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We study the robust stability criteria for uncertain neutral systems with interval time-varying
delays and time-varying nonlinear perturbations simultaneously. The constraint on the derivative
of the time-varying delay is not required, which allows the time-delay to be a fast time-varying
function. Based on the Lyapunov-Krasovskii theory, we derive new delay-dependent stability
conditions in terms of linear matrix inequalities (LMIs) which can be solved by various available
algorithms. Numerical examples are given to demonstrate that the derived conditions are much
less conservative than those given in the literature.

1. Introduction

It is well known that the existence of time delay in a system may cause instability and
oscillations. Example, of time-delay systems are chemical engineering systems, biological
modeling, electrical networks, physical networks, and many others, [7–16]. The stability
criteria for system with time delays can be classified into two categories: delay-independent
and delay-dependent. Delay-independent criteria do not employ any information on the size
of the delay; while delay-dependent criteria make use of such information at different levels.
Delay-dependent stability conditions are generally less conservative than delay-independent
ones especially when the delay is small.

In many practical systems, models of system are described by neutral differential
equations, in which the models depend on the delays of state and state derivatives.
Heat exchanges, distributed networks containing lossless transmission lines and population
ecology are examples of neutral systems because of its wider application. Therefore, several
researchers have studied neutral systems and provided sufficient conditions to guarantee the
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asymptotic stability of neutral time delay systems, see [5, 9, 11–14, 16, 17] and references cited
therein.

Well-known nonlinearities, as the delays, may cause instability and poor performance
of practical systems, which have driven many researchers to study the problem of nonlinear
perturbed systems with state delays during the recent years [5, 7, 9, 18]. In [18], the delay-
dependent robust stability for linear time-varying systems with nonlinear perturbations is
given, by using the Newton-Leibniz formula which has been taken into account instead of
applying an integral inequality. In [7], a model transformation technique is used to deal
with the stability of system with time varying for delays and nonlinear perturbations. In
[9], based on a descriptor model transformation combined with a matrix decomposition
approach, the robust stability of uncertain systemswith time varying discrete delay is studied
by applying an integral inequality. However, these model transformations often introduce
additional dynamics which leads to relatively conservative results. In [5], the neutral delay
and the discrete delay are all time-varying, while the derivative of discrete delay is less than
1 which limits its bigger application. In most studies the time-varying delays are required to
be differentiable [1–5, 7, 9, 11–14, 16, 18]. Therefore their methods have a conservatism which
can be improved upon. However, in most cases, these conditions are difficult to satisfy. From
these reasons, the conditions are interesting to study, but there are fewer results for removing
restriction to the derivative of interval time-varying delays. Therefore, in this paper we will
employ some new techniques so that the above conditions can be removed.

In this paper, the problem of delay-dependent criterion for asymptotic stability for
uncertain neutral system is studied with interval time-varying delay and time-varying
nonlinear perturbations simultaneously. The restriction to the derivative of the interval
time-varying delays is removed, which means that a fast interval time-varying delay
is allowed. Based on the Lyapunov-Krasovskii theory, we derive new delay-dependent
stability conditions in terms of linear matrix inequalities (LMIs) which can be solved by
various available algorithms. The new stability condition is much less conservative and is
more general than some existing results. Numerical examples are given to illustrate the
effectiveness of our theoretical results.

2. Problem Formulation and Preliminaries

The following notations will be used in this paper: R
+ denotes the set of all real nonnegative

numbers; R
n denotes the n-dimensional space and the vector norm ‖ · ‖; Mn×r denotes the

space of all matrices of (n × r)-dimensions. AT denotes the transpose of matrix A; A is
symmetric if A = AT ; I denotes the identity matrix; λ(A) denotes the set of all eigenvalues of
A; λmax(A) = max{Reλ;λ ∈ λ(A)}. xt := {x(t + s) : s ∈ [−h, 0]}, ‖xt‖ = sups∈[−h,0]‖x(t + s)‖;
C([0, t],Rn) denotes the set of all R

n-valued continuous functions on [0, t]; Matrix A is called
semipositive definite (A ≥ 0) if xTAx ≥ 0, for all x ∈ R

n; A is positive definite (A > 0) if
xTAx > 0, for all x /= 0; A > B means A − B > 0. The symmetric term in a matrix is denoted by
∗.

Consider the following neutral system with time-varying delay:

ẋ(t) − Cẋ(t − d(t)) = A(t)x(t) + B(t)x(t − τ(t)) +D1(t)f1(t, x(t)) +D2(t)f2(t, x(t − τ(t))),

x(t0 + θ) = φ(θ), θ ∈ [−h, 0],
(2.1)
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where x(t) ∈ Rn is the state vector, d(t) is a neutral delay, τ(t) is a time-varying continuous
function which satisfies

0 ≤ τm ≤ τ(t) ≤ τM, 0 ≤ d(t) ≤ d, ḋ(t) ≤ δ, (2.2)

where τm, τM, d, δ are constants and h = max{d, τM}; the initial condition function φ(t)
denotes a continuous vector-valued initial function of t ∈ [−h, 0], f1(t, x(t)) and f2(t, x(t −
τ(t))) are unknown nonlinear perturbations satisfying f1(t, 0) = 0, f2(t, 0) = 0 and

fT
1 (t, x(t))f1(t, x(t)) ≤ α2xT (t)x(t),

fT
2 (t, x(t − τ(t)))f2(t, x(t − τ(t))) ≤ β2xT (t − τ(t))x(t − τ(t)),

(2.3)

where α and β are positive real numbers.
The uncertain matrices A(t), B(t), D1(t), and D2(t) satisfy

