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Extremal ω-plurisubharmonic functions
as envelopes of disc functionals

Benedikt Steinar Magnússon

Abstract. For each closed, positive (1, 1)-current ω on a complex manifold X and each

ω-upper semicontinuous function ϕ on X we associate a disc functional and prove that its envelope

is equal to the supremum of all ω-plurisubharmonic functions dominated by ϕ. This is done by

reducing to the case where ω has a global potential. Then the result follows from Poletsky’s

theorem, which is the special case ω=0. Applications of this result include a formula for the

relative extremal function of an open set in X and, in some cases, a description of the ω-polynomial

hull of a set.

1. Introduction

If ω is a closed, positive (1, 1)-current on a connected complex manifold X , then
for every point x0 ∈X we can find a neighborhood U of x0 and a plurisubharmonic
local potential ψ for ω, i.e., ddcψ=ω on U . Let u : X→R be a function on X

with values in the extended real line. If we can locally write u=v −ψ, where v

is plurisubharmonic, then we say that the function u is ω-plurisubharmonic. We
denote by P S H(X, ω) the set of all ω-plurisubharmonic functions on X which are
not identically equal to −∞ in any connected component of X .

If ψ1 and ψ2 are two local potentials for ω then their difference is pluriharmonic
on their common set of definition. This implies that the singular set, sing(ω), of ω

is well defined and locally given as ψ−1({−∞}) for a local potential ψ of ω.
We say that a function ϕ : X→R is ω-upper semicontinuous if ϕ+ψ is up-

per semicontinuous on U \sing(ω), extends to an upper semicontinuous function
on U for every local potential ψ : U→R∪ { −∞} of ω, and for a∈sing(ω) we have
lim supX\sing(ω)�z→a u(z)=u(a).

An analytic disc is a holomorphic map f : D→X from the unit disc D into X . It
is said to be closed if it can be extended to a holomorphic map in some neighborhood
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of the closed unit disc. We let O(D, X) denote the set of all analytic discs and AX

denote the set of all closed analytic discs in X .
For every analytic disc we have a pullback f ∗ω of ω which is a Borel-measure

on D. It is defined locally as the Laplacian of the pullback f ∗ψ, of a local potential ψ,
to an open subset of D. We define Rf ∗ω as the Riesz potential of this measure on D.

The main result of this paper is the following theorem.

Theorem 1.1. Let X be a connected complex manifold, ω be a closed, positive
(1, 1)-current on X , and ϕ be an ω-upper semicontinuous function on X such that
{u∈ P S H(X, ω);u≤ϕ} is nonempty. Then for x∈X \sing(ω)

sup{u(x) ; u ∈ P S H(X, ω), u ≤ ϕ} = inf
{

−Rf ∗ω(0)+
∫

T

ϕ ¨ f dσ ; f ∈ AX , f(0) =x

}
,

where σ is the arc length measure on the unit circle T normalized to 1. Furthermore,
if {u∈ P S H(X, ω);u≤ϕ} is empty then the right-hand side is −∞.

This theorem is a generalization of Poletsky’s theorem, which is the special
case ω=0, see Poletsky [14], Lárusson and Sigurdsson [11], [12], and Rosay [16].

However, if ω has a global potential ψ, i.e. ψ ∈ P S H(X) with ddcψ=ω, then
the formula above becomes

sup{u(x) ; u ∈ P S H(X, ω), u ≤ ϕ}+ψ(x)= inf
{∫

T

(ψ+ϕ) ¨ f dσ ; f ∈ AX , f(0) =x

}
,

which is a direct consequence of Poletsky’s theorem since ψ+ϕ is an upper semi-
continuous function. This case is handled in Theorem 4.2.

The general case follows from this case and an ω-version of a reduction theorem
(Theorem 1.2 in [12]) proved by Lárusson and Sigurdsson, see Theorem 4.5. The
reduction theorem states that the right-hand side in Theorem 1.1 is ω-plurisub-
harmonic on X if all its pullbacks to a manifold with a global potential are, and if
we can assume some continuity properties of it with respect to the discs in AX .

By applying Theorem 1.1 to the characteristic function of the complement of
an open set E we get a disc formula for the relative extremal function, which Guedj
and Zeriahi introduce in [5], Chapter 4. Our result is the following

sup{u(x) ; u ∈ P S H(X, ω), u|E ≤ 0 and u ≤ 1}

= inf{ −Rf ∗ω(0)+σ(T\f −1(E)) ; f ∈ AX and f(0) =x}.

In certain cases this formula can give us a description of the ω-polynomial hull of a
set, which is a generalization of the polynomial hull in C

n.
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For more information about the recent development of ω-plurisubharmonic
functions we refer the reader to Guedj and Zeriahi [5], [6], Harvey and Lawson
[7], Ko�lodziej [10], Dinew [3], and Branker and Stawiska [1]. In these papers X is
usually assumed to be a compact Kähler manifold and ω a smooth current on X .
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urdsson for pointing out this subject to me and for helping me writing the paper.
I would also like to thank Professor Jón Ingólfur Magnússon for his help and Insti-
tut Mittag-Leffler where a part of this work was done during the Several Complex
Variables program in 2008.

2. Basic results on ω-plurisubharmonicity

Here we will define ω-plurisubharmonic functions and study their properties
analogous to those of plurisubharmonic functions.

