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1. Introduction

The theory of integrable systems has been an active area of mathematics for the past
thirty years. Different aspects of the subject have fundamental relations with mechanics and
dynamics, applied mathematics, algebraic structures, theoretical physics, analysis including
spectral theory and geometry [1–3]. Most differential geometers have some knowledge and
experience with finite dimensional integrable systems as they appear in sympectic geometry
(mechanics) or ordinary differential equations (ODEs), although the reformulation of part of
this theory as algebraic geometry is not commonly known [4].

There are two quite separate methods of extension of these ideas to partial differential
equations (PDEs): one based on algebraic constructions and one based on spectral theory and
analysis. These are less familiar still to geometers.

Many geometric equations are known to have integrable aspects, especially if one
takes into account that most experts do not have a good definition of “integrable” as applied
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to PDEs, particularly elliptic examples. In addition to those we mention in our historical
discussion, the equations for harmonic maps (sigmamodels) from surfaces into groups [5–7],
harmonic tori in symmetric spaces [8], constant mean curvature surfaces in space forms [9],
isometric immersions of space forms in other space forms [10, 11], and the theory of affine
spheres [12] and affineminimal surfaces [13] are all examples of “elliptic” integrable systems.

The ideas surrounding string theory resulted in a series of deep and not completely
understood connections between representation theory of certain algebras and many of
the more classical theories of integrable systems in mathematics [14–16]. Most recently,
supersymmetric quantum field theories produce in a natural way moduli spaces of vacua
or ground states which have new geometry generated by the supersymmetry. Since the
supersymmetry generalizes the classical symmetries which produce integrals for the Euler-
Lagrange equations via Noether’s theorem, the connection with integrability is perhaps not
surprising [17–19]. However, this does not explain entirely the use of integrable systems
in hyper-Kähler geometry [20], Seiberg-Witten theory [21], special Kähler geometry, and
quantum cohomology [22].

The 19th century geometers were mainly interested in the local theory of surfaces in
R3, which we might regard as the prehistory of these modern constructions. The sine-Gordon
equation arose first through the theory of surfaces of constant Gauss curvature −1, and the
reduced 3-wave equation can be found in Darboux’s work on triply orthogonal systems of R3

[23].
It is well-known that a differential equation (DE) for a real-valued function u(x, t), or

a differential system for a 2-vector-valued function u(x, t), is said to describe pseudospherical
surfaces (pss) if it is the necessary and sufficient condition for the existence of smooth real
functions fij , 1 ≤ i ≤ 3, 1 ≤ j ≤ 2, depending only on u and a finite number of derivatives,
such that the one-forms

ωi = fi1dx + fi2dt, 1 ≤ i ≤ 3, (1.1)

satisfy the structure equations of a surface of constant Gaussian curvature −1

dω1 = ω3 ∧ω2, dω2 = ω1 ∧ω3, dω3 = ω1 ∧ω2. (1.2)

A DE for a real valued function u(x, t) is kinematically integrable if it is the integrability
condition of a one-parameter family of linear problems [24–30]

νx = P(η)ν, νt = Q(η)ν (1.3)

in which P(η) and Q(η) are SL(2, R)-valued functions of x, t and (u and its derivatives) up
to a finite order. Thus, an equation is kinematically integrable if it is equivalent to the zero
curvature condition

∂P(η)
∂t

− ∂Q(η)
∂x

+
[
P(η), Q(η)

]
= 0, (1.4)

where trP(η) = trQ(η) = 0, for each η (spectral parameter or eigenvalue). In addition, a DE
will be said to be strictly kinematically integrable if it is kinematically integrable and diagonal
entries of the matrix P(η) introduced above are η and −η.
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The main aim of this paper is to explain the relationships between local differential
geometry of surfaces and integrability of evolutionary nonlinear evolution equations
(NLEEs). New travelling wave solutions for the KdV-Burgers-Kuramoto (KBK) and non-
linear Schrödinger (NLS) equations which describe pss are obtained.