A(t) = A + ΔA(t), B(t) = B + ΔB(t),

D1(t) = D1 + ΔD1(t), D2(t) = D2 + ΔD2(t),
(2.4)

where A, B, D1, D2 ∈ R
n×n are constant matrices with appropriate dimension, and ΔA(t),

ΔB(t),ΔD1(t), andΔD2(t) are unknown real matrices of appropriate dimension representing
the systems time-varying parameter uncertainties which satisfy

ΔA(t) = G1F(t)EA, ΔB(t) = G2F(t)EB,

ΔD1(t) = G3F(t)ED1 , ΔD2(t) = G4F(t)ED2 ,
(2.5)

where G1, G2, G3, G4, EA, EB, ED1 , and ED2 are known real constant matrices of appropriate
dimension. F(t) is unknown time-varying matrix satisfying

FT (t)F(t) ≤ I. (2.6)

For simplicity, we denote f1(t, x(t)), f2(t, x(t − τ(t))), by f1, f2, respectively.
Let τe = (1/2)(τM + τm) and ρ = (1/2)(τM − τm). Then τ(t) can be expressed as

τ(t) = τe + ρξ(t), (2.7)

where

ξ(t) =

⎧
⎪⎨

⎪⎩

2τ(t) − (τM + τm)
τM − τm

, τM > τm,

0, τM = τm.

(2.8)
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Obviously, |ξ(t)| ≤ 1. For this case, τ(t) is a function belonging to the interval [τe − ρ, τe + ρ],
where ρ can be taken as the range of variation of the time-varying delay τ(t). Using the fact
that

x(t − τe) − x(t − τ(t)) =
∫ t−τe

t−τ(t)
ẋ(s)ds (2.9)

system (2.1) can be rewritten as

ẋ(t) − Cẋ(t − d(t)) = A(t)x(t) + B(t)x(t − τe) − B(t)
∫ t−τe

t−τ(t)
ẋ(s)ds

+D1(t)f1 +D2(t)f2.

(2.10)

Lemma 2.1 (see [17]). There exists a symmetric matrix X such that

[
P1 − LXLT Q1

QT
1 R1

]

< 0,

[
P2 +X Q2

QT
2 R2

]

< 0 (2.11)

if and only if

⎡

⎢
⎢
⎣

P1 + LP2L
T Q1 LQ2

QT
1 R1 0

QT
2L

T 0 R2

⎤

⎥
⎥
⎦ < 0. (2.12)

Lemma 2.2 (see [3]). For any constant symmetric matrix M ∈ Rn×n, M = MT > 0, 0 ≤ hm ≤
h(t) ≤ hM, t ≥ 0, and any differentiable vector function x(t) ∈ Rn, we have

(a)

[∫ t

t−hm

ẋ(s)ds

]T

M

[∫ t

t−hm

ẋ(s)ds

]

≤ hm

∫ t

t−hm

ẋT (s)Mẋ(s)ds,

(b)

[∫ t−hm

t−h(t)
ẋ(s)ds

]T

M

[∫ t−hm

t−h(t)
ẋ(s)ds

]

≤ (h(t) − hm)
∫ t−hm

t−h(t)
ẋT (s)Mẋ(s)ds

≤ (hM − hm)
∫ t−hm

t−h(t)
ẋT (s)Mẋ(s)ds.

(2.13)

Lemma 2.3 (see [19]). Given matricesQ = QT ,H, E, andR = RT > 0with appropriate dimensions.
Then

Q +HFE + ETFTHT < 0 (2.14)
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for all F satisfying FTF ≤ R, if and only if there exists an ε > 0 such that

Q + εHHT + ε−1ETRE < 0. (2.15)

Proposition 2.4 (Cauchy inequality). For any symmetric positive definite matrix N ∈ Mn×n and
x, y ∈ R

n, we have

±2xTy ≤ xTNx + yTN−1y. (2.16)

3. Main Results

Nowwe present a newdelay-dependent condition for the asymptotic stability of system (2.1).

Assumption 3.1. All the eigenvalues of matrix C are inside the unit circle.
First, we study the problem of stability for nominal system of (2.10) with ΔA(t) = 0,

ΔB(t) = 0, ΔD1(t) = 0, and ΔD2(t) = 0.

Theorem 3.2. Under Assumption 3.1, nominal system of (2.10) with time-varying delay satisfying
(2.2) is asymptotically stable if there exist positive definite matrices P , Q, Q1, R, S, W , matrices K1,
K2, Li,Mi, i = 1, 2, . . . , 7 of appropriate dimension and δ1, δ2 > 0 such that

Σ1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

φ11 φ12 φ13 φ14 φ15 φ16 φ17 τeL
T
1 ρM1

∗ φ22 φ23 φ24 φ25 φ26 φ27 τeL
T
2 ρM2

∗ ∗ φ33 φ34 φ35 φ36 φ37 τeL
T
3 ρM3

∗ ∗ ∗ φ44 φ45 φ46 φ47 τeL
T
4 ρ
(
KT

1B +M4
)

∗ ∗ ∗ ∗ φ55 φ56 φ57 τeL
T
5 ρ
(
KT

2B +M5
)

∗ ∗ ∗ ∗ ∗ φ66 0 τeL
T
6 ρM6

∗ ∗ ∗ ∗ ∗ ∗ φ77 τeL
T
7 ρM7

∗ ∗ ∗ ∗ ∗ ∗ ∗ −τeR 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ρS

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (3.1)

where

φ11 = Q + L1 + LT
1 + ε1α

2I,

φ12 = MT
1 + L2,

φ13 = −LT
1 + L3 +M1,

φ14 = P +ATK1 + L4,

φ15 = ATK2 + L5,

φ16 = L6,

φ17 = L7,
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φ22 = MT
2 +M2 + ε2β