Assume X is a complex manifold of dimension n and ω is a closed, positive
(1, 1)-current on X , i.e. ω acts on (n−1, n−1)-forms.

It follows from Proposition 1.19, Chapter III in [2], that locally there is a
plurisubharmonic function ψ such that ddcψ=ω. Here d and dc are the real differ-
ential operators d=∂+∂ and dc=i(∂ −∂). Hence, in C we have that ddcu=Δu dV ,
where Δu is the Laplacian of u and dV is the standard volume form.

Note that the difference of two potentials for ω is a pluriharmonic function,
which is thus C ∞. This implies that the singular set of ω, sing(ω), is well defined
as the union of all ψ−1({−∞}) for all local potentials ψ of ω.

In the case when ω has continuous local potentials we have no trouble with
continuity. If ψ is a continuous local potential for ω then u+ψ is upper semicon-
tinuous if and only if u is. In general this is not always the case, and we do not
want to exclude the case when ψ takes the value −∞, e.g., when ω is a current
of integration, or if ψ is discontinuous. This however forces us to define the value
of u+ψ at points x∈sing(ω), where ψ(x)=−∞ and possibly u(x)=+∞. If u+ψ

is bounded above on X \sing(ω) in a neighborhood of x, then this can be done by
taking upper limits of u+ψ as we approach points in sing(ω), we therefore make
the following definition.

Definition 2.1. A function u : X→[−∞, +∞] is called ω-upper semicontinuous
(ω-usc) if for every a∈sing(ω), lim supX\sing(ω)�z→a u(z)=u(a) and for each local
potential ψ of ω, defined on an open subset U of X , u+ψ is upper semicontinuous
on U \sing(ω) and locally bounded above around each point of sing(ω).
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Equivalently we could say that lim supX\sing(ω)�z→a u(z)=u(a) for every a∈
sing(ω) and u+ψ extends as

lim sup
U \sing(ω)�z→a

(u+ψ)(z) for a ∈ sing(ω)

to an upper semicontinuous function on U with values in R∪ {−∞}. We will denote
this extension by (u+ψ)�.

Note that the question whether (u+ψ)� is usc does not depend at all on the
values of u at sing(ω). The reason for the conditions on u at sing(ω) is to ensure
that u is Borel measurable and to uniquely determine the function from its values
outside of sing(ω).

It is easy to see that u is Borel measurable from the fact that u=(u+ψ)−ψ is
the difference of two Borel measurable functions on X \sing(ω) and that u restricted
to the Borel set sing(ω) is the increasing limit of usc functions. Hence it is Borel
measurable.

Definition 2.2. A function u : X→[−∞, +∞] is called ω-plurisubharmonic
(ω-psh) if it is ω-usc and (u+ψ)� is psh on U for every local potential ψ of ω

defined on an open subset U of X . We let P S H(X, ω) denote the set of all ω-psh
functions on X which are not identically equal to −∞ on any connected compo-
nent of X . When the manifold is one-dimensional we say that these functions are
ω-subharmonic and denote the set of P S H(X, ω) by S H(X, ω).

Note that if sing(ω) is closed, an ω-usc function u is ω-psh if and only if u+ψ is
psh on U \sing(ω) for every local potential ψ, because then u+ψ extends as (u+ψ)�

to a psh function on U .
We see that the ω-psh functions are locally integrable because outside of the

zero set sing(ω) they can locally be written as the difference of two functions which
are locally integrable on X .

Our approach depends on the fact that we can define the pullback of currents
by holomorphic maps. This we can do in two very different cases, first if the map
is a submersion and secondly if it is an analytic disc not lying in sing(ω).

If Φ: Y →X is a submersion and ω is a current on X then we can define the
inverse image Φ∗ω of ω by its action on forms, 〈Φ∗ω, τ 〉=〈ω, Φ∗τ 〉, where Φ∗τ is
the direct image of the form τ . For more details see Demailly [2], Section 2.C.2,
Chapter I.

If f is an analytic disc in X with f(D)�sing(ω), then we can define a closed,
positive (1, 1) current f ∗ω on D in the following way.

Let a∈D and ψ : U→R∪ { −∞} be a local potential on an open neighborhood
U of f(a), and let V be the connected component of f −1(U) containing a. If
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ψ¨f �=−∞ on V then we define f ∗ω=ddc(ψ¨f). If ψ¨f=−∞ on V then we define
f ∗ω as the measure which sends ∅ to 0 and E to +∞ for all E �=∅. We denote
this measure by +∞. Observe that if ψ¨f=−∞ on V then the same applies for
every other local potential. In fact, if ψ and ψ′ are two potentials for ω on open
sets U and U ′, respectively, then on the open set V ∩V ′ we have two subharmonic
functions f ∗ψ and f ∗ψ′ which differ by a harmonic function. Therefore, if one of
them is equal to −∞ the other one is also equal to −∞.

Remember that every positive (n, n)-current (of order 0) on an n-dimensional
manifold can be given by a positive Radon measure, and conversely every positive
Radon measure defines a positive (n, n)-current. So when we pull ω back to D by
an analytic disc it is possible to look at it both as a (1, 1)-current and as a Radon
measure.