The paper is organized as follows. The correspondence between KBK, NLS equations
and their families of pss is established in Section 2. In Section 3, a new exact soliton solution
is obtained for the KBK equation by using a sech-tanh method andWu’s elimination method.
In Section 4, we construct a new travelling wave solution for the NLS equation by using the
same above way. Finally, we give some conclusions in Section 5.

2. The KBK and NLS equations that describe pss

The inverse scattering method (ISM)was introduced first for the Korteweg-de Vries equation
(KdVE) [18]. Later it was extended by Zakharov and Shabat [31] to a 2×2 scattering problem
for the NLS equation and that was subsequently generalized by Ablowitz, Kaup, Newell, and
Segur (AKNS) [32] to include a variety of NLEEs. Khater et al. [28] generalized the results
of Konno and Wadati [33] by considering ν as a three-component vector and Ω as a traceless
3 × 3 matrix one-form. The above definition of a DE is equivalent to saying that the DE for u
is the integrability condition for the problem

dν = Ων, ν =

⎛

⎜⎜
⎝

ν1

ν2

ν3

⎞

⎟⎟
⎠ , (2.1)

where ν is a vector and the 3 × 3 matrix Ω (Ωij , i, j = 1, 2, 3) is traceless

trΩ = 0, (2.2)

and consists of a one-paramter (η), family of one-forms in the independent variables (x, t), the
dependent variable u, and its derivatives. Khater et al. [28] introduced the inverse scattering
problem (ISP):

ν1x = f31ν2 − f11ν3, ν2x = −f31ν1 − ην3, ν3x = −f11ν1 − ην2,

ν1t = f32ν2 − f12ν3, ν2t = −f32ν1 − f22ν3, ν3t = −f12ν1 − f22ν2.
(2.3)

The associated integrability conditions for (1.3) or (2.1), which are obtained by cross-
differentiation, then take the matrix form

dΩ −Ω ∧Ω = 0, (2.4)

or the component form

f12,x − f11,t = f31f22 − ηf32,

f22,x = f11f32 − f12f31,

f32,x − f31,t = f11f22 − ηf12.

(2.5)
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Wewill restrict ourselves to the case where f21 = η. More precisely, we say that a DE for
u(x, t) describes a pss if it is a necessary and sufficient condition for the existence of functions
fij , 1 ≤ i ≤ 3, 1 ≤ j ≤ 2, depending on u(x, t) and its derivatives, f21 = η, such that the one-
forms in (1.1) satisfy the structure equations (1.2) of a pss. It follows from this definition that
for each nontrivial solution u of the DE, one gets a metric defined on M2, whose Gaussian
curvature is −1.

It has been known, for a long time, that the sine-Gordon (SG) equation describes a pss.
In this paper, we extend the same analysis to include the KBK and NLS equations.

Examples: letM2 be a differentiable surface, parametrized by coordinates x, t.

(a) The KBK equation

Consider

ω1 =
(−1

2
u + g(x, t)

)
dx +

(
1
2
ux +

1
4
u2 + f(x, t)

)
dt,

ω2 = ηdx +
(
1
2
ηu − ηg(x, t)

)
dt,

ω3 = −ηdx +
(−1

2
ηu + ηg(x, t)

)
dt,

(2.6)

in which the functions g(x, t) and f(x, t) satisfy the equations

gx + g2 + f = 0, fx − gt =
1
2
(
αuxx + βuxxx + γuxxxx

)
. (2.7)

Then M2 is a pss if and only if u satisfies the KBK equation

ut + uux + αuxx + βuxxx + γuxxxx = 0, (2.8)

where α, β, and γ are constants.

(b) The NLS equation

Consider

ω1 = 2wdx +
( − 4ηw + 2vx

)
dt,

ω2 = 2ηdx +
(
2
(
v2 +w2) − 4η2)dt,

ω3 = −2vdx +
(
4ηv + 2wx

)
dt.