2I −W,

φ23 = −LT
2 −MT

2 +M3 +W,

φ24 = M4,

φ25 = M5,

φ26 = M6,

φ27 = M7,

φ33 = −Q − LT
3 − L3 −MT

3 −M3 −W,

φ34 = BTK1 − L4 −M4,

φ35 = BTK2 − L5 −M5,

φ36 = −L6 −M6,

φ37 = −L7 −M7,

φ44 = Q1 + τeR + ρS −KT
1 −K1 + ρ2W,

φ45 = KT
1C −K2,

φ46 = KT
1D1,

φ47 = KT
1D2,

φ55 = −(1 − δ)Q1 +KT
2C + CTK2,

φ56 = KT
2D1,

φ57 = KT
2D2,

φ66 = −δ1I,
φ77 = −δ2I.

(3.2)

Proof. We prove that Theorem 3.2 is true for three cases, namely, τm ≤ τ(t) < τe; τ(t) = τe;
τe < τ(t) ≤ τM.

Case 1 (τm ≤ τ(t) < τe). Choose a Lyapunov-Krasovskii functional candidate as

V1(xt) = xT (t)Px(t) +
∫ t

t−τe
xT (s)Qx(s)ds

+
∫ t

t−d(t)
ẋT (s)Q1ẋ(s)ds

∫0

−τe

∫ t

t+s
ẋT (θ)Rẋ(θ)dθds

+
∫−τm

−τe

∫ t

t+s
ẋT (θ)Sẋ(θ)dθds + ρ

∫−τm

−τe

∫ t

t+s
ẋT (θ)Wẋ(θ)dθds,

(3.3)
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where P , Q, Q1, R, S, and W are positive definite matrices. Taking the derivative of V1(xt)
with respect to t along the trajectory of (2.10) yields

V̇1(xt) = 2xT (t)Pẋ(t) + xT (t)Qx(t) − xT (t − τe)Qx(t − τe)

+ ẋT (t)Q1ẋ(t) −
(
1 − ḋ(t)

)
ẋT (t − d(t))Q1ẋ

T (t − d(t))

+ ẋT (t)
(
τeR + ρ2W + ρS

)
ẋ(t)

−
∫ t

t−τe
ẋT (s)Rẋ(s)ds −

∫ t−τm

t−τe
ẋT (s)Sẋ(s)ds

− ρ

∫ t−τm

t−τe
ẋT (s)Wẋ(s)ds

≤ 2xT (t)Pẋ(t) + xT (t)Qx(t) − xT (t − τe)Qx(t − τe)

+ ẋT (t)Q1ẋ(t) − (1 − δ)ẋT (t − d(t))Q1ẋ
T (t − d(t))

+ ẋT (t)
(
τeR + ρ2W + ρS

)
ẋ(t)

−
∫ t

t−τe
ẋT (s)Rẋ(s)ds −

∫ t−τm

t−τe
ẋT (s)Sẋ(s)ds

− ρ

∫ t−τm

t−τe
ẋT (s)Wẋ(s)ds,

(3.4)

since

−
∫ t−τm

t−τe
ẋT (s)Sẋ(s)ds ≤ −

∫ t−τ(t)

t−τe
ẋT (s)Sẋ(s)ds,

−ρ
∫ t−τm

t−τe
ẋT (s)Wẋ(s)ds ≤ −ρ

∫ t−τ(t)

t−τe
ẋT (s)Wẋ(s)ds.

(3.5)

Based on Lemma 2.2, we obtain

−ρ
∫ t−τ(t)

t−τe
ẋT (s)Wẋ(s)ds ≤ −(τe − τ(t))

∫ t−τ(t)

t−τe
ẋT (s)Wẋ(s)ds

≤ −xT (t − τe)Wx(t − τe) + 2xT (t − τe)Wx(t − τ(t))

− xT (t − τ(t))Wx(t − τ(t)),

(3.6)
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and from the following equalities:

2
[
ẋT (t)KT

1 + ẋT (t − d(t))KT
2

]
×
[

Ax(t) + Bx(t − τe) − B

∫ t−τe

t−τ(t)
ẋ(s)ds

+D1f1 +D2f2 + Cẋ(t − d(t)) − ẋ(t)

]

= 0,

(3.7)

2
[
xT (t)LT

1 + xT (t − τ(t))LT
2 + xT (t − τe)LT

3 + ẋT (t)LT
4 + ẋT (t − d(t))LT

5

+fT
1 L

T
6 + fT

2 L
T
7

]
×
[

x(t) − x(t − τe) −
∫ t

t−τe
ẋ(s)ds

]

= 0,
(3.8)

2
[
xT (t)MT

1 + xT (t − τ(t))MT
2 + xT (t − τe)MT

3 + ẋT (t)MT
4 + ẋT (t − d(t))MT

5

+ fT
1 M

T
6 + fT

2 M
T
7

]
×
[

x(t − τ(t)) − x(t − τe) −
∫ t−τ(t)

t−τe
ẋ(s)ds

]

= 0,
(3.9)

where K1, K2, and Li, Mi, i = 1, 2, . . . , 7 are some matrices of appropriate dimension. Next,
from (4.5), for any scalars δ1 > 0 and δ2 > 0, we obtain

δ1
[
α2xT (t)x(t) − fT

1 f1
]
≥ 0,

δ2
[
β2xT (t − τ(t))x(t − τ(t)) − fT

2 f2
]
≥ 0.