We let Rf ∗ω be the Riesz potential of the positive measure f ∗ω. It is defined by

(1) Rf ∗ω(z) =
∫

D

GD(z, · ) d(f ∗ω),

where GD is the Green function for the unit disc, GD(z, w)=log(|z −w|/|1−zw|). If
f ∗ω=+∞ then Rf ∗ω=−∞. The Riesz potential of f ∗ω is not identically −∞ if
and only if f ∗ω satisfies the Blaschke condition (see [8], Theorem 3.3.6)∫

D

(1− |ζ|) d(f ∗ω)(ζ) <+∞.

If f is a closed analytic disc not lying in sing(ω), then this condition is satisfied
since f ∗ω is a Radon measure in a neighborhood of the unit disc, and thus has finite
mass on D.

Also if we have a local potential ψ defined in a neighborhood of f(D) then the
Riesz representation formula, (ibid.), at the point 0 gives

(2) ψ(f(0)) =Rf ∗ω(0)+
∫

T

ψ ¨ f dσ.

Proposition 2.3. The following are equivalent for a function u on X .
(i) u is in P S H(X, ω);
(ii) u is ω-usc and h∗u∈ S H(D, h∗ω) for all h∈ AX such that h(D)�sing(ω).

Proof. Assume u∈ P S H(X, ω), take h∈ AX , with h(D)�sing(ω), and a∈D.
Let ψ be a local potential for ω defined in a neighborhood U of h(a). Note that
(u+ψ)�

¨h=(u¨h+ψ¨h)�, i.e. the extension of (u+ψ)¨h over sing(h∗ω) is the same
as the extension of u+ψ over sing(ω) pulled back by h, for both functions are
subharmonic and equal almost everywhere, and thus the same. Since (u+ψ)� ∈
P S H(U) and (u+ψ)�

¨h=(u¨h+ψ¨h)� is subharmonic in a neighborhood of a we
see that u¨h is h∗ω-subharmonic.
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Assume now that (ii) holds and let ψ ∈ P S H(U) be a local potential for ω.
Then (u+ψ)� is upper semicontinuous, and (ii) implies that (u+ψ)�

¨h∈ S H(D) for
every h∈ AU . Hence (u+ψ)� ∈ P S H(U) and we have (i). �

From the proposition we also see that ω-plurisubharmonicity like plurisubhar-
monicity is a local property, so in condition (ii) it is sufficient to look at h∈ AU in
a neighborhood U of a given point.

If u0 �=−∞ is psh and ϕ is an usc function then the family {u∈ P S H(X);
u0 ≤u≤ϕ} is compact in the L1

loc topology, which implies that

sup{u(x) ; u ∈ P S H(X) and u ≤ ϕ}

is plurisubharmonic. We have a similar result for ω-plurisubharmonic functions.

Proposition 2.4. If ϕ : X→[−∞, +∞] is ω-usc, Fω,ϕ={u∈ P S H(X, ω);
u≤ϕ} and Fω,ϕ �=∅, then sup Fω,ϕ ∈ P S H(X, ω), and consequently sup Fω,ϕ ∈ Fω,ϕ.

Proof. Define sϕ=sup Fω,ϕ, by definition sϕ+ψ ≤ϕ+ψ outside of sing(ω) for
every local potential ψ on U . Since ϕ is ω-usc, the upper semicontinuous regular-
ization (sϕ+ψ)∗ of sϕ+ψ also satisfies

(sϕ+ψ)∗ ≤ ϕ+ψ on U \sing(ω).

Note that the left-hand side is plurisubharmonic. We define the function S on
X \sing(ω) by

S(x)= (sϕ+ψ)∗(x)−ψ(x),

where ψ is a local potential for ω in some neighborhood of x. Observe that since the
difference between two local potentials is continuous it is clear that the function S

is well defined on X \sing(ω). We extend S to an ω-usc function on X by taking the
lim sup at points in sing(ω). Furthermore, it is then obvious that S ∈ P S H(X, ω)
and sϕ ≤S ≤ϕ follows from the inequality above, so sϕ=S ∈ Fω,ϕ. �

3. Disc functionals and their envelopes

A disc functional H is a function defined on some subset A of O(D, X), the
set of all analytic discs in a manifold X , with values in [−∞, +∞]. The enve-
lope EH of a disc functional H is then a function defined on the set XA ={x∈X ;
x=f(0) for some f ∈ A } by the formula

EH(x)= inf{H(f) ; f ∈ A and f(0) =x}, x ∈ XA.
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The Poisson disc functional is defined as Hϕ(f)=
∫

T
ϕ¨f dσ, where ϕ is an usc

function and σ is the normalized arc length measure on the unit circle T. If f ∈ AX

is a closed analytic disc, u∈ P S H(X) and u≤ϕ then

u(f(0)) ≤
∫

T

u ¨ f dσ ≤ Hϕ(f).

The envelope EHϕ of Hϕ is plurisubharmonic by the Poletsky theorem [12] and
equal to the supremum of all plurisubharmonic functions less than or equal to ϕ,
that is

sup{u(x) ; u ∈ P S H(X) and u ≤ ϕ} = inf
{∫

T

ϕ ¨ f dσ ; f ∈ AX and f(0) =x

}
.

We will now generalize the definition of the Poisson functional to ω-usc func-
tions and look at the largest ω-psh minorant of ϕ. This functional will be denoted
by Hω,ϕ.

