetic fluid.

1. Introduction

Natural convection in enclosures is of interest in many engineering applications, such as
the cooling of electronic equipment and solar energy collection, and it has been extensively
studied experimentally and numerically by several researchers [1–4]. The enhancement of
convective heat transfer in these devices is an active area of research. For small length-scale
applications, such as the cooling of microelectronic devices, thermomagnetic convection has
been identified as a viable approach for augmenting and controlling the convective heat
transfer. This involves controlling the motion of colloidal suspensions containing magnetic
nanoparticles, known as ferrofluids, using external magnetic fields [5, 6].

The study of flow and heat transfer characteristics of natural convection of a magnetic
fluid has received considerable attention lately. Finlayson [7] in 1970 explained how an
external magnetic field imposed on a ferrofluid with varying magnetic susceptibility, for
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example, due to a temperature gradient, results in a nonuniform magnetic body force,
which leads to thermomagnetic convection. This phenomenon is complex in nature, and so a
thorough understanding of the relation between an applied magnetic field and the resulting
heat transfer is necessary for the proper design and control of thermomagnetic devices [8].

The numerical studies of heat transfer with magnetic fluids reported in the literature
are relatively scarce and invariably use as governing equations the Navier-Stokes and energy
equations. In what follows, relevant work in the field is succinctly reviewed. Yamaguchi
et al. [9] experimentally and numerically studied the heat transfer characteristics and
flow behavior for natural convection of a magnetic fluid in a rectangular cavity under an
imposed uniform vertical magnetic field. Al-Najem et al. [10] numerically calculated the
flow and temperature fields under uniform magnetic field in a tilted square cavity with
isothermal vertical walls and adiabatic horizontal walls at a low Prandtl number of 0.71
and demonstrated that the suppression effect of the magnetic field on convection currents
and heat transfer is more significant for low inclination angles and high Rayleigh numbers.
Krakov and Nikiforov [11] determined the influence of the angle between the direction of the
temperature gradient and that of a uniform magnetic field on the convection structure and
intensity of heat flux in a square cavity.

A few other researchers have considered spatially nonuniform magnetic fields for
the experimental or numerical investigations but did not fully describe the variations in
those fields [12–15]. For example, Sawada et al. [12] and Kikura et al. [13] experimentally
investigated the influence of a varying magnetic field in a cubical enclosure and in concentric
horizontal annuli, respectively, but the field gradient was only measured in a single direction.
Moreover, the orientation of the magnetic field was not described. Hadavand et al. [16]
simulated thermomagnetic convection in a cavity which was in close proximity to a line
dipole. The imposed nonuniform magnetic field was considered only in one direction
and the effect of temperature on the magnetic susceptibility was ignored. Ganguly et
al. [8] performed a study to simulate thermomagnetic convection in a square enclosure
by introducing a line dipole using a Navier-Stokes solver. The effect of temperature on
the magnetic susceptibility was considered; because they used a very strong nonuniform
magnetic field, the buoyancy was neglected in their simulation. They found that the average
Nusselt number on the wall increases with increasing the magnetic dipole strength and
temperature but decreases by increasing the fluid viscosity.

The magnetic control has enabled numerous developments dealing with technical and
medical applications, and these suspensions are already being considered the next generation
heat transfer fluids as they offer the possibility of achieving heat transfer rates much higher
than those of conventional heat transfer fluids and fluids containing microsized metallic
particles [17].

In the present work, the objective is to numerically study the effects of combined
natural convection andmagnetic convection in a square enclosure using the lattice Boltzmann
method. The square enclosure is under the influence of an imposed nonuniform two-
dimensional magnetic field that satisfies Maxwell’s equations. The variation of the ferrofluid
susceptibility with the temperature difference is considered in this study.