(3.10)

By adding the terms on left of (3.7)–(3.10) to V̇1(xt), we may express V̇1(xt) as

V̇1(xt) ≤ 2xT (t)Pẋ(t) + xT (t)Qx(t) − xT (t − τe)Qx(t − τe) + ẋT (t)Q1ẋ(t)

− (1 − δ)ẋT (t − d(t))Q1ẋ(t − d(t)) + ẋT (t)
(
τeR + ρS + ρ2W

)
ẋ(t)

−
∫ t

t−τe
ẋT (s)Rẋ(s)ds −

∫ t−τ(t)

t−τe
ẋT (s)Sẋ(s)ds + 2

[
ẋT (t)KT

1 + ẋT (t − d(t))KT
2

]

×
[

Ax(t) + Bx(t − τe) + B

∫ t−τ(t)

t−τe
ẋ(s)ds +D1f1 +D2f2 + Cẋ(t − d(t)) − ẋ(t)

]

+ 2
[
xT (t)LT

1 + xT (t − τ(t))LT
2 + xT (t − τe)LT

3 + ẋT (t)LT
4 + ẋT (t − d(t))LT

5

+fT
1 L

T
6 + fT

2 L
T
7

]
×
[

x(t) − x(t − τe) −
∫ t

t−τe
ẋ(s)ds

]

+ 2
[
xT (t)MT

1 + xT (t − τ(t))MT
2

+xT (t − τe)MT
3 + ẋT (t)MT

4 + ẋT (t − d(t))MT
5 + fT

1 M
T
6 + fT

2 M
T
7

]

×
[

x(t − τ(t)) − x(t − τe) −
∫ t−τ(t)

t−τe
ẋ(s)ds

]

+ δ1
[
α2xT (t)x(t) − fT

1 f1
]
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− xT (t − τe)Wx(t − τe) + 2xT (t − τe)Wx(t − τ(t))

− xT (t − τ(t))Wx(t − τ(t)) + δ2
[
β2xT (t − τ(t))x(t − τ(t)) − fT

2 f2
]

=
1
τe

∫ t

t−τe
ωT (t, s)φ1ω(t, s)ds +

1
τe − τ(t)

∫ t−τ(t)

t−τe
ωT (t, s)φ2ω(t, s)ds,

(3.11)

where

ωT (t, s) =
[
xT (t)xT (t − τ(t))xT (t − τe)ẋT (t)ẋT (t − d(t))fT

1 f
T
2 − ẋT (s)

]
,

φ1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

φ11 φ12 φ13 φ14 φ15 φ16 φ17 τeL
T
1

∗ φ22 φ23 φ24 φ25 φ26 φ27 τeL
T
2

∗ ∗ φ33 φ34 φ35 φ36 φ37 τeL
T
3

∗ ∗ ∗ φ44 φ45 φ46 φ47 τeL
T
4

∗ ∗ ∗ ∗ φ55 φ56 φ57 τeL
T
5

∗ ∗ ∗ ∗ ∗ φ66 0 τeL
T
6

∗ ∗ ∗ ∗ ∗ ∗ φ77 τeL
T
7

∗ ∗ ∗ ∗ ∗ ∗ ∗ −τeR

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ Z,

φ2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−Z11 −Z12 −Z13 −Z14 −Z15 −Z16 −Z17 (τe − τ(t))M1

∗ −Z22 −Z23 −Z24 −Z25 −Z26 −Z27 (τe − τ(t))M2

∗ ∗ −Z33 −Z34 −Z35 −Z36 −Z37 (τe − τ(t))M3

∗ ∗ ∗ −Z44 −Z45 −Z46 −Z47 ϕ1

∗ ∗ ∗ ∗ −Z55 −Z56 −Z57 ϕ2

∗ ∗ ∗ ∗ ∗ −Z66 −Z67 (τe − τ(t))M6

∗ ∗ ∗ ∗ ∗ ∗ −Z77 (τe − τ(t))M7

∗ ∗ ∗ ∗ ∗ ∗ ∗ −|τe − τ(t)|S

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Z =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Z11 Z12 Z13 Z14 Z15 Z16 Z17 0

∗ Z22 Z23 Z24 Z25 Z26 Z27 0

∗ ∗ Z33 Z34 Z35 Z36 Z37 0

∗ ∗ ∗ Z44 Z45 Z46 Z47 0

∗ ∗ ∗ ∗ Z55 Z56 Z57 0

∗ ∗ ∗ ∗ ∗ Z66 Z67 0

∗ ∗ ∗ ∗ ∗ ∗ Z77 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(3.12)
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ϕi = (τe − τ(t))(−KT
i B + Mi), i = 1, 2, Zii > 0, i = 1, 2, . . . , 7, Zij , i = 1, 2, . . . , 7, j = i + 1, . . . , 7

are some parameter matrices of appropriate dimensions. From (3.11) if φ1 < 0 and φ2 < 0,
then V̇1(xt) ≤ −λ1‖x(t)‖2 for some λ1 > 0. Pre and postmultiplying both sides of φ2 < 0 by
diag{I, I, I, I, I, I, I, sgn(τ(t) − τe)}, we get that

φ2 ≤

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−Z11 −Z12 −Z13 −Z14 −Z15 −Z16 −Z17 ρM1

∗ −Z22 −Z23 −Z24 −Z25 −Z26 −Z27 ρM2

∗ ∗ −Z33 −Z34 −Z35 −Z36 −Z37 ρM3

∗ ∗ ∗ −Z44 −Z45 −Z46 −Z47 ρ
(−KT

1B +M4
)

∗ ∗ ∗ ∗ −Z55 −Z56 −Z57 ρ
(−KT

2B +M5
)

∗ ∗ ∗ ∗ ∗ −Z66 −Z67 ρM6

∗ ∗ ∗ ∗ ∗ ∗ −Z77 ρM7

∗ ∗ ∗ ∗ ∗ ∗ ∗ −ρS

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0. (3.13)

By Schur complement lemma, this implies φ2 < 0. In light of Lemma 2.1, (3.1) holds if and
only if φ1 < 0 and (3.13) simultaneously hold. Then (3.1) holds if and only if there exists a
symmetric matrix Z, φ1 < 0 and (3.13) simultaneously hold. Therefore, nominal system of
(2.10) is asymptotically stable.