Fix an ω-usc function ϕ on a complex manifold X and a point x∈X \sing(ω),
let f ∈ AX , f(0)=x, and assume there is a function u∈ P S H(X, ω), u≤ϕ. Then,
since f(0)=x /∈sing(ω), the pullback f ∗ω is a well-defined Radon measure on D.
Remember that Rf ∗ω is a global potential for f ∗ω on D and equal to 0 on the
boundary, so by Proposition 2.3,

u(x)+Rf ∗ω(0) ≤
∫

T

u ¨ f dσ+
∫

T

Rf ∗ω dσ.

As u≤ϕ and Rf ∗ω=0 on T we see that

(3) u(x) ≤ −Rf ∗ω(0)+
∫

T

ϕ ¨ f dσ.

The right-hand side is independent of u, so we define the functional Hω,ϕ for every
f ∈ AX with f(0) /∈sing(ω) by

Hω,ϕ(f) = −Rf ∗ω(0)+
∫

T

ϕ ¨ f dσ.

Now take supremum on the left-hand side of (3) over all ω-psh functions u

satisfying u≤ϕ and infimum on the right over all f ∈ AX such that f(0)=x. Then
we get the fundamental inequality

sup Fω,ϕ ≤ EHω,ϕ on X \sing(ω).

Theorem 1.1 states that this is actually an equality.
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Since the disc functional is not defined for discs centered at a∈sing(ω) we
extend the envelope to a function on the whole space X by

EHω,ϕ(a) = lim sup
X\sing(ω)�z→a

EHω,ϕ(z).

In the following we let Dr={t∈C;|t|<r} and if x is a point in X then H(x)
will denote the value of H at the constant disc t 
→x, the meaning should always be
clear from the context.

Notice now that if we look at the constant discs in X , then Hω,ϕ(x)=ϕ(x) and
consequently EHω,ϕ ≤ϕ. Therefore, if we show that EHω,ϕ is ω-psh then it is in
Fω,ϕ and we have an equality sup Fω,ϕ=EHω,ϕ.

An immediate corollary of the main theorem is a formula for the relative ex-
tremal function of a set E in Ω, where Ω is an open subset of X . It is defined
as

hE,Ω,ω(x)= sup{u(x) ; u ∈ P S H(Ω, ω), u|E ≤ 0 and u ≤ 1}.

Now assume E is open and apply Theorem 1.1 to Ω with ϕ as the characteristic
function for the complement of E. For x∈Ω\sing(ω) it gives that

hE,Ω,ω(x)= inf{ −Rf ∗ω(0)+σ(T\f −1(E)) ; f ∈ AΩ and f(0) =x}.

When Ω=X we denote this function by hE,ω .
In the local theory, ω=0 and X ⊂C

n, the relative extremal function can be used
to describe the polynomial hull of a compact set. The result is due to Poletsky [15]
and can also be found in the following form in [13], Theorem 2. It states that for a
compact set K in C

n, a point a in C
n, and Ω a pseudoconvex neighborhood of K

and a, bounded and Runge, the following are equivalent:
(i) a is in the polynomial hull of K;
(ii) for every neighborhood U of K and every ε>0 there is an f ∈ AΩ with

f(0)=a and σ(T\f −1(U))<ε.
If we now wish to use our formula to get a similar result on a general complex
manifold we have to start by finding an alternative to the polynomial hull. It
follows from Theorem 5.1.7 in [9] that the polynomial hull in C

n is exactly the hull
with respect to the psh functions in C

n of logarithmic growth. These functions
correspond to the ω-psh functions on P

n if ω is the integration current for the
hyperplane at infinity. This motivates the following definition, which is similar to
the definition given by Guedj [4] of the ω-polynomial hull.

Definition 3.1. If K ⊂X is a compact subset of a complex manifold X and ω

is a closed, positive (1, 1)-current on X , we define the ω-polynomial hull of K as

K̂ω =
{

x ∈ X ; u(x) ≤ sup
K

u for all u ∈ P S H(X, ω)
}
.
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Our goal is to use the disc formula above to describe this hull. To make that
possible we have to be able to use the relative extremal function to describe the
hull, that is there is an Ω⊂X such that h−1

K,Ω,ω({0})=K̂ω . In the local theory it is
sufficient to have Ω⊂C

n hyperconvex.
The disc formula only applies to open sets, here we are considering compact

sets so we start by showing that it is enough to look at shrinking neighborhoods of
compact sets.

Proposition 3.2. Assume that ω is a closed, positive (1, 1)-current on a
complex manifold X such that ω has continuous local potentials on X \sing(ω). Let
K1 ⊃K2 ⊃... be sequence of compact subsets of an open set Ω⊂X \sing(ω) and
K=

⋂∞
j=1 Kj . Then

lim
j→∞

hKj ,Ω,ω =hK,Ω,ω.

The proof is the same as in the case ω=0, see Klimek [9], Proposition 4.5.10.
We only have to note that the assumptions on ω imply that all ω-psh functions are
usc.

Next we derive the result with some assumptions on Ω, below we see that in
some cases we can take Ω=X .

Proposition 3.3. Let K be a compact subset of Ω⊂X \sing(ω), and assume
ω has continuous local potentials and Ω satisfies h−1

K,Ω,ω({0})=K̂ω . Then a point
x∈Ω is in K̂ω if and only if for every neighborhood U of K in Ω and every ε>0
there is an analytic disc f ∈ AΩ such that f(0)=x and

−Rf ∗ω(0)+σ(T\f −1(U)) <ε.