2. Physical Model

In the absence of an external magnetic field, the nanoparticles are oriented randomly in the
ferrofluid; once the externalmagnetic field is applied, the nanoparticles alignwith the applied
magnetic field. The generated force between the magnetic field and the homogenously
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Figure 1: Schematic of the cavity and position of the line dipole magnet.

distributed magnetic nanoparticles enables the manipulation of the ferrofluid by adjusting
the applied externalmagnetic field. This uniformly distributedmagnetic forcemanifests itself
as a body force analogous to the gravity field. These suspensions, in general, exhibit normal
liquid behavior coupled with super paramagnetic properties. This leads to the possibility
of controlling the properties and the flow of these liquids with relatively moderate magnetic
field strengths. Each solid magnetic nanoparticle in the ferrofluid is coveredwith a dispersant
material in order to keep the particles separated, and, in this way, preventing agglomeration
of the particles due to gravity, coagulation, or an external magnetic field.

Figure 1 presents a schematic of the enclosure used for the numerical simulation,
which has heightD and its verticalwalls are at constant, but different, temperatures. The third
dimension is considered to be infinite; therefore, the flow in this configuration can be assumed
to be two-dimensional. The left and right vertical walls are at constant high temperature, Th,
and constant low temperature, Tc, respectively. The upper and lower walls are adiabatic.
A line dipole, which provides the external magnetic field, is placed adjacent to the lower
adiabatic wall at a distance d. The magnetic field is governed by the Maxwell relations in
static form [18], as follows:

∇ · B = 0,

∇ ×H = 0,
(2.1)

where B is the magnetic field inside the ferrofluid due to the line dipole which can be
expressed as follows [8]:

B = μ0
(
1 + χ

)
m

[
sin θ
r2

er − sin θ

r2
eθ

]
, (2.2)
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where H and B are related through the following equation:

H =
1

μ0
(
1 + χ

)B, (2.3)

where μ0 is the magnetic permeability of free space, μ0 = 4π × 10−7(N/A2); m denotes the
magnetic dipole moment of the electromagnet coil (having two parallel counter-conductors
separated by a distance b and carrying current I) per unit length (m = Ib/2π). The magnetic
fluid susceptibility, χ, varies with temperature as follows:

χ =
χ0

1 + β(T − T0)
, (2.4)

where T0 is the reference temperature and χ0 is the magnetic field susceptibility at reference
temperature.

The magnetization of the ferrofluid occurs when it becomes polarized in the presence
of an external magnetic field. Consequently, attractive forces acting on each particle are
produced due to the interaction of the ferrofluid polarization and the external magnetic field.
The attractive force acting on the particles can then be treated as a body force acting on the
ferrofluid, which is dealt with as a homogenous medium. The attractive force on the ferrofluid
per unit volume is

F = (M · ∇)B, (2.5)

where M is the magnetization vector and is related to H by M = χH . The magnetic field
strength diminishes with increasing distance from the dipole. The Kelvin body force, see
(2.5), can be written as follows:

F = μ0χ
(
1 + χ

)
(H · ∇)H =

1
2
μ0χ

(
1 + χ

)∇(H ·H) + μ0χH
(
H · ∇χ

)
. (2.6)

The first term on the right-hand side of (2.6) has a same nature as the pressure term
in the momentum equation. The second term becomes important when there is a spatial
gradient in the fluid susceptibility. In the absence of a temperature gradient, this term is zero.
The Kelvin body force is simplified in another study [19] to the following format by defining
an effective pressure as

P ∗ = P − μ0χ0

2
H2, (2.7)

and it yields

F =
1
2
μ0χ0

[
1 − β(T − T0)

]∇(H ·H) + μ0χ
2
0 β(H · ∇T)H. (2.8)

In this work, the single relaxation time lattice Boltzmann method is used to simulate
the thermomagnetic convection in a two-dimensional square enclosure.
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3. Numerical Model

The lattice Boltzmann method (LBM) is a discrete particle-based mesoscopic approach
for viscous fluid flow simulation. The LBM has been shown to be an efficient tool for
flow simulation in complex geometries, when compared with conventional fluid dynamics
approaches [20]. In this method, finite volumes of fluid are presented as discrete particles and
the fluid dynamics is obtained based on a probability distribution function of the particles
and a discrete set of prescribed velocities.