Case 2 (τ(t) = τe). For this case, we choose a Lyapunov-Krasovskii functional candidate as

V2(xt) = xT (t)Px(t) +
∫ t

t−τe
xT (s)Qx(s)ds +

∫ t

t−d(t)
ẋT (s)Q1ẋ(s)ds

+
∫0

−τe
ds

∫ t

t+s
ẋT (θ)Rẋ(θ)dθ,

(3.14)

where P , Q, Q1, and R positive definite matrices are the same as those in V1(xt).

Case 3 (τe < τ(t) < τM). For this case, we choose the Lyapunov-Krasovskii functional candi-
date as

V3(xt) = xT (t)Px(t) +
∫ t

t−τe
xT (s)Qx(s)ds

+
∫ t

t−d(t)
ẋT (s)Q1ẋ(s)ds

∫0

−τe

∫ t

t+s
ẋT (θ)Rẋ(θ)dθds

+
∫−τe

−τM

∫ t

t+s
ẋT (θ)Sẋ(θ)dθds + ρ

∫−τe

−τM

∫ t

t+s
ẋT (θ)Wẋ(θ)dθds,

(3.15)

where P ,Q,Q1, R, S, andW are positive definite matrices and are the same as those in V1(xt).
By similar arguments used in proof of Theorem 3.2, we conclude that the nominal

system of (2.10) is robustly asymptotically stable. The proof is complete.
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Based on Theorem 3.2, we can perform the robust stability analysis for system (2.10)
with uncertainties (2.5) and (2.6).

Theorem 3.3. Under Assumption 3.1, system (2.10) with time-varying delay satisfying (2.2) and
uncertainties (2.5) and (2.6) is asymptotically stable if there exist positive definite matrices P ,Q,Q1,
R, S,W andK1,K2, Li,Mi, i = 1, 2, . . . , 7 of appropriate dimension and scalars εi > 0, i = 1, 2, . . . , 10
such that

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

M11 φ12 φ13 φ14 φ15 φ16 φ17 τeL
T
1 ρM1

∗ φ22 φ23 φ24 φ25 φ26 φ27 τeL
T
2 ρM2

∗ ∗ M33 φ34 φ35 φ36 φ37 τeL
T
3 ρM3

∗ ∗ ∗ M44 φ45 φ46 φ47 τeL
T
4 ρ
(
KT

1B +M4
)

∗ ∗ ∗ ∗ M55 φ56 φ57 τeL
T
5 ρ
(
KT

2B +M5
)

∗ ∗ ∗ ∗ ∗ M66 0 τeL
T
6 ρM6

∗ ∗ ∗ ∗ ∗ ∗ M77 τeL
T
7 ρM7

∗ ∗ ∗ ∗ ∗ ∗ ∗ −τeR 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ M99

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0,

M1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.1KT
1 − 0.1K1 KT

1G1 KT
1G2 KT

1G2 KT
1G3 KT

1G4

GT
1K1 −ε1I 0 0 0 0

GT
2K1 0 −ε2I 0 0 0

GT
2K1 0 0 −ε3I 0 0

GT
3K1 0 0 0 −ε4I 0

GT
4K1 0 0 0 0 −ε5I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0,

M2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.1Q1 + 0.1KT
2C + 0.1CTK2 KT

2G1 KT
2G2 KT

2G2 KT
2G3 KT

2G4

GT
1K2 −ε6I 0 0 0 0

GT
2K2 0 −ε7I 0 0 0

GT
2K2 0 0 −ε8I 0 0

GT
3K2 0 0 0 −ε9I 0

GT
4K2 0 0 0 0 −ε10I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0,

(3.16)

where

M11 = φ11 + ε1E
T
AEA + ε6E

T
AEA,

M33 = φ33 + ε2E
T
BEB + ε7E

T
BEB,

M44 = Q1 + τeR + ρS − 0.9KT
1 − 0.9K1 + ρ2W,

M55 = −0.9Q1 + δQ1 + 0.9KT
2C + 0.9CTK2,
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M66 = φ66 + ε4E
T
D1
ED1 + ε9ρ

2ET
BEB,

M77 = φ77 + ε5E
T
D2
ED2 + ε10ρ

2ET
BEB,

M99 = −ρS + ε3ρ
2ET

BEB + ε8ρ
2ET

BEB.