Proof. Let x∈K̂ω . Then 0≤hU,Ω,ω(x)≤hK,Ω,ω(x)=0, and by the disc formula
for hU,Ω,ω there is a disc f ∈ AΩ such that f(0)=x and

−Rf ∗ω(0)+σ(T\f −1(U)) <ε.

Conversely, if such f ’s exist then hU,Ω,ω(x)=0 for every neighborhood U of K.
Let {Kj } ∞

j=1 be a sequence of compact subsets of Ω such that
⋂∞

j=1 Kj =K and
Kj+1 ⊂

¨

Kj . Then hKj ,Ω,ω(x)=0 and by Proposition 3.2 we see that hK,Ω,ω(x)=0. �

Proposition 3.4. If sing(ω)=∅ and X is compact then h−1
K,ω({0})=K̂ω .

Proof. Assume x∈h−1
K,ω({0}) and let u∈ P S H(X, ω). Note that if we let ψj :

Uj→R
+ be positive local potentials for ω, such that

⋃∞
j=1 Uj =X , then for every j
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the function u+ψj is usc and locally bounded on Uj , and by a compactness argu-
ment we then see that supX u<+∞.

Now let ũ=(u−supK u)/(supX u−supK u) if supX u−supK u>1. Otherwise, if
supX u−supK u≤1, we let ũ=u−supK u. Either way, ũ is ω-psh, ũ≤1 and ũ|K ≤0.
Therefore ũ≤hK,ω and ũ(x)≤hK,ω(x)=0, that is u(x)≤supK u and x∈K̂ω .

Obviously K̂ω ⊂h−1
K,ω({0}), so h−1

K,ω({0})=K̂ω . �

4. Proof of the main result

We start by restricting to the case when ω has a global potential. The general
case then follows from the reduction theorem later on.

Lemma 4.1. Let ω be a closed, positive (1, 1)-current on a Stein manifold X .
If there is a current η such that dη=ω, then ω has a global plurisubharmonic po-
tential ψ : X→R∪ { −∞}, so in particular ddcψ=ω.

Proof. Since ω is a positive current it is real, so η can be assumed to be real,
η ∈Λ′

1(X, R). Now write η=η1,0+η0,1, where η1,0 ∈Λ′
1,0(X, C) and η0,1 ∈Λ′

0,1(X, C).
Note that η0,1=η1,0 since η is real. We see, by counting degrees, that ∂η0,1=ω0,2=0.
As X is Stein there is a distribution μ on X such that ∂μ=η0,1. Then

η = ∂μ+∂μ= ∂μ+∂μ.

If we set ψ=(μ−μ)/2i, then

ω = dη = d(∂μ+∂μ)= (∂+∂)(∂μ+∂μ) = ∂∂(μ−μ) = ddcψ.

Finally, ψ is a plurisubharmonic function since ω is positive. �

Theorem 4.2. Let ω be a closed, positive (1, 1)-current on a manifold X

and ϕ : X→[−∞, +∞] be an ω-usc function such that Fω,ϕ �=∅. If ω has a global
potential ψ then EHω,ϕ ∈ P S H(X, ω) and consequently EHω,ϕ=sup Fω,ϕ on X \
sing(ω).

Proof. For f ∈ AX , f(D)�sing(ω), the Riesz representation (2) of f ∗ψ gives

Hω,ϕ(f)+ψ(f(0)) =Hω,ϕ(f)+Rf ∗ω(0)+
∫

T

ψ ¨ f dσ =
∫

T

(ψ+ϕ)�
¨ f dσ =Hψ+ϕ(f).

The equality in the middle follows from the fact that
∫

T
ϕ¨f dσ+

∫
T

ψ¨f dσ=∫
T
(ϕ+ψ)�

¨f dσ since σ(f −1(sing(ω))∩T)=0. Therefore

EHω,ϕ(x)+ψ(x)= inf{Hω,ϕ(f)+ψ(x) ; f ∈ AX and f(0) =x} =EH(ψ+ϕ)�(x).

By Poletsky’s theorem EH(ψ+ϕ)� is psh, and hence EHω,ϕ is ω-psh. �
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If Φ: Y →X is a holomorphic map between complex manifolds and H is a
disc functional on X , then the pullback Φ∗H is a disc functional on Y defined by
Φ∗H(f)=H(Φ¨f) for f ∈ AY . Since {Φ¨f ;f ∈ AY } ⊂ AX we get the following result.

Lemma 4.3. Φ∗EH ≤EΦ∗H and equality holds if every disc in Y is a lifting
of a disc in X by Φ.

Moreover, for the Poisson functional Hω,ϕ we have the following result.

Lemma 4.4. Assume that Φ: Y →X is a holomorphic submersion. Then
Φ∗Hω,ϕ=HΦ∗ω,Φ∗ϕ.

Proof. By associativity of compositions we have (Φ∗f)∗ω=f ∗(Φ∗ω) for f ∈ AY ,
f(D)�Φ−1(sing(ω)), so

Φ∗Hω,ϕ(f) =Hω,ϕ(Φ∗f) = −R(Φ∗f)∗ω(0)+
∫

T

ϕ ¨Φ ¨ f dσ

= −Rf ∗(Φ∗ω)(0)+
∫

T

(Φ∗ϕ) ¨ f dσ =HΦ∗ω,Φ∗ϕ(f). �

We will now state the reduction theorem which will enable us to prove Theo-
rem 1.1 using Theorem 4.2.

