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1. Introduction

The stability problem of functional equations originated from a question of Ulam [1]
concerning the stability of group homomorphisms. Hyers [2] gave a first affirmative partial
answer to the question of Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki
[3] for additive mappings and by Th. M. Rassias [4] for linear mappings by considering an
unbounded Cauchy difference.

Theorem 1.1 (Th. M. Rassias). Let f : E → E′ be a mapping from a normed vector space E into a
Banach space E′ subject to the inequality

∥
∥f

(

x + y
) − f(x) − f

(

y
)∥
∥ ≤ ε

(‖x‖p + ∥
∥y

∥
∥
p) (1.1)

for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1. Then the limit

L(x) = lim
n→∞

f(2nx)
2n

(1.2)
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exists for all x ∈ E, and L : E → E′ is the unique additive mapping which satisfies

∥
∥f(x) − L(x)

∥
∥ ≤ 2ε

2 − 2p
‖x‖p (1.3)

for all x ∈ E. Also, if for each x ∈ E the function f(tx) is continuous in t ∈ R, then L is R-linear.

The above inequality (1.1) has provided a lot of influence in the development of what
is now known as a generalized Hyers-Ulam stability of functional equations. Beginning around
the year 1980, the topic of approximate homomorphisms, or the stability of the equation of
homomorphism, was studied by a number of mathematicians. Găvruta [5] generalized the
Rassias’ result.

Theorem 1.2 (see [6–8]). Let X be a real normed linear space and Y a real complete normed linear
space. Assume that f : X → Y is an approximately additive mapping for which there exist constants
θ ≥ 0 and p ∈ R − {1} such that f satisfies inequality

∥
∥f

(

x + y
) − f(x) − f

(

y
)∥
∥ ≤ θ · ‖x‖p/2 · ∥∥y∥∥p/2 (1.4)

for all x, y ∈ X. Then there exists a unique additive mapping L : X → Y satisfying

∥
∥f(x) − L(x)

∥
∥ ≤ θ

|2p − 2| ‖x‖
p (1.5)

for all x ∈ X. If, in addition, f : X → Y is a mapping such that the transformation t → f(tx) is
continuous in t ∈ R for each fixed x ∈ X, then L is an R-linear mapping.

The functional equation

f
(

x + y
)

+ f
(

x − y
)

= 2f(x) + 2f
(

y
)

(1.6)

is called a quadratic functional equation. In particular, every solution of the quadratic functional
equation is said to be a quadratic function. A generalized Hyers-Ulam stability problem for
the quadratic functional equation was proved by Skof [9] for mappings f : X → Y , where
X is a normed space and Y is a Banach space. Cholewa [10] noticed that the theorem of Skof
is still true if the relevant domain X is replaced by an Abelian group. Czerwik [11] proved
the generalized Hyers-Ulam stability of the quadratic functional equation. Several functional
equations have been investigated in [12–25].

Let X be a set. A function d : X × X → [0,∞] is called a generalized metric on X if d
satisfies

(1) d(x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x) for all x, y ∈ X;

(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

We recall a fundamental result in fixed point theory.
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Theorem 1.3 (see [26–28]). Let (X, d) be a complete generalized metric space and let J : X → X
be a strictly contractive mapping with Lipschitz constant L < 1. Then for each given element x ∈ X,
either

d
(

Jnx, Jn+1x
)

= ∞ (1.7)

for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) < ∞, for all n ≥ n0;

(2) the sequence {Jnx} converges to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) < ∞};
(4) d(y, y∗) ≤ (1/(1 − L))d(y, Jy) for all y ∈ Y .

Lee et al. [29] proved that a mapping f : X → Y satisfies

f
(

2x + y
)

+ f
(

2x − y
)

= 8f(x) + 2f
(

y
)

(1.8)

for all x, y ∈ X if and only if the mapping f : X → Y satisfies

f
(

x + y
)

+ f
(

x − y
)

= 2f(x) + 2f
(

y
)

(1.9)

for all x, y ∈ X.
Using the fixed point method, Park [14] proved the generalized Hyers-Ulam stability

of the quadratic functional equation

f
(

2x + y
)

= 4f(x) + f
(

y
)

+ f
(

x + y
) − f

(

x − y
)

(1.10)

in Banach spaces.
In this paper, using the fixed point method, we prove the generalized Hyers-Ulam

stability of the quadratic functional equation (1.8) in Banach spaces.
Throughout this paper, assume that X is a normed vector space with norm || · || and

that Y is a Banach space with norm ‖ · ‖.