(3.17)

Proof. We choose Lyapunov-Krasovskii functional as in Theorem 3.2, we may proof this
Theorem by using a similar arguments as in the proof of Theorem 3.2. By replacing A, B,
D1, and D2 in (3.11) with A + GF(t)EA, B + GF(t)EB, D1 + GF(t)ED1 and D2 + GF(t)ED2 ,
respectively. For Case 1

V̇1(xt) ≤ 2xT (t)Pẋ(t) + xT (t)Qx(t) − xT (t − τe)Qx(t − τe) + ẋT (t)Q1ẋ(t)

− (1 − δ)ẋT (t − d(t))Q1ẋ(t − d(t)) + ẋT (t)
(
τeR + ρS + ρ2W

)
ẋ(t)

−
∫ t

t−τe
ẋT (s)Rẋ(s)ds −

∫ t−τ(t)

t−τe
ẋT (s)Sẋ(s)ds + 2

[
ẋT (t)KT

1 + ẋT (t − d(t))KT
2

]

×
[

(A +G1F(t)EA)x(t) + (B +G2F(t)EB)x(t − τe) + (B +G2F(t)EB)

×
∫ t−τ(t)

t−τe
ẋ(s)ds + (D1 +G3F(t)ED1)f1 + (D2 +G4F(t)ED2)f2 + Cẋ(t − d(t)) − ẋ(t)

]

+ 2
[
xT (t)LT

1 + xT (t − τ(t))LT
2 + xT (t − τe)LT

3 + ẋT (t)LT
4 + ẋT (t − d(t))LT

5

+fT
1 L

T
6 + fT

2 L
T
7

]
×
[

x(t) − x(t − τe) −
∫ t

t−τe
ẋ(s)ds

]

+ 2
[
xT (t)MT

1 + xT (t − τ(t))MT
2 + xT (t − τe)MT

3 + ẋT (t)MT
4 + ẋT (t − d(t))MT

5

+fT
1 M

T
6 +f

T
2 M

T
7

]
[

x(t − τ(t)) − x(t − τe)−
∫ t−τ(t)

t−τe
ẋ(s)ds

]

+δ1
[
α2xT (t)x(t) − fT

1 f1
]

− xT (t − τe)Wx(t − τe) + 2xT (t − τe)Wx(t − τ(t))

− xT (t − τ(t))Wx(t − τ(t)) + δ2
[
β2xT (t − τ(t))x(t − τ(t)) − fT

2 f2
]
.

(3.18)

Applying Lemmas 2.3. and 2.4., the following estimations hold:

2ẋT (t)KT
1 (A +G1F(t)EA)x(t) ≤ 2ẋT (t)KT

1Ax(t)

+ ε−11 ẋT (t)KT
1G1G

T
1K1ẋ(t)

+ ε1x
T (t)ET

AEAx(t),

(3.19)
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2ẋT (t)KT
1 (B +G2F(t)EB)x(t − τe) ≤ 2ẋT (t)KT

1Bx(t − τe)

+ ε−12 ẋT (t)KT
1G2G

T
2K1ẋ(t)

+ ε2x
T (t − τe)ET

BEBx(t − τe),

(3.20)

2ẋT (t)KT
1 (B +G2F(t)EB)

∫ t−τ(t)

t−τe
ẋ(s)ds ≤ 2ẋT (t)KT

1B

∫ t−τ(t)

t−τe
ẋ(s)ds

+ ε−13 ẋT (t)KT
1G2G

T
2K4ẋ

T (t)

+ ε3ρ

(∫ t−τ(t)

t−τe
ẋ(s)ET

BEBẋ(s)ds

)

,

(3.21)

2ẋT (t)KT
1 (D1 +G3F(t)ED1)f1 ≤ 2ẋT (t)KT

1D1f1

+ ε−14 ẋT (t)KT
1G3G

T
3K1ẋ(t)

+ ε4f
T
1 E

T
D1
ED1f1,

(3.22)

2ẋT (t)KT
1 (D2 +G4F(t)ED2)f2 ≤ 2ẋT (t)KT

1D2f2

+ ε−15 ẋT (t)KT
1G4G

T
4K1ẋ(t)

+ ε5f
T
2 E

T
D2
ED2f2,

(3.23)

2ẋT (t − d(t))KT
2 (A +G1F(t)EA)x(t) ≤ 2ẋT (t − d(t))KT

2Ax(t)

+ ε−16 ẋT (t − d(t))KT
2G1G

T
1K2ẋ(t − d(t))

+ ε6x
T (t − d(t))ET

AEAx(t),
(3.24)

2ẋT (t − d(t))KT
2 (B +G2F(t)EB)x(t − τe) ≤ 2ẋT (t − d(t))KT

1Bx(t − τe)

+ ε−17 ẋT (t − d(t))KT
1G2G

T
2K1ẋ(t − d(t))

+ ε7x
T (t − τe)ET

BEBx(t − τe),
(3.25)

2ẋT (t − d(t))KT
2 (B +G2F(t)EB)

∫ t−τ(t)

t−τe
ẋ(s)ds ≤ 2ẋT (t − d(t))KT

2B

∫ t−τ(t)

t−τe
ẋ(s)ds

+ ε−18 ẋT (t − d(t))KT
2G2G

T
2K2ẋ

T (t − d(t))

+ ε8ρ

(∫ t−τ(t)

t−τe
ẋ(s)ET

BEBẋ(s)ds

)

,

(3.26)
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2ẋT (t − d(t))KT
2 (D1 +G3F(t)ED1)f1 ≤ 2ẋT (t − d(t))KT

2D1f1

+ ε−19 ẋT (t − d(t))KT
2G3G

T
3K2ẋ(t − d(t))

+ ε9f
T
1 E

T
D1
ED1f1,

(3.27)

2ẋT (t − d(t))KT
2 (D2 +G4F(t)ED2)f2 ≤ 2ẋT (t − d(t))KT

2D2f2

+ ε−110 ẋ
T (t − d(t))KT

2G4G
T
4K2ẋ(t − d(t))

+ ε10f
T
2 E

T
D2
ED2f2.