The thermal lattice Boltzmann model, which is employed in the present work, is a
double-distribution-function thermal model. Two distinct distribution functions for the flow
and temperature fields are f and g, respectively, where f is the density (or fluid particles)
distribution function and g is the temperature distribution function. This present thermal
lattice Boltzmann model uses the BGK approximation [21] and it is based on the work of He
et al. [22] and Shi et al. [23]:

fi(x + ciδt, t + δt) − fi(x, t) = −δt
τν

[
fi(x, t) − f

eq
i (x, t)

]
+ fg + F,

gi(x + ciδt, t + δt) − gi(x, t) = −δt
τc

[
gi(x, t) − g

eq
i (x, t)

]
,

(3.1)

where δx and δt are the lattice grid spacing and the lattice time step, respectively. These two
are related to each other through the streaming speed, c, as c = δx/δt. However, in most of
the LBM simulations on a uniform lattice, including those of the present work, δx and δt for
simplicity are considered to be equal to one, and fg is the buoyant body force term, which is
formulated by using the Boussinesq approximation [24], namely:

fg = 3ωiβρgy(T − Tave)ciy , (3.2)

where β is the thermal expansion coefficient, gy is the acceleration of gravity acting in the y-
direction of the lattice links, and ciy is the y-component of ci. The terms ρ and T are the local
density and temperature and are calculated at each lattice site. Tave is the average temperature
of hot and cold wall. The Kelvin body force, F, is the force that a magnetic fluid experiences
in nonuniform magnetic field that can be calculated based on (2.5).

The most common two-dimensional lattice is the D2Q9 lattice, which is used in this
study, where “2” denotes the number of space dimensions and “9” refers to the discrete set of
nine velocities as proposed by Qian et al. [25]. The D2Q9 lattice and its labelling for the lattice
directions are shown in Figure 2. For the D2Q9 lattice, the discrete velocity set is formulated
as follows:

ci = c

[
cos

(
(i − 1)π

2

)
, sin

(
(i − 1)π

2

)]
, i = 1, 2, 3, 4,

ci =
√
2c
[
cos

(
(2i − 1)π

4

)
, sin

(
(2i − 1)π

4

)]
, i = 5, 6, 7, 8,

c9 = 0.

(3.3)
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Figure 2: Topology of the D2Q9 lattice and labelling of the directions.

The corresponding equilibrium distribution functions for the density and temperature
distribution functions are feq

i and g
eq
i , respectively. These two parameters are in the form of

a second-order truncated expansion of the Maxwell-Boltzmann equilibrium function:

f
eq
i = ρωi

[
1 +

1
c2s
ci · u +

1
2c4s

(ci · u)2 − 1
2c2s

u · u
]
,

g
eq
i = ωiT

[
1 +

1
c2s
ci · u +

1
2c4s

(ci · u)2 − 1
2c2s

u · u
]
,

(3.4)

where cs is the lattice sound speed and is equal to 1/
√
3 for a two-dimensional lattice with 9

velocities (D2Q9). ωi is the weighting factor and is defined as follows for the D2Q9 lattice:

ωi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

4
9
, i = 9,

1
9
, i = 1, 2, 3, 4,

1
36

, i = 5, 6, 7, 8.

(3.5)

The macroscopic density (ρ), pressure (P), velocity (u), and temperature (T) on each
lattice site are calculated as follows:

ρ =
∑

i

fi, P = ρc2s , ρui =
∑

i

ci, T =
∑

i

gi. (3.6)

The kinematic viscosity and the thermal diffusivity are given by

ν =
(
τν − 1

2

)
c2s ,

α =
(
τc − 1

2

)
c2s .

(3.7)
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Table 1: Comparison of the predicted average Nusselt number for two different Rayleigh numbers against
the values reported in [26].