Theorem 4.5. (Reduction theorem) Let X be a complex manifold, H be a disc
functional on A={f ∈ AX ;f(0) /∈sing(ω)} and ω be a positive, closed (1, 1)-current
on X . The envelope EH is ω-plurisubharmonic if it satisfies the following condi-
tions:

(i) EΦ∗H is Φ∗ω-plurisubharmonic for every holomorphic submersion Φ
from a complex manifold where Φ∗ω has a global potential and for every a∈sing(ω)
we have lim supX\sing(ω)�z→a EH(z)=EH(a).

(ii) There is an open cover of X by subsets U , with ω-pluripolar subsets Z ⊂U

and local potentials ψ on U , ψ−1({−∞})⊂Z, such that for every h∈ AU , h(D)�Z,
the function t 
→(H(h(t))+ψ(h(t)))� is dominated by an integrable function on T.

(iii) If h∈ AX , h(0) /∈sing(ω), t0 ∈T\h−1(sing(ω)) and ε>0, then t0 has a
neighborhood U in C and there is a local potential ψ in a neighborhood of h(U) such
that for all sufficiently small arcs J in T containing t0 there is a holomorphic map
F : Dr ×U→X so that F (0, · )=h|U and

1
σ(J)

∫
J

(H(F ( · , t))+ψ(F (0, t)))� dσ(t) ≤ (EH+ψ)(h(t0))+ε.
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Before proving the theorem we show that Hω,ϕ satisfies the conditions (i)–(iii)
and consequently that Theorem 1.1 follows from it.

Proof of Theorem 1.1. Condition (i) follows from Lemma 4.4 since it implies
that EΦ∗Hω,ϕ=EHΦ∗ω,Φ∗ϕ and by Theorem 4.2, EHΦ∗ω,Φ∗ϕ is Φ∗ω-psh.

Condition (ii) follows from the fact that Hω,ϕ(h(t))+ψ(h(t))=ϕ(h(t))+ψ(h(t)),
which extends to an upper semicontinuous function on T and is thus dominated by
a continuous function.

Assuming h and t0 as in condition (iii) and ε>0, set x=h(t0) and let f ∈ AX

be such that f(0)=x and Hω,ϕ(f)≤EHω,ϕ(x)+ε/2. By Lemma 2.3 in [11] there is
an open neighborhood V of x in X , r>1 and a holomorphic function F̃ : Dr ×V →
X such that F̃ ( · , x)=f on Dr and F̃ (0, z)=z on V . Shrinking V if necessary,
we assume that ψ is a local potential for ω on V . Let U=h−1(V ) and define
F : Dr ×U→X by F (s, t)=F̃ (s, h(t)). By the Riesz representation (2),

(4) (Hω,ϕ(F ( · , t))+ψ(F (0, t)))� =
∫

T

(ϕ+ψ)�
¨F (s, t) dσ(s).

Since the integrand is usc on Dr ×U , it is easily verified that (4) is an usc function
of t on U . That allows us, by shrinking U , to assume that

(Hω,ψ(F ( · , t))+ψ(F (0, t)))� ≤ Hω,ϕ(F ( · , t0))+ψ(F (0, t0))+
ε

2
for t∈U . Then by the definition of f=F ( · , t0),

(Hω,ϕ(F ( · , t))+ψ(F (0, t)))� <EHω,ϕ(x)+ψ(x)+ε on U.

Condition (iii) is then satisfied for all arcs J in T∩U .
Finally, if Fϕ,ω=∅ then the only function which is both dominated by ϕ and

satisfies the subaverage property is the constant function −∞. We know that
EHϕ,ω ≤ϕ and the proof of the reduction theorem gives the subaverage property.
This implies that EHϕ,ω=−∞. �

We now prove that EH is ω-psh if H satisfies the three conditions in Theo-
rem 4.5. The main work is to show that h∗EH satisfies the subaverage property
of h∗ω-subharmonic functions for a given analytic disc h. This implies by Proposi-
tion 2.3 that EH is ω-psh and that concludes the proof of the reduction theorem.

Lemma 4.6. Let H be a disc functional on an n-dimensional complex man-
ifold X and ω be a positive, closed (1, 1)-current on X . If the envelope EΦ∗H is
Φ∗ω-usc for every holomorphic submersion Φ from an (n+1)-dimensional polydisc
into X and for every a∈sing(ω) we have that lim supX\sing(ω)�z→a EH(z)=EH(a),
then EH is ω-usc.
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Proof. First, let U be a coordinate polydisc in X such that there is a potential
ψ for ω defined on U . Define Φ: U ×D→U as the projection. By assumption and
Lemma 4.3,

EH(z)+ψ(z) =EH(Φ(z, t))+ψ(Φ(z, t)) ≤ EΦ∗H(z, t)+ψ(Φ(z, t)) <+∞

for every z ∈U \sing(ω) and t∈D. Then EH<+∞ on X \sing(ω) and EH+ψ is
bounded above in some neighborhood of every point in sing(ω)∩U , where ψ is any
local potential for ω.