(2.9)

Then M2 is a pss if and only if u satisfies the NLS equation

iut + uxx + 2|u|2u = 0, where u = v + iw. (2.10)

3. Travelling wave solutions for the KBK equation

Now we will find travelling wave solutions u(x, t) for the KBK equation (2.8). The solutions
of KBK equation possess their actual physical application; this is the reason why so many
methods, such as Wiss-Tabor-Carnevale transformation method [34], tanh-function method
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[35], truncated expansion method [36], and so on, have been applied to obtain the solution
of KBK equation. In this section, we obtain a new travelling wave solution class for KBK
equations by using a sech-tanh method [37, 38] andWu’s elimination method [39]. The main
idea of the algorithm is as follows. Suppose there is a PDE of the form

f
(
u, ux, ut, uxx, uxt, utt, . . .

)
= 0, (3.1)

where f is a polynomial. By assuming travelling wave solutions of the form

u(x, t) = φ(ρ), ρ = λ(x − kt + c), (3.2)

where k, λ are constant parameters to be determined, and c is an arbitrary constant, from the
two equations (3.1) and (3.2) we obtain an ODE

f
(
φ

′
, φ

′′
, φ

′′′
, . . .

)
= 0, (3.3)

where φ
′
= dφ/dρ. According to the sech-tanh method [37–41], we suppose that (3.3) has the

following formal travelling wave solution:

φ(ρ) =
n∑

i=1

sechi−1 ρ
(
Bi sech ρ +Ai tanh ρ

)
+A0, (3.4)

whereA0, . . . , An and B1, . . . , Bn are constants to be determined. Then we proceed as follows.

(i) Equating the highest-order nonlinear term and highest-order linear partial
derivative in (3.3) yields the value of n.

(ii) Substituting (3.4) into (3.3), we obtain a polynomial equation involving
tanh ρ sechi ρ, sechi ρ for i = 0, 1, 2, . . . , n (with n being positive integer).

(iii) Setting the constant term and coefficients of sech ρ, tanh ρ, sech ρ tanh ρ, sech2 ρ, . . .,
in the equation obtained in (ii) to zero, we obtain a system of algebraic equations
about the unknown numbers k, λ, A0, Ai, Bi for i = 1, 2, . . . , n.

(iv) Using the Mathematica and Wu’s elimination methods, the algebraic equations in
(iii) can be solved.

These yield the solitary wave solutions for the system (3.3). We remark that the abovemethod
yields solutions that include terms sech ρ or tanh ρ, as well as their combinations. There are
different forms of those obtained by other methods, such as the homogenous balance method
[42, 43]. We assume formal solutions of the form

u(x, t) = φ(ρ), ρ = λ(x − kt + c), (3.5)

where k, λ are constant parameters to be determined later, and c is an arbitrary constant.
Substituting from (3.5) and (2.8), we obtain an ODE

−kφ′
+ φφ

′
+ λαφ

′′
+ βλ2φ

′′′
+ γλ3φ

′′′′
= 0. (3.6)
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(i)We suppose that (3.6) has the following formal solution:

φ(ρ) = A0 +A1 sech ρ + B1 tanh ρ +A2 sech
2 ρ + B2 sech ρ tanh ρ

+A3 sech
3 ρ + B3 sech

2 ρ tanh ρ.
(3.7)