Rayleigh number Average Nusselt number

104 Present work 2.247
de Vahl Davis [26] 2.243

105
Present work 4.481
de Vahl Davis [26] 4.519

The no-slip solid-wall boundary condition is set for the vertical and horizontal walls
of the enclosure by using the bounce back method. As mentioned before, the top and
bottom walls are adiabatic, and the vertical walls are isothermal, with the left wall at higher
temperature than that of the right wall.

4. Results and Discussion

The physical domain considered in this study is a two-dimensional square cavity. The
parameters D and d are depicted in Figure 1, where D is set to 2mm and d is equal to D/2.
The density and dynamic viscosity of the ferrofluid at 300K were set equal to 1180kg/m3

and 1.0 × 10−3 kg/ms, respectively. The Prandtl number, Pr, and fluid compressibility, β, are
taken as 5.5 and 5.6 × 10−4 K−1, respectively.

A uniform lattice system is employed for the simulations. The numerical solution
should be independent of the lattice size, and to this purpose, three different lattice sizes
of 81 × 81, 101 × 101, and 121 × 121 were examined; results with a lattice density of 101 × 101
lattice units were found to be adequate to establish lattice-independent solutions for the range
of the parameters used in the present study. In order to validate the thermal LBM predictions,
laminar natural convection of air, Pr = 0.71, in a cavity was simulated for Rayleigh numbers
of 104 and 105. The predicted natural convection results with the 101 × 101 grid system for
Ra = 104 and 105, respectively, were in excellent agreement with the benchmark steady flow
patterns and temperature fields reported by de Vahl Davis [26]. In Table 1, the predicted
average Nusselt numbers on the hot wall are compared against the values reported by de
Vahl Davis [26] for the same conditions and, as it can be observed, are in excellent agreement.

The average Nusselt number on the side walls is determined from the following
relation:

Nu = − 1
ΔT

D∑

1

dT

dx
. (4.1)

The two dimensionless parameters which characterize the natural convective flow,
Rayleigh number (Ra) and the Prandtl number (Pr), are defined as follows:

Ra =
gyβΔTD3

να
,

Pr =
ν

α
,

(4.2)
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(a) (b)

(c)

Figure 3: Isotherms for the thermomagnetic flow in a square cavity for ΔT = 30K, Ra = 104: (a) m = 0.0,
(b) m = 0.05, and (c) m = 0.1Am.

where gy, β, ΔT, and D are the gravitational acceleration, working fluid thermal expansion
coefficient, temperature difference between the two vertical walls, and the characteristic
length (equal to the width of the cavity), respectively.

Presenting the magnetic dipole will disturb the flow motion in the cavity; conse-
quently, the temperature distribution will be affected along with the heat transfer rate at
the walls of the cavity. The isotherms for three different values of m equal to 0.0, 0.05, and
0.1Am, are shown in Figures 3(a)–3(c) forΔT = 30K (Ra = 104). The influence of the induced
magnetic field on the temperature distributions is apparent. If the magnetic field magnitude
is relatively weak, the buoyancy effect is dominant and the isotherms and streamlines are
similar to those of pure natural convection in the absence of a magnetic field. For a stronger
magnetic field the isotherm stratification in the core will change, as shown in Figure 3(c); this
is due to the suppression of the free convective flow by the magnetic field. By increasing the
magnetic field strength, the effect of the natural convection is eventually eliminated and the
flow motion of the ferrofluid is governed by the strength of the magnetic field.

Figures 4(a)–4(c) report the isotherms at ΔT = 60K (Ra = 2 × 104) for m = 0.0,
0.05, and 0.1Am. From these figures, it can be observed that for large values of ΔT , the
effect of increasing the magnetic strength on the temperature distribution in the enclosure
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(a) (b)

(c)

Figure 4: Isotherms for the thermomagnetic flow in a square cavity forΔT = 60K, Ra = 2×104: (a)m = 0.0,
(b) m = 0.05, and (c) m = 0.1Am.

is more prominent compared to that in the case of a smaller ΔT (Ra = 104, Figure 3). This is
because the magnetic susceptibility depends on temperature and influences the motion of the
ferrofluid in the cavity. In these circumstances, the colder fluid close to the lower temperature
wall moves down towards the region of larger field strength due to its higher magnetic
susceptibility, while the warmer fluid with lower susceptibility is displaced away from the
line dipole and is pushed upward along the hot wall.