2. Fixed Points and Generalized Hyers-Ulam Stability of
a Quadratic Functional Equation

For a given mapping f : X → Y , we define

Cf
(

x, y
)

:= f
(

2x + y
)

+ f
(

2x − y
) − 8f(x) − 2f

(

y
)

(2.1)

for all x, y ∈ X.
Using the fixed point method, we prove the generalized Hyers-Ulam stability of the

quadratic functional equation Cf(x, y) = 0.
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Theorem 2.1. Let f : X → Y be a mapping for which there exists a function ϕ : X2 → [0,∞) with
f(0) = 0 such that

∥
∥Df

(

x, y
)∥
∥ ≤ ϕ

(

x, y
)

(2.2)

for all x, y ∈ X. If there exists an L < 1 such that ϕ(x, y) ≤ 4Lϕ(x/2, y/2) for all x, y ∈ X, then
there exists a unique quadratic mapping Q : X → Y satisfying (1.8) and

∥
∥f(x) −Q(x)

∥
∥ ≤ 1

8 − 8L
ϕ(x, 0) (2.3)

for all x ∈ X.

Proof. Consider the set

S :=
{

g : X −→ Y
}

, (2.4)

and introduce the generalized metric on S:

d
(

g, h
)

= inf
{

K ∈ R+ :
∥
∥g(x) − h(x)

∥
∥ ≤ Kϕ(x, 0), ∀x ∈ X

}

. (2.5)

It is easy to show that (S, d) is complete.
Now we consider the linear mapping J : S → S such that

Jg(x) :=
1
4
g(2x) (2.6)

for all x ∈ X.
By [30, Theorem 3.1],

d
(

Jg, Jh
) ≤ Ld

(

g, h
)

(2.7)

for all g, h ∈ S.
Letting y = 0 in (2.2), we get

∥
∥2f(2x) − 8f(x)

∥
∥ ≤ ϕ(x, 0) (2.8)

for all x ∈ X. So

∥
∥
∥
∥
f(x) − 1

4
f(2x)

∥
∥
∥
∥
≤ 1

8
ϕ(x, 0) (2.9)

for all x ∈ X. Hence d(f, Jf) ≤ 1/8.
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By Theorem 1.3, there exists a mapping Q : X → Y such that
(1) Q is a fixed point of J , that is,

Q(2x) = 4Q(x) (2.10)

for all x ∈ X. The mapping Q is a unique fixed point of J in the set

M =
{

g ∈ S : d
(

f, g
)

< ∞}

. (2.11)

This implies that Q is a unique mapping satisfying (2.10) such that there exists K ∈ (0,∞)
satisfying

∥
∥f(x) −Q(x)

∥
∥ ≤ Kϕ(x, 0) (2.12)

for all x ∈ X.
(2) d(Jnf,Q) → 0 as n → ∞. This implies the equality

lim
n→∞

f(2nx)
4n

= Q(x) (2.13)

for all x ∈ X.
(3) d(f,Q) ≤ (1/(1 − L))d(f, Jf), which implies the inequality

d
(

f,Q
) ≤ 1

8 − 8L
. (2.14)

This implies that the inequality (2.3) holds.
It follows from (2.2) and (2.13) that

∥
∥CQ

(

x, y
)∥
∥ = lim

n→∞
1
4n

∥
∥Cf

(

2nx, 2ny
)∥
∥ ≤ lim

n→∞
1
4n

ϕ
(

2nx, 2ny
) ≤ lim

n→∞
Lnϕ

(

x, y
)

= 0 (2.15)

for all x, y ∈ X. So CQ(x, y) = 0 for all x, y ∈ X.
By [29, Proposition 2.1], the mapping Q : X → Y is quadratic, as desired.

Corollary 2.2. Let 0 < p < 2 and θ be positive real numbers, and let f : X → Y be a mapping such
that

∥
∥Cf

(

x, y
)∥
∥ ≤ θ

(‖x‖p + ∥
∥y

∥
∥
p) (2.16)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y satisfying (1.8) and

∥
∥f(x) −Q(x)

∥
∥ ≤ θ

8 − 2p+1
‖x‖p (2.17)

for all x ∈ X.
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Proof. The proof follows from Theorem 2.1 by taking

ϕ
(

x, y
)

:= θ
(‖x‖p + ∥

∥y
∥
∥
p) (2.18)

for all x, y ∈ X. Then L = 2p−2, and we get the desired result.

Theorem 2.3. Let f : X → Y be a mapping for which there exists a function ϕ : X2 → [0,∞)
satisfying (2.2) and f(0) = 0. If there exists an L < 1 such that ϕ(x, y) ≤ (L/4)ϕ(2x, 2y) for all
x, y ∈ X, then there exists a unique quadratic mapping Q : X → Y satisfying (1.8) and

∥
∥f(x) −Q(x)

∥
∥ ≤ L

8 − 8L
ϕ(x, 0) (2.19)

for all x ∈ X.