Let x∈X \sing(ω) and β>EH(x)+ψ(x). Assume that f ∈ AX is a holomorphic
disc defined on Dr such that f(0)=x and H(f)+ψ(x)<β. By using a theorem of
Siu [17] it is shown in the proof of Lemma 2.3 in [11] that for r̃ ∈]0, r[ there exists
a neighborhood U of the graph {(t, f(t)); t∈Dr } in Dr ×X and a biholomorphism

Ψ: U −→Dr̃ ×D
n

such that Ψ(t, f(t))=(t, 0). Let π : C×X→X be the projection and define Φ=
π¨Ψ−1. Clearly f=Φ¨f̃ , where f̃ ∈ADr̃ ×Dn is the lifting f̃(t)=(t, 0). By assumption
and the fact that

EΦ∗H(x)+ψ(x) ≤ Φ∗H(f̃)+ψ(x) =H(f)+ψ(x) <β

there is a neighborhood W of 0∈Dr̃ ×D
n such that

(EΦ∗H+Φ∗ψ)� <β on W.

Then for every z in the open set Φ(W ),

(EH(z)+ψ(z))� =(Φ∗EH(z̃)+ψ(z))� ≤ (EΦ∗H(z̃)+Φ∗ψ(z̃))� <β,

where z̃ ∈Φ−1({z}). This along with the definition of EH at sing(ω) shows that the
envelope is ω-usc. �

Now we turn to the subaverage property of the envelope.

Proof of Theorem 4.5. We have already shown that the envelope EH is ω-usc,
so by Proposition 2.3 we only need to show that for a local potential ψ on an open
set U ⊂X and every disc h∈ AU such that h(0) /∈sing(ω) we have

(5) EH(h(0))+ψ(h(0)) ≤
∫

T

(EH ¨h+ψ ¨h)� dσ.

Observe that this is automatically satisfied if EH(h(0))=−∞, so we may assume
that EH(h(0)) is finite. It is sufficient to show that for every ε>0 and every
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continuous function v : U→R with v ≥(EH+ψ)�, there exists g ∈ AX such that
g(0)=h(0) and

H(g)+ψ(h(0)) ≤
∫

T

v ¨h dσ+ε.

Then by definition of the envelope EH(h(0))+ψ(h(0))≤
∫

T
v¨h dσ+ε for all v and ε,

and (5) follows.
We assume that h is holomorphic on Dr, r>1 and h(0) /∈sing(ω). It is eas-

ily verified (see the proof of Theorem 1.2 in [12]) that a function satisfying the
subaverage property for all holomorphic discs in X not lying in a pluripolar set Z

is plurisubharmonic not only on X \Z but on X . We may therefore assume that
h(D)�Z.

Note that h(T)\sing(ω) is dense in h(T) by the subaverage property of
ψ¨h and the fact that h(0) /∈sing(ω). Therefore by a compactness argument along
with property (iii) we can find a finite number of closed arcs J1, ..., Jm in T, each
contained in an open disc Uj centered on T, and holomorphic maps Fj : Ds ×Uj→X ,
s∈]1, r[, such that Fj(0, · )=h|Uj and, using the continuity of v, such that

(6)
∫

Jj

(H(Fj( · , t))+ψ(F (0, t)))� dσ(t) ≤
∫

Jj

v ¨h dσ+
ε

4
σ(Jj).

We may assume that the discs Uj are relatively compact in Dr and have mutually
disjoint closures. By the continuity of v and condition (ii) we may also assume that

(7)
∫

T\
Sm

j=1 Jj

|v ¨h| dσ <
ε

4

and

(8)
∫

T\
Sm

j=1 Jj

(H(h(w))+ψ(h(w)))� dσ(w) <
ε

4
.

We now embed the graph of h in C
4 ×X as

K0 = {(w, 0, 0, 0, h(w)) ; w ∈ D}

and the graphs of the Fj ’s as

Kj = {(w, z, 0, 0, Fj(z, w)) ; w ∈ Jj and z ∈ D}.

Let Φ: C
4 ×X→X denote the projection. This function restricted to a smaller

subset will be our submersion.
What is needed to find the disc g we are looking for is a Stein neighborhood V

of the compact set K=
⋃m

j=0 Kj in C
4 ×X where we can solve dη=Φ∗ω. Then we
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have, by Lemma 4.1, a global potential for the pullback Φ∗ω, and the Φ∗ω-pluris-
ubharmonicity of EΦ∗H , given by property (i), then gives the existence of g.

For convenience we let U0=Dr and F0(z, w)=h(z). In [12], using Siu’s theorem
[17] and slightly shrinking the Uj ’s and the s, Lárusson and Sigurdsson define for
j=0, ..., m a biholomorphism Φj from Uj ×Dn+3

s onto its image in C
4 ×X satisfying

Φj(w, z, 0) = (w, z, 0, 0, Fj(z, w)), w ∈ Uj , z ∈ Ds,

for j=1, ..., m, and

Φ0(w, 0) = (w, 0, 0, 0, h(w)), w ∈ Dr.