(3.28)

Therefore, from (3.18)–(3.28), it follows that

V̇1(xt) ≤ ωT (t, s)Mω(t, s) + ẋT (t)Ω1ẋ(t) + ẋT (t − d(t))Ω2ẋ(t − d(t)), (3.29)

where

Ω1 = − 0.1KT
1 − 0.1K1 + ε−11 KT

1G1G
T
1K1 + ε−12 KT

1G2G
T
2K1

+ ε−13 KT
1G2G

T
2K1 + ε−14 KT

1G3G
T
3K1 + ε−15 KT

1G4G
T
4K1,

Ω2 = − 0.1QT
1 + 0.1KT

2C + 0.1CTK2 + ε−16 KT
2G1G

T
1K2 + ε−17 KT

2G2G
T
2K2

+ ε−18 KT
2G2G

T
2K2 + ε−19 KT

2G3G
T
3K2 + ε−110K

T
2G4G

T
4K2.

(3.30)

Applying Schur complement lemma, the inequalities Ω1 < 0 and Ω2 < 0 are equivalent to
M1 < 0 and M2 < 0, respectively. Therefore, system (2.10) is robust asymptotically stable if
the condition (3.16) holds.

By using arguments similar to the proof of Case 1 for Case 2 and Case 3, we may
conclude that the close-loop system (2.10) is robust asymptotically stable.

Remark 3.4. In this paper, the restriction that the state delay is differentiable is not required,
which allows state delay to be fast time varying. Meanwhile, this restriction is required in
some existing results, see [1–5, 7, 9, 11–14, 16, 18].

Remark 3.5. In the proof of Theorem 3.3, we need negative definiteness of matricesM,Ω1 and
Ω2 simultaneously. In order to do so, we need to have certain diagonal terms of matrices M,
Ω1 and Ω2 being negative. This leads to the splitting of the term K1 as (0.1 + 0.9)K1 which is
one possibility to achieve such goal.

4. Numerical Examples

In this section, we provide numerical examples to show the effectiveness of our theoretical
results.
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Table 1: Comparison of the maximum value τM for γ = 0.1.

α = 0, β = 0.1

τ̇(t) = 0.5 No restriction on
τ̇(t)

Zhang et al. [1] 0.704 —
Shen and Zhong [2] 1.060 —
Ours — 1.0762

α = 0.1, β = 0.1

τ̇(t) = 0.5 No restriction on
τ̇(t)

Zhang et al. [1] 0.689 —
Shen and Zhong [2] 1.040 —
Ours — 1.0638

Example 4.1. Consider the following uncertain neutral system with time-varying delay and
nonlinear uncertainties which is studied in [1, 2]:

ẋ(t) − Cẋ(t − d) = (A + ΔA(t))x(t) + (B + ΔB(t))x(t − τ(t)) + (D1 + ΔD1(t))f1(t, x(t))

+ (D2 + ΔD2(t))f2(t, x(t − τ(t))),
(4.1)

where

A =

[−1.2 −0.1
−0.1 −1

]

, B =

[−0.6 0.7

−1 −0.8

]

, C =

[−0.2 0

0.2 −0.1

]

,

D1 =

[−0.1 0

0 −0.1

]

, D2 =

[−0.1 0

0 −0.1

]

,

ΔA(t) = GF(t)EA, ΔB(t) = GF(t)EB, ΔD1(t) = GF(t)ED1 ,

ΔD2(t) = GF(t)ED2 , FT (t)F(t) ≤ I, G = γI, EA = I,

EB = I, ED1 = I, ED2 = I.

(4.2)

It is assumed that the nonlinear uncertainties satisfy

∥
∥f1(t, x(t))

∥
∥ ≤ α‖x(t)‖, ∥

∥f2(t, x(t − τ(t)))
∥
∥ ≤ β‖x(t − τ(t))‖, α > 0, β > 0. (4.3)

Applying Theorem 3.3, the maximum allowable value of τM is given in Table 1 when γ = 0.1
and in Table 2 for γ = 0.5. The results obtained in [1, 2] may not be used for the case when
τm /= 0. Moreover, the differentiability of the time delay τ(t) is not required in Theorem 3.3.
Tables 1 and 2 show that our results significantly improve the results of [1, 2].
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Table 2: Comparison of the maximum value τM for γ = 0.5.

α = 0, β = 0.1

τ̇(t) = 0.5 No restriction on
τ̇(t)

Zhang et al. [1] 0.259 —
Shen and Zhong [2] 0.450 —
Ours — 0.5333

α = 0.1, β = 0.1

τ̇(t) = 0.5 No restriction on
τ̇(t)

Zhang et al. [1] 0.240 —
Shen and Zhong [2] 0.429 —
Ours — 0.5207

Moreover, it should be pointed out that if we let τm = 0.1 and τM = 0.85, then from
Theorem 3.3, the solutions of LMI (3.16) are given as follows:

P =

[
2.4597 0.3509

0.3509 1.9870

]

, Q =

[
0.9955 0.1967

0.1967 1.0236

]

,

Q1 =

[
0.5615 −0.0545
−0.0545 0.2292

]

, S =

[
1.4211 0.1224

0.1224 1.1393

]

,

R =

[
1.8164 0.2718

0.2718 1.7699

]

, W =

[
0.4131 0.0520

0.0520 0.3768

]

,

L1 =

[−1.8399 −0.0430
−0.1215 −1.9400

]

, L2 =

[
1.5341 1.0797

−1.1061 1.2226

]

,

L3 =

[−0.1656 −0.0202
−0.1437 −0.3157

]

, L4 =

[−1.3144 −0.4567
0.1806 −1.3580

]

,

L5 =

[−0.1514 −0.0592
−0.0410 0.0423

]

, L6 =

[−0.0047 0.0064

−0.0036 −0.0045

]

,

L7 =

[−0.0047 0.0064

−0.0037 −0.0046

]

, K1 =

[
1.7652 0.2207

0.0928 1.4950

]

,

K2 =

[−0.2816 0.0203

0.0408 −0.1346

]

, M1 =

[−1.4428 −0.0867
−0.0535 −1.3096

]

,

M2 =

[−1.2780 −1.0258
1.1266 −0.9849

]

, M3 =

[
0.2312 −0.1717
0.0660 0.4381

]

,
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Figure 1: The trajectories of x1(t) and x2(t) of the system (4.1) with time-varying delay τ(t) = 0.1 +
0.75| sin 10t|.