Proof. We consider the linear mapping J : S → S such that

Jg(x) := 4g
(x

2

)

(2.20)

for all x ∈ X.
It follows from (2.8) that

∥
∥
∥f(x) − 4f

(x

2

)∥
∥
∥ ≤ 1

2
ϕ
(x

2
, 0
)

≤ L

8
ϕ(x, 0) (2.21)

for all x ∈ X. Hence d(f, Jf) ≤ L/8.
By Theorem 1.3, there exists a mapping Q : X → Y such that
(1) Q is a fixed point of J , that is,

Q(2x) = 4Q(x) (2.22)

for all x ∈ X. The mapping Q is a unique fixed point of J in the set

M =
{

g ∈ S : d
(

f, g
)

< ∞}

. (2.23)

This implies that Q is a unique mapping satisfying (2.22) such that there exists K ∈ (0,∞)
satisfying

∥
∥f(x) −Q(x)

∥
∥ ≤ Kϕ(x, 0) (2.24)

for all x ∈ X.
(2) d(Jnf,Q) → 0 as n → ∞. This implies the equality

lim
n→∞

4nf
( x

2n
)

= Q(x) (2.25)

for all x ∈ X.
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(3) d(f,Q) ≤ (1/(1 − L))d(f, Jf), which implies the inequality

d
(

f,Q
) ≤ L

8 − 8L
, (2.26)

which implies that the inequality (2.19) holds.
The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 2.4. Let p > 2 and θ be positive real numbers, and let f : X → Y be a mapping satisfying
(2.16). Then there exists a unique quadratic mapping Q : X → Y satisfying (1.8) and

∥
∥f(x) −Q(x)

∥
∥ ≤ θ

2p+1 − 8
‖x‖p (2.27)

for all x ∈ X.

Proof. The proof follows from Theorem 2.3 by taking

ϕ
(

x, y
)

:= θ
(‖x‖p + ∥

∥y
∥
∥
p) (2.28)

for all x, y ∈ X. Then L = 22−p and, we get the desired result.

Theorem 2.5. Let f : X → Y be a mapping for which there exists a function ϕ : X2 → [0,∞)
satisfying (2.2). If there exists an L < 1 such that ϕ(x, y) ≤ 9Lϕ(x/3, y/3) for all x, y ∈ X, then
there exists a unique quadratic mapping Q : X → Y satisfying (1.8) and

∥
∥f(x) −Q(x)

∥
∥ ≤ 1

9 − 9L
ϕ(x, x) (2.29)

for all x ∈ X.

Proof. Consider the set

S :=
{

g : X −→ Y
}

, (2.30)

and introduce the generalized metric on S:

d
(

g, h
)

= inf
{

K ∈ R+ :
∥
∥g(x) − h(x)

∥
∥ ≤ Kϕ(x, x), ∀x ∈ X

}

. (2.31)

It is easy to show that (S, d) is complete.
Now we consider the linear mapping J : S → S such that

Jg(x) :=
1
9
g(3x) (2.32)

for all x ∈ X.
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By [30, Theorem 3.1],

d
(

Jg, Jh
) ≤ Ld

(

g, h
)

(2.33)

for all g, h ∈ S.
Letting y = x in (2.2), we get

∥
∥f(3x) − 9f(x)

∥
∥ ≤ ϕ(x, x) (2.34)

for all x ∈ X. So
∥
∥
∥
∥
f(x) − 1

9
f(3x)

∥
∥
∥
∥
≤ 1

9
ϕ(x, x) (2.35)

for all x ∈ X. Hence d(f, Jf) ≤ 1/9.
By Theorem 1.3, there exists a mapping Q : X → Y such that
(1) Q is a fixed point of J , that is,

Q(3x) = 9Q(x) (2.36)

for all x ∈ X. The mapping Q is a unique fixed point of J in the set

M =
{

g ∈ S : d
(

f, g
)

< ∞}

. (2.37)

This implies that Q is a unique mapping satisfying (2.36) such that there exists K ∈ (0,∞)
satisfying

∥
∥f(x) −Q(x)

∥
∥ ≤ Kϕ(x, x) (2.38)

for all x ∈ X.
(2) d(Jnf,Q) → 0 as n → ∞. This implies the equality

lim
n→∞

f(3nx)
9n

= Q(x) (2.39)

for all x ∈ X.
(3) d(f,Q) ≤ (1/(1 − L))d(f, Jf), which implies the inequality

d
(

f,Q
) ≤ 1

9 − 9L
. (2.40)