(ii) From (3.6) and (3.7), we get

− kφ
′
+ φφ

′
+ λαφ

′′
+ βλ2φ

′′′
+ γλ3φ

′′′′

=
( −A1B1 −A0B2 + kB2 + λαA1 − βλ2B2 + γλ3A1

)
sech ρ

+
( −A0A1 − B1B2 + kA1 + αλB2 − βλ2A1 + γλ3B2

)
sech ρ tanh ρ

+
(
A0B1 − 2A2B1 − 2A1B2 − 2A0B3 − kB1 + 2kB3 + 4αλA2

+ 4βλ2B1 − 8βλ2B3 + 16γλ3A2
)
sech2 ρ

+
( −A2

1 − 2A0A2 + B2
1 − B2

2 − 2B1B3 + 2kA2 − 2αλB1 + 4αλB3 − 8βλ2A2

− 8γλ3B1 + 16γλ3B3
)
sech2 ρ tanh ρ

+
(
2A1B1 − 3A3B1 + 2A0B2 − 3A2B2 − 3A1B3 − 2kB2 − 2αλA1 + 9αλA3

+ 20βλ2B2 − 20γλ3A1 + 81γλ3A3
)
sech3 ρ

+
( − 3A1A2 − 3A0A3 + 3B1B2 − 3B2B3 + 3kA3 − 6αλB2

+ 6βλ2A1 − 27βλ2A3 − 60γλ3B2
)
sech3 ρ tanh ρ

+
(
3A2B1 + 3A1B2 − 4A3B2 + 3A0B3 − 4A2B3 − 3kB3 − 6αλA2

− 6βλ2B1 + 60βλ2B3 − 120γλ3A2
)
sech4 ρ

+
( − 2A2

2 − 4A1A3 + 2B2
2 + 4B1B3 − 2B2

3 − 12αλB3 + 24βλ2A2

+ 24γλ3B1 − 240γλ3B3
)
sech4 ρ tanh ρ

+
(
4A3B1 + 4A2B2 + 4A1B3 − 5A3B3 − 12αλA3 − 24βλ2B2

+ 24γλ3A1 − 408γλ3A3
)
sech5 ρ

+
( − 5A2A3 + 5B2B3 + 60βλ2A3 + 120γλ3B2

)
sech5 ρ tanh ρ

+
(
5A3B2 + 5A2B3 − 60βλ2B3 + 120γλ3A2

)
sech6 ρ

+
( − 3A2

3 + 3B2
3 + 360γλ3B3

)
sech6 ρ tanh ρ +

(
6A3B3 + 360γλ3A3

)
sech7 ρ

= 0.

(3.8)

(iii) Setting the coefficients of sechj ρ tanhiρ for i = 0, 1 and j = 1, 2, . . . , 7 to zero, we
have the following set of overdetermined equations in the unknowns A0, A1, A2, A3, B1, B2,
B3, λ, and k.
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(iv) We now solve the above set of equations (3.8) by using Mathematica and Wu’s
elimination method, and obtain the following solutions:

λ2 =
(5 ± 19)α

64γ
, β2 = 16αγ, k = 5βλ2 +

αβ

4γ
,

A0 = A1 = B1 = B2 = A3 = 0, A2 = 15βλ2, B3 = −120γλ3.
(3.9)

Substituting (3.9) into (3.7), we obtain

u(x, t) = 15λ2 sech2 ρ
(
β − 8γλ tanh ρ

)
, where ρ = λ(x − kt + c). (3.10)

4. Travelling wave solutions for the NLS equation

Now we will find travelling wave solutions u(x, t) for the NLS equation (2.10). Equation
(2.10) can be written in the real form u = v + iw as follows:

vt +wxx + 2
(
v2 +w2)w = 0,

−wt + vxx + 2
(
v2 +w2)v = 0.

(4.1)

We assume formal solutions of the form

v(x, t) = φ(ρ), w(x, t) = θ(ρ), ρ = λ(x − kt + c), (4.2)

where k, λ are constant parameters to be determined later, and c is an arbitrary constant.
Substituting from (4.2) into (4.1), we obtain two ODEs:

−kλφ′
+ λ2θ

′′
+ 2

(
φ2 + θ2)θ = 0,

kλθ
′
+ λ2φ

′′
+ 2

(
φ2 + θ2)φ = 0.

(4.3)

(i) Equating the highest-order nonlinear term and highest-order linear partial
derivative in (4.3) yields n = 1. Then (4.3) has the following formal solutions:

φ(ρ) = A0 +A1 sech ρ + B1 tanh ρ,

θ(ρ) = a0 + a1 sech ρ + b1 tanh ρ.
(4.4)
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(ii) With the aid of Mathematica, substituting (4.4) into (4.3), then we obtain a
polynomial equation involving tanhiρ sechj ρ for i = 0, 1, j = 0, 1, 2, 3.