For sufficiently large values of m, the natural convection is suppressed and the
magnetic field effect is the dominant factor. As a result, the isotherms will be almost
independent of Ra number for a relatively high magnetic field strength. The streamlines
for the thermomagnetic flow in the square cavity for ΔT = 30K and ΔT = 60K and for
different values of m, 0.0, 0.05, and 0.1Am, are presented in Figures 5(a)–5(c) and 6(a)–6(c),
respectively.

Figure 7 shows the predicted values of the average Nusselt number on the hot wall for
a range of temperature difference, 15 ≤ ΔT ≤ 90, 5 × 103 ≤ Ra ≤ 3 × 104, and 0 ≤ m ≤ 0.2. It
can be observed that the average Nusselt number increases with both magnetic field strength
and temperature difference. The average Nusselt number increases more than double for
m = 0.2Am compared to the Nusselt number for free convection only.
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(a) (b)

(c)

Figure 5: Streamlines for the thermomagnetic flow in a square cavity for ΔT = 30K, Ra = 104: (a) m = 0.0,
(b) m = 0.05, and (c) m = 0.1Am.

To show the effect of magnetic field strength on heat transfer enhancement, the
buoyancy force was turned off and the average Nusselt numbers on the hot wall were
compared with those from the combination of buoyancy and magnetic force. In Figure 8, the
average Nusselt numbers are presented for different magnetic field strengths and a range of
temperature difference. For magnetic field moment,m, lower than 0.1Am the buoyancy force
has a noticeable effect on the Nusselt number, but with increasing magnetic field strength
the effect of the buoyancy force is reduced and the Nusselt number can be calculated by
considering only the magnetic force for m larger than 0.15Am.

5. Conclusion

Simulations for thermomagnetic convection were conducted for a range of Rayleigh numbers
andmagnetic field strengths in the laminar regime. The effects of these parameters on the heat
transfer characteristics were analyzed; the numerical results showed that with the application
of an external magnetic field, the temperature and velocity fields were significantly modified.



Journal of Applied Mathematics 11

(a) (b)
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Figure 6: Streamlines for the thermomagnetic flow in a square cavity ΔT = 60K, Ra = 2 × 104: (a) m = 0.0,
(b) m = 0.05, and (c) m = 0.1Am.

For weak magnetic fields, both buoyancy force and magnetic force have effects on the
heat transfer. However, for sufficiently high magnetic field strength, the magnetic convection
is suppressed for all the examined values of the Rayleigh number. This study shows that
even for relatively weak magnetic fields, the increase in heat transfer for small scale devices
is considerable.

Nomenclature

ci: Particle discrete velocity set
cs: Speed of sound
d: Distance between dipole and enclosure
D: Enclosure height
f : Distribution function for the flow field
g: Distribution function for the temperature field
gy: Acceleration of gravity in the y-direction
H : Defined in (2.3)
m: Magnetic field moment
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Figure 7: Average Nusslet number for different temperature difference and magnetic field strength.
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Figure 8:AverageNusslet number based on themagnetic force and combination ofmagnetic and buoyancy
force. (The solid lines are the Nuave based on the combination of the magnetic and buoyancy force. The
marked lines are calculated based on the magnetic force only.)
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M: Magnetization
Nu: Nusselt number
Pr: Prandtl number
Ra: Rayleigh number
t: Time
T : Temperature
x, y: Cartesian coordinate
u: Velocity component.

Greek Letters

α: Thermal diffusivity
β: Fluid compressibility
χ: Magnetic susceptibility
μ: Viscosity
μ0: Magnetic permeability
ρ: Density
τ : Lattice relaxation time
ν: Fluid kinematic viscosity
ωi: Lattice weighting factor.
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