This implies that the inequality (2.29) holds.
It follows from (2.2) and (2.39) that

∥
∥CQ

(

x, y
)∥
∥ = lim

n→∞
1
9n

∥
∥Cf

(

3nx, 3ny
)∥
∥ ≤ lim

n→∞
1
9n

ϕ
(

3nx, 3ny
) ≤ lim

n→∞
Lnϕ

(

x, y
)

= 0 (2.41)

for all x, y ∈ X. So CQ(x, y) = 0 for all x, y ∈ X.
By [29, Proposition 2.1], the mapping Q : X → Y is quadratic, as desired.
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Corollary 2.6. Let 0 < p < 2 and θ be positive real numbers, and let f : X → Y be a mapping
satisfying (2.16). Then there exists a unique quadratic mapping Q : X → Y satisfying (1.8) and

∥
∥f(x) −Q(x)

∥
∥ ≤ 2θ

9 − 3p
‖x‖p (2.42)

for all x ∈ X.

Proof. The proof follows from Theorem 2.5 by taking

ϕ
(

x, y
)

:= θ
(‖x‖p + ∥

∥y
∥
∥
p) (2.43)

for all x, y ∈ X. Then L = 3p−2 and, we get the desired result.

Corollary 2.7. Let 0 < p < 1 and θ be positive real numbers, and let f : X → Y be a mapping such
that

∥
∥Df

(

x, y
)∥
∥ ≤ θ · ‖x‖p · ∥∥y∥∥p (2.44)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y satisfying (1.8) and

∥
∥f(x) −Q(x)

∥
∥ ≤ θ

9 − 9p
‖x‖2p (2.45)

for all x ∈ X.

Proof. The proof follows from Theorem 2.5 by taking

ϕ
(

x, y
)

:= θ · ‖x‖p · ∥∥y∥∥p (2.46)

for all x, y ∈ X. Then L = 9p−1 and, we get the desired result.

Theorem 2.8. Let f : X → Y be a mapping for which there exists a function ϕ : X2 → [0,∞)
satisfying (2.2). If there exists an L < 1 such that ϕ(x, y) ≤ (L/9)ϕ(3x, 3y) for all x, y ∈ X, then
there exists a unique quadratic mapping Q : X → Y satisfying (1.8) and

∥
∥f(x) −Q(x)

∥
∥ ≤ L

9 − 9L
ϕ(x, x) (2.47)

for all x ∈ X.

Proof. We consider the linear mapping J : S → S such that

Jg(x) := 9g
(
x

3

)

(2.48)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 2.1.
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Corollary 2.9. Let p > 2 and θ be positive real numbers, and let f : X → Y be a mapping satisfying
(2.16). Then there exists a unique quadratic mapping Q : X → Y satisfying (1.8) and

∥
∥f(x) −Q(x)

∥
∥ ≤ 2θ

3p − 9
‖x‖p (2.49)

for all x ∈ X.

Proof. The proof follows from Theorem 2.8 by taking

ϕ
(

x, y
)

:= θ
(‖x‖p + ∥

∥y
∥
∥
p) (2.50)

for all x, y ∈ X. Then L = 32−p, and we get the desired result.

Corollary 2.10. Let p > 1 and θ be positive real numbers, and let f : X → Y be a mapping satisfying
(2.44). Then there exists a unique quadratic mapping Q : X → Y satisfying (1.8) and

∥
∥f(x) −Q(x)

∥
∥ ≤ θ

9p − 9
‖x‖2p (2.51)

for all x ∈ X.

Proof. The proof follows from Theorem 2.8 by taking

ϕ
(

x, y
)

:= θ · ‖x‖p · ∥∥y∥∥p (2.52)

for all x, y ∈ X. Then L = 91−p, and we get the desired result.
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Sciences Mathématiques, vol. 108, no. 4, pp. 445–446, 1984.
[8] J. M. Rassias, “Solution of a problem of Ulam,” Journal of Approximation Theory, vol. 57, no. 3, pp.

268–273, 1989.
[9] F. Skof, “Local properties and approximation of operators,” Rendiconti del Seminario Matematico e Fisico

di Milano, vol. 53, pp. 113–129, 1983.



Abstract and Applied Analysis 11

[10] P. W. Cholewa, “Remarks on the stability of functional equations,” Aequationes Mathematicae, vol. 27,
no. 1-2, pp. 76–86, 1984.

[11] S. Czerwik, “On the stability of the quadratic mapping in normed spaces,” Abhandlungen aus dem
Mathematischen Seminar der Universität Hamburg, vol. 62, pp. 59–64, 1992.
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