− kλφ
′
+ λ2θ

′′
+ 2

(
φ2 + θ2)θ

=
(
2a3

0 + 2a0A
2
0 + 4b1A0B1 + 6a0b

2
1 + 2a0B

2
1

)

+
(
λ2a1 + 6a2

0a1 + 2a1A
2
0 + 4a0A0A1 + 6a1b

2
1 + 4b1A1B1 + 2a1B

2
1

)
sech ρ

+
(
2b31 + 6a2

0b1 + 4a0A0B1 + 2b1A2
0 + 2b1B2

1

)
tanh ρ

+
(
kλA1 + 12a0a1b1 + 4b1A0A1 + 4a1A0B1 + 4a0A1B1

)
sech ρ tanh ρ

+
(
6a0a

2
1 + 4a1A0A1 + 2a0A

2
1 − 6a0b

2
1 − kλB1 − 4b1A0B1 − 2a0B

2
1

)
sech2 ρ

+
( − 2λ2b1 + 6a2

1b1 − 2b31 + 2b1A2
1 + 4a1A1B1 − 2b1B2

1

)
sech2 ρ tanh ρ

+
( − 2λ2a1 + 2a3

1 + 2a1A
2
1 − 6a1b

2
1 − 4b1A1B1 − 2a1B

2
1

)
sech3 ρ

= 0,

kλθ
′
+ λ2φ

′′
+ 2

(
φ2 + θ2)φ

=
(
2a2

0A0 + 6A0B
2
1 + 2A0B

2
1 + 4a0b1B1 + 2A3

0

)

+
(
λ2A1 + 6A2

0A1 + 2A1b
2
1 + 4a0a1A0 + 6A1B

2
1 + 4a1b1B1 + 2A1a

2
0
)
sech ρ

+
(
2B3

1 + 6A2
0B1 + 4a0A0b1 + 2B1a

2
0 + 2b21B1

)
tanh ρ

+
( − kλa1 + 12A0A1B1 + 4a1A0b1 + 4a0a1B1 + 4a0A1b1

)
sech ρ tanh ρ

+
(
6A0A

2
1 + 4a0a1A1 + 2A0a

2
1 − 6A0B

2
1 + kλb1 − 4b1a0B1 − 2A0b

2
1

)
sech2 ρ

+
( − 2λ2B1 + 6A2

1B1 − 2B3
1 + 2B1a

2
1 + 4a1A1b1 − 2B1b

2
1

)
sech2 ρ tanh ρ

+
( − 2λ2A1 + 2A3

1 + 2a2
1A1 − 6A1B

2
1 − 4b1a1B1 − 2A1b

2
1

)
sech3 ρ

= 0.

(4.5)

(iii) Setting the constant term and coefficients of tanhiρ sechj ρ for i = 0, 1, j = 0, 1, 2, 3,
in the equation obtained in (ii) to zero, we obtain a system of algebraic equations about the
unknown numbers A0, A1, B1, a0, a1, b1, and k.

(iv) Now we solve the above set of (4.5) by using Mathematica and Wu’s elimination
method, and we obtain the following solution:

A0 = A1 == a1 = b1 = 0, a0 = ±λB1 = ± iλ, k = ∓ iλ. (4.6)

Substituting (4.6) into (4.4), we obtain

v(x, t) = φ(ρ) = ± iλ tanh ρ, w(x, t) = θ(ρ) = ±λ, (4.7)

then the solution of NLS equation (2.10) takes the form

u(x, t) = ± iλ(1 + tanh ρ), ρ = λ(x ± iλt + c). (4.8)
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5. Conclusions

We find the relationship between KBK, NLS equations and their families of pss. With the
help of Mathematica, many travelling solutions for the KBK and NLS equations of the
pseudospherical class are obtained by using a sech-tanh method and Wu’s elimination
method. We obtained some new solitary wave solutions and periodic solutions.
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