M4 =

[
0.3926 −1.0687
0.9108 0.5805

]

, M5 =

[
0.3601 0.1664

−0.1928 0.1095

]

,

M6 =

[
0.0032 −0.0046
0.0110 0.0081

]

, M7 =

[
0.0032 −0.0047
0.0111 0.0081

]

,

δ1 = 2.0156, δ2 = 1.9922, ε1 = 0.4383,

ε2 = 0.4197, ε3 = 0.5513, ε4 = 0.9140,

ε5 = 0.9042, ε6 = 0.3288, ε7 = 0.3143,

ε8 = 0.4376, ε9 = 0.9021, ε10 = 0.9003.

(4.4)

Figure 1 shows the trajectories of solutions x1(t) and x2(t) of the system (4.1)
with time-varying delay τ(t) = 0.1 + 0.75| sin 10t|, d = 1, φ(t) = [sin t, cos t)], for all
t ∈ [−1, 0], f1(t, x(t)) = [0.1 sin |x1(t)|, 0.1 cos |x2(t)|]T , f2(t, x(t − τ(t))) = [0.1e−sin

2x1(t−τ(t)),
0.1e−cos

2x2(t−τ(t))]T and F(t) = diag{sin2(t), sin2(t)}. Since the time-delay τ(t) is not differenti-
able, the stability criterion in [1, 2] cannot be applied to this case because it is only applicable
to the system with the differentiable delay.

Example 4.2. Consider the following uncertain neutral system with time-varying delay in [3,
4]:

ẋ(t) − Cẋ(t − d(t)) = (A + ΔA(t))x(t) + (B + ΔB(t))x(t − τ(t)), (4.5)
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Table 3:Maximum allowable upper bounds τM of the time-varying delay for different values of the lower
bounds τm and c = 0.1.

τm = 0 τm = 0.5
Yu and Lien [3] 0.658 0.793
Kwon et al. [4] 0.852 0.894
Ours 0.873 0.951

Table 4:Maximum allowable upper bounds τM of the time-varying delay for different values of the lower
bounds τm, c = 0.1 and δ = 0.1.

τm = 0 τ̇(t) = 0.5 τ̇(t) = 0.9 τ̇(t) ≥ 1 No restriction
on τ̇(t)

Han and Yu [5] 0.57 0.17 — —
Qiu et al. [6] 0.7890 0.7199 0.7216 —
Ours — — — 0.8676

τm = 0.5 τ̇(t) = 0.5 τ̇(t) = 0.9 τ̇(t) ≥ 1 No restriction
on τ̇(t)

Ours — — — 0.9460

where

A =

[−2 0

0 −1

]

, B =

[−1 0

−1 −1

]

, C =

[
c 0

0 c

]

,

ΔA(t) =

[
γ1 0

0 γ2

]

, ΔB(t) =

[
γ3 0

0 γ4

]

,

(4.6)

where 0 ≤ |c| < 1, and γi, i = 1, 2, . . . , 4 are unknown parameter satisfying |γ1| ≤ 1.6, |γ2| ≤ 0.05,
|γ3| < 0.1, and |γ4| < 0.3.

Case 1. For c = 0.1, δ = 0, the maximum values of τM are listed in Table 3 for c = 0.1 by
applying criteria in [3, 4] and in this paper. We see that the maximum allowable bounds for
τM obtained from Theorem 3.3 are much better than that obtained in [3, 4].

Case 2. For c = 0.1, δ = 0.1, the maximum value τM obtained form Theorem 3.3 is listed in
Table 4. In [3, 4] the neutral delay is constant, then its stability criterion cannot be applied to
systems with time-varying neutral delay. Furthermore, the stability criterion in [5, 6] cannot
be applied to this case because Theorem 3.3 does not have restriction on the derivative of
time-varying delay. It is obvious that the obtained results are significantly better than those
in [3–6].

Figure 2 shows the trajectories of solutions x1(t) and x2(t) of the system (4.5) with
time-varying delay τ(t) = 0.3 + 0.5| cos 10t|, d(t) = 0.1 sin2t, φ(t) = [sin t, cos t)], for all t ∈
[−0.8, 0].
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Figure 2: The trajectories of x1(t) and x2(t) of the system (4.5) with time-varying delay τ(t) = 0.3 +
0.5| cos 10t|.

5. Conclusions

In this paper, we have investigated the delay-dependent robust stability criteria for uncertain
neutral systems with interval time-varying delays and time-varying nonlinear perturbations
simultaneously. Based on Lyapunov-krasovskii theory, new delay-dependent sufficient
conditions for robust stability have been derived in terms of LMIs. The interval time-varying
delay function is not required to be differentiable, which allows time-delay function to be a
fast time-varying function. Numerical examples are given to illustrate the effectiveness of the
theoretic results which show that our results are much less conservative than some existing
results in the literature.
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