The image of each Φj is therefore biholomorphic to a (4+n)-dimensional polydisc.
These extensions of the graphs above are defined such that the first coordinate is
the identity map. This tells us that these images are mutually disjoint for j ≥1 and
that the intersection of the image of Φ0 and Φj is a subset of Uj ×C

3 ×X .
As in [12] we let U ′ ′

j and U ′
j be discs concentric with Uj such that

Jj ⊂ U ′ ′
j �U ′

j �Uj ,

and we assume that our Φ0 is the Φ0 after the modification made in [12] which
is necessary to have all but the first coordinate of Φ−1

j ¨Φ0 close to the identity.
This modification which is done by precomposing Φ0 with a holomorphic map is
necessary for constructing the Stein neighborhood. Importantly for our purpose it
does not change the first coordinate.

Now, for each w ∈U ′
j there is an εw>0 such that Φ0(w, Dn+3

εw
)⊂Φj(w, Dn+3

s ).
This holds by continuity for εw/2 on a neighborhood of w in Uj . By compactness
of

⋃m
j=1 U ′

j there is an ε independent of w such that Φ0(w, Dn+3
ε )⊂Φj(w, Dn+3

s )
for w ∈U ′

j . We now restrict Φ0 to Dr ×Dn+3
ε . Then the intersection of the images

Φ0(Dr ×Dn+3
ε ) and Φj(U ′

j ×Dn+3
s ) is Φ0(U ′

j ×Dn+3
ε ).

We define Vj =Φj(Uj ×Dn+3
s ), V0=Φ0(U0 ×Dn+3

ε ) and U=
⋃m

j=0 Vj . To solve
dη=Φ∗ω on U it is then enough to show that the cohomology H2(U) is zero. This
can be done using the exact Mayer–Vietoris sequence ([18], Chapter 11, Theorem 3),

... −→Hq(M ∪N) −→Hq(M)⊕Hq(N) −→Hq(M ∩N) −→Hq+1(M ∪N) −→ ... .

We start by letting M=V0 and N=V1, these sets and their intersection are biholo-
morphic to a polydisc, so they are smoothly contractable and then by Poincaré’s
lemma H2(Vj)=H1(V0 ∩V1)=0. Consequently, we see from the Mayer–Vietoris se-
quence

... −→H1(V0 ∩V1) −→H2(V0 ∪V1) −→H2(V0)⊕H2(V1) −→ ...
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that H2(V0 ∪V1)=0. Next we let M=V0 ∪V1 and N=V2, then H1((V0 ∪V1)∩V2)=
H1(V0 ∩V2)=0 since V1 and V2 are disjoint. The sequence above tells us then
that H2(V0 ∪V1 ∪V2)=0. Iterating this process for all the Vj ’s we finally see that
H2(U)=H2

(⋃m
j=0 Vj

)
=0.

The next step is to find a Stein neighborhood V of K which is a subset of U .
Note that K only relies on the holomorphic functions h and Fj . Therefore V can be
constructed in exactly the same way as in [12]. It is done by defining a continuous
strictly plurisubharmonic exhaustion function ρ on U . This function is positive and
satisfies K ⊂ρ−1

([
0, 1

2

])
. Finally V is defined as ρ−1([0, 1)).

Then by Lemma 4.1 we have a global potential on V for Φ∗ω. By property
(i) the envelope EΦ∗H is then Φ∗ω-psh on V and if h̃ : Dr→V is the lifting w 
→
(w, 0, 0, 0, h(w)) of h, then

EΦ∗H(h̃(0))+Φ∗ψ(h̃(0)) ≤
∫

T

(EΦ∗H ¨ h̃+Φ∗ψ ¨ h̃)� dσ.

Since EH(h(0)) �=−∞ we have that −∞<Φ∗EH(h̃(0))≤EΦ∗H(h̃(0)) and we may
assume there is a disc g̃ ∈ AV such that g̃(0)=h̃(0) and Φ∗H(g̃)≤EΦ∗H(g̃(0))+
ε/4. Define the disc g=Φ¨g̃ ∈ AX . Then g(0)=h(0) and since H(g)=Φ∗H(g̃) and
Φ∗ψ(h̃)=ψ(h),

(9) H(g)+ψ(h(0)) ≤
∫

T

(EΦ∗H ¨ h̃+ψ ¨h)� dσ+
ε

4
.

For w ∈Jj , 1≤j ≤m, we have a lifting of Fj( · , w) by Φ given by

z 
−→ (w, z, 0, 0, Fj(z, w)).

Clearly 0 
→h̃(w), so

EΦ∗H(h̃(w)) ≤ Φ∗H(F̃ j( · , w)) =H(Fj( · , w)).

However, if w ∈T\
⋃m

j=1 Jj then EΦ∗H(h̃(w))≤Φ∗H(h̃(w))=H(h(w)). Therefore,
∫

T

EΦ∗H ¨ h̃ dσ ≤
m∑

j=1

∫
Jj

H(Fj( · , w)) dσ(w)+
∫

T\
Sm

j=1 Jj

H(h(w)) dσ(w).

Adding the integral of ψ(h) to both sides of this inequality and using the inequalities
(6) and (8) we see that∫

T

(EΦ∗H ¨ h̃+ψ ¨h)� dσ ≤
∫
Sm

j=1 Jj

v ¨h dσ+
ε

4
σ

( m⋃
j=1

Jj

)
+

ε

4
.

Then by using first (9) and then (7) we have finally that

H(g)+ψ(h(0)) ≤
∫
Sm

j=1 Jj

v ¨h dσ+
3
4
ε<

∫
T

v ¨h dσ+ε